
Eric A. Petersen
December 19, 2012

Phys. 569: ESM
Term Paper

Gravitation and the Emergence of
Space-time

Abstract:

The concept of space-time is fundamental to the theory of General Relativity.
However, when developing theories of gravity which incorporate quantum mechan-
ics, problems arise on the scales of the Planck length and Planck time. Several
solutions have been proposed where the classical idea of space-time as the funda-
mental backdrop upon which the laws of physics guide the evolution of the universe
is rejected. Instead, it is argued, space-time is an emergent property of the more
fundamental notion of physical interactions or events. Some of these solutions arise
from casting gravity as an entropic force. Others involve imposing certain commu-
tation relations on non-commutative geometries or using Monte Carlo methods on
a sub-Planck scale grid and solving for the path integral. Some physicists, however,
remain unconvinced that an emergent notion of space-time is necessary and their
objections will also be noted. The broad idea of emergent gravity cannot, as of yet,
be dismissed, however, certain models can be excluded.
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1 Introduction:

General Relativity is a very successful theory in the domains in which it has
been tested. The description provided by the theory allows for calculations which
are much more precise than the older Newtonian theory and predicts many new
areas of physics such as gravitational redshifts, deflection of light beams around
massive objects, and even completely new objects - black holes. The fundamental
aspect of the theory is that matter distorts space-time. This is generally accepted
as “just how the universe is” but recently, some researchers have begun to examine
the possibility that this may actually be an emergent phenomenon.

1.1 Gravity:

The first successful theory of gravity was Newton’s famous Law of Universal
Gravitation. The equation ~FG = GMm

r2
r̂ was able to explain all terrestrial exper-

iments for centuries and was so good at describing the solar system that two in-
dependent astronomers made extremely precise predictions about the location and
mass of Neptune before it had been observationally discovered[1]. In 1915, Einstein
published his theory of General Relativity, which did much more than simply cor-
recting Newton’s theory to a few more decimal places. New effects which have been
observed are gravitational redshifts, the precession of Mercury, gravitational lensing,
and, dramatically, black holes. All of these have been observed with remarkable pre-
cision and, though many alternative theories have been proposed, GR remains the
most satisfactory (for both simplicity and accuracy) model yet proposed. However,
in the strong field regime (near a horizon or in the early universe) observational
evidence is scant, leaving room for other theories[2].

One of the key players of General Relativity is the metric. The metric is a rank
2 symmetric tensor which contains much information regarding the geometry of the
system in question. By generalizing the familiar dot product, it not only calculates
the invariant distance, ds2, but it also shows causality (past and future), determines
the trajectories of test particles (geodesics), and identifies locally inertial frames[3].
Mathematically, the metric is used to take inner products and to raise/lower indices
(change to contravariant or covariant form). Derivatives of the metric give rise to
connection coefficients (called Christoffel symbols in a coordinate basis) which allow
one to examine parallel transport on a curved manifold. These symbols are given
by equation 1.

Γαβγ =
1

2
(∂γgαβ + ∂βgαγ − ∂αgβγ) =

1

2
(gαβ,γ + gαγ,β − gβγ,α) (1)

Taking derivatives of these symbols gives rise the Riemann Curvature Tensor
(a rank 4 tensor), which can be contracted to form the Ricci Tensor (a rank 2 tensor),
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given by equations 2 and 3.

Rα
βγδ = Γαδβ,γ − Γαγβ,δ + ΓαγλΓ

λ
δβ − ΓαδλΓ

λ
γβ (2)

Rµν = Rλ
µλν (3)

A useful quantity for understanding the degree to which spacetime is curved
is the Ricci scalar (also called the curvature scalar). This is formed by a further
contraction on the Ricci tensor, R = Rµ

µ. These three quantities are great for de-
scribing the curvature imposed by the metric, but one combination of them, the
Einstein tensor, is of particular value to General Relativity. The Einstein tensor,
Gµν is formed by equation 4 and is connected, through equation 5 (where the sec-
ond equality holds with geometerized units: G=1=c), to the energy distribution
(symbolized by the Energy-Momentum tensor, Tµν) of the universe[4]. The presence
of the constant, Λ, in the equation has an interesting history, but nowadays it is
usually only included for cosmological purposes[3].

Gµν = Rµν −
1

2
Rgmuν (4)

Gµν =
8πG

c4
Tµν + Λgµν = 8πTµν + Λgµν ≈ 8πTµν (5)

1.2 Emergence:

Emergence is a property of matter in which a collection of microscopic objects
interact to create a macroscopic system with qualitatively different properties than
the microscopic system. A simple, yet illustrative, example could be dissipative
forces (friction, drag, etc.) which arise from many interactions between molecules in
the two objects (or fluids) transferring the kinetic energy of the system as a whole to
smaller scales, resulting in an increase in temperature. In this example, it could be
said that the force of friction emerges from the underlying molecular interactions.
An important aspect of this emergence is that the friction force can be understood
(Fs = µsN) without making reference to the (complicated) interaction properties of
the molecules from which it arises. In fact, many well established fields of science
(chemical bonding, thermodynamics) turn out to emerge from some much newer
field of study (quantum mechanics, atomic theory). Thus, the claim that gravity,
often quoted as one of four fundamental forces, may be emergent should not be quite
as shocking as it may, at first, appear.

A major concept in emergence is the idea of spontaneous symmetry break-
ing. This is done when the governing principles (say, the Hamiltonian) of a system
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obey some symmetry (say, translation invariance or axisymmetry). A simple exam-
ple would be placing a pencil on its tip (all forces are symmetric with respect to
azimuthal angle) which then falls (and points in only one direction). A more in-
teresting example would be a string of interacting spins, initially randomly aligned,
at finite temperature being cooled to a lower temperature. In the absence of an
external magnetic field, there is no a priori reason to believe that the spins will align
one way or the other (symmetry) but, past a critical temperature, the spins will
start to have an overall magnetization (broken symmetry).

Another concept which is important when examining the macroscopic emer-
gence of a system from microphysical constituents is granularity. This deals with
how precisely the system is observed. For instance, the ideas of pressure and density
in a fluid are coarse-grained in that they have meaning (quite important meaning for
fluid dynamics) on the scale of the whole fluid but, when “zooming in” to the scale of
the individual molecules of the fluid (angstroms, picoseconds) the terms loose mean-
ing (the space around the atoms is mostly empty, so the density would essentially be
a sea of delta functions on a background density of zero). An experimenter whose
data is averaging over a large region (coarse-grained) will see the emergent behavior;
an experimenter whose data focuses on a very small scale (fine-grained) will only
see the underlying microphysics. For example, if one were to probe a bar magnet
with extremely high precision, one would just see a jumble of spins, however, if one
looks at the magnet as a whole one would see that there is a preferred direction of
magnetization.

2 Gravity and Quantum Mechanics

Two of the most successful and fundamental theories in physics are General
Relativity (described above) and Quantum Mechanics (not discussed in this paper).
These theories match very well with experiment and observation when confined to
their own domains (large distance scales for GR, short ones for QM). Quantum Me-
chanics is king from the subatomic world to molecular dynamics while GR describes
mostly astrophysical systems from cosmological scales down to the GPS satellites in
Earth’s orbit. Because both theories reduce to familiar Classical Mechanics when
length, time, mass, and energy scales approach what an average human might en-
counter in their every day lives, one might naively assume that this arrangement
could be “good enough” to describe the universe.

There do, however, exist several instances in which extreme amounts of cur-
vature (a GR effect) happen on microscopic scales (the Quantum domain). One
example would be the theoretical (as of yet, unobserved) micro-black holes. These
subatomic particles would greatly affect the local spacetime. Another, less hypo-
thetical example deals with cosmogony, the birth of the universe. According to
the widely accepted inflationary Big Bang model, the extremely early universe had
incredibly high temperatures and density, yet the spatial extent of the universe

4



went down to the Planck scale (one Planck length, `P ∼ 10−35m; one Plank time,
tP ∼ 10−43s). In some quantum theories, the other three fundamental forces (Strong,
Weak, and Electromagnetic) would have unified to form one force (with the Strong
force emerging before the Electro-Weak force splits). Aesthetically, it would be nice
if the same theory could describe Gravity as well. More importantly, on this scale
quantum effects would cause energy-momentum fluctuations which would, through
GR, cause spacetime to devolve into an ugly quagmire of infinite values for certain
parameters[3]. The extremely turbulent, non-smooth nature of spacetime at this
scale has been called “spacetime foam” and it makes any actual calculations impos-
sible; see figure 1 for an illustration in the form of drawings of spacetime curvature
at increasingly fine resolution.

Figure 1: This cartoon illustrates a physicist examining the microscopic spacetime
foam through an improbably powerful microscope. This image was originally pub-
lished in [5], with credit to E Rijke.

Another connection between GR and QM is the concept of black hole entropy.
The no-hair theorem states that a black hole is characterized entirely by its mass,
spin and charge; any other information regarding the matter that originally made
up the black hole is lost. A black hole’s event horizon increases whenever it accretes
matter and, during a collision with another black hole, the final area of the event
horizon is greater than the sum of the two initial horizons. Between these two facts,
one might begin to suspect that the area of the event horizon might be tied to the
entropy of the black hole. It turns out that the two are proportional. This leads
to the notion that the black hole should come to equilibrium with a temperature
bath of photons. At first, this seems impossible, given that the black hole should
be incapable of emitting any blackbody radiation. The solution is that a kind of
tunneling takes place when virtual pairs of (anti-)particles erupt into existence near
the horizon. One (anti-)particle may fall in while the other is ejected to infinity; this
is known as “Hawking radiation”. Hawking radiation reduces the mass of the black
hole, leading to evaporation, and allows it to (on a cosmological timescale) come to
equilibrium with a temperature bath[2].
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3 Entropic Gravity:

3.1 The Model:

Certain forces can be derived from entropic considerations. Osmotic forces and
elastic polymer forces are examples. Take the case of the latter; the polymer molecule
entropically favors a short jumble of monomers to a long, thin chain because there
are many more microstates available to it. Statistical mechanics can be used to show
that the resulting force is identical to Hooke’s law (assuming constant temperature):
~F ∝ −T∆~x. Two characteristics of this law are important for defining an entropic
force: (1) the force points toward higher entropy (shorter macroscopic length) and
(2) the force is proportional to temperature.

To create an entropic model of gravity, imagine that nearby points are sepa-
rated by “screens”. These screens act like event horizons in that their area stores
information and is thus related to entropy, though they are not actual horizons
around any singularity. This model is called the holographic principle and has its
roots with the AdS/CFT correspondence (which relates quantum conformal field
theory to relativistic anti-DeSitter space). On one side of the screen our usual
notions of spacetime have already emerged, while on the other the unknown micro-
physics (about which we make no assumptions aside from time reversal symmetry
which leads to energy conservation and temperature) is used. We will take the screen
to be a sphere surrounding a massive body with the “normal” emergent laws taking
place in the outside region, as in figure 2.

Figure 2: This schematic represents the thought experiment. The sphere of radius R
is the screen; the mass M inside distributes information across the surface, leading
to an effective temperature T. The outer emergent region has has a test particle
of mass m impinging on the screen and experienceing a force F. Image originally
published in [6].

As a particle of mass m approaches to within a Compton wavelength of the
screen, the entropy increases (just as for an accreting black hole) by an amount
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∆S = 2πkB for ∆x = ~/mc. This leads to ∆x = 2πkBmc
~ ∆x. The usual form for an

entropic force, F∆x = T∆S can be used to relate the force to the temperature as
in equation 6.

F =
2πmc

~
kBT (6)

Now the crucial element is the energy within the screen. Assuming equiparti-
tion, there is a simple relationship between the temperature that will determine the
force in our holographic model and the energy within the screen; there is also a sim-
ple relationship between the energy and the mass that used in Newtonian gravity.
These relationships are given by equation 7,

Mc2 = E =
1

2
NkBT, (7)

where N is the number of “bits” on the surface. By analogy with the event
horizon, we know that N ∝ A, and we will use G in the proportionality constant;
it will later be shown to be the familiar G from Newtonian theory. Using N = Ac3

G~
and equation 7 we can solve for the temperature of the screen in terms of the mass
we are supposing is inside of it, the radius of the screen, and physical constants as
in equation 8.

T =
2~GM

4πR2kBc
(8)

Combining equations 8 with equation 6 gives equation 9, which is exactly
Newton’s law of gravitation. Similar, but more lengthy arguments can give rise to
Einstein’s equations[6].

F =
GMm

R2
(9)

3.2 Experimental Rejection:

One test of this method comes from experimentation with ultra-cold neutrons
in a gravitational well. The Schrödinger for this setup is given by equation 10, with
the boundary condition that ψ(z = 0) = 0, indicating that the bottom surface is a
perfect mirror.

(
−~2

2m

∂2

∂z2
+ V (z)

)
ψn = Enψn | V (z) =

{
mngz if z ≥ 0

∞ if z < 0
(10)
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The solution to this equation is given by 11, where the length scale is given
by ` = (~2/2gm2)(1/3) ≈ 5.9µm, xn is the nth zero of the Airy function, and Nn is
a normalization constant (in all cases, n¿0).

ψn(z) = NnAi
(z
`

+ xn

)
(11)

The energy levels, En = mngzn, give rise to predicted, discrete heights above
the mirror which the neutrons are allowed to occupy; zn = −xn` and for n=1,
the value is zp1red = 13.7µm. Experiments have observed the discrete pattern and
have identified the ground state height as zexper1 = 12.2± 0.7stat ± 1.8sys µm, a good
agreement with the predictions.

This can be compared to the entropic predictions. As the neutron approaches
the screen by an amount ∆z, the entropy of the screen changes by an amount ∆S.
The patch of the coares-grained screen representing the neutron is denoted by a
subscript N, leading to equation 12, where λn is the neutron Compton wavelength.

SN(z + ∆z) − SN(z) = ∆SS(z) = 2πkB
∆z

λn
(12)

Equation 12 implies that, as a neutron in an originally pure state changes
height, it must evolve into a mixed state. This means that the vertical translation
operator, Uz is not unitary which, in turn, implies that its generator, Pz is not
Hermitian. By assuming that the screen is at maximum entropy it can be shown
that the new momentum operator, p̃z, works out to p̃z = −ı~∂z − 2πımc. The
corresponding wavefunction, ψ̃, is given by equation 13, while the energy, Ẽ, works
out to be Ẽ = mgzn + 2π2mc2.

∂2ψ̃m
∂z2

− 4πmc

~
∂ψ̃n
∂z

=
2m

~2
(
V (z)− En − 2π2mc2

)
ψ̃n (13)

The energy shift in Ẽ is not observed, but the real nail in the coffin comes
from wavefunction. The solution to equation 13 is an exponentially decaying analog
of 11, as seen in equation 14.

ψ̃n(z) = Ñne
−2π(z/λ)ψn(z) (14)

The exponential in this wave function is very important in that it means that
the probability of detection should be about one for heights less than the neutron
Compton wavelength and about zero for any height greater than that. The means
that the slit should have been transparent to neutrons with h < z1, which is com-
pletely the opposite of the observation of the slit being opaque in that region. Thus,
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no matter how well the entropic theory of gravity works in duplicating classical
formulas, it must be dismissed as inconsistent with experiment[7].

4 Other Models:

4.1 Non-covariant Gravitons:

Of course, there are many hypothetical means for gravity to be seen as an
emergent property. In order to be simultaneously true and usefull, these models
must produce different results than GR in some unexplored regime, yet reduce to GR
(to the appropriate accuracy) in every case where GR has already been tested. By
parameterizing the differences and taking into account uncertainties in the current
observations, one can constrain the parameters of the new model. This example
shows how stringent these constraints can be, leading one to wonder how much
could be gained by replacing the old theory with the new.

It can be shown[10] that a graviton (massless, spin 2 boson) cannot undergo
proper Lorentz transformations in quantum field theory. This means that the gravi-
ton can either obey gauge symmetries or be relativistic, but not both. If a nonrel-
ativistic graviton were to exist, then it would not only violate Lorentz covariance,
but also the equivalence principle. Experiments show that the equivalence principle
is valid to one part in about ∼ 1013. One way around this is to assume that the
graviton does not travel at the speed of light. If this were the case than high energy
cosmic rays would release a gravitational analog of Cherenkov radiation; experiment
constrains the difference between the two speeds to be less than one part in ∼ 1015.

4.2 Causal Dynamic Triangulations:

By using nonperturbative lattice methods, specifically Causal Dynamic Tri-
angulations (CDT), it has been shown that familiar spacetime can emerge from an
underlying lattice. This is done by evaluating the path integral, Z, as described
by equation 15 through a Monte Carlo scheme of N verticies with grid spacing, a,
below the Planck length.

Z(GN ,Λ) =

∫
g ∈G

Dge
ı

GN

∫
d4x
√
|g| (R− 2Λ)

→ lim
N→∞

∑
g ∈G

1

Cg
eıSRegee(g) (15)

The righthand side of equation 15 shows the CDT method of numerically
evaluating the integral. The quantity SRegee is a coordinate free alternative to the
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usual action Einstein-Hilbert action, SEH . This is where the triangular approach
comes in. Curved, higher dimensional surfaces are approximated by a series of flat
triangles, with a spacing of a. This is represented in figure 3.

Figure 3: Triangels used to build figures in progressively higher dimensionallity, as
done in CDT. Image originally published in [5].

With these conditions, simulations have been performed which show the emer-
gence of spacetime quite well. With a properly tuned Cosmological Constant, Λ, this
spacetime shows the proper 4-dimensional, smoothly curved spacetime of cosmology;
spatial representations along cosmological proper time even show an evolution as
described by the Friedmann equations. On much smaller scales, the 2-dimensional
spacetime foam is observed at the Planck scale and quickly disappears at larger
scales. These results are illustrated in figure 4. One weakness of this theory is
its inability (at least so far) to reproduce Newton’s law of gravitation between two
distinct massive bodies[5].

Figure 4: From the numerical (not physical) grid scale (to the left of the dashed
line) a physical description of spacetime emerges (to the right). At the Planck scale
the spacetime foam is evident, but quickly decays to the familiar, smooth spacetime
of GR. Image originally published in [5].

4.3 Noncommutative Spacetime:

Another model uses Electromagnetism and noncommutative geometry to show
an emergence of gravity. In this model, spacetime is viewed as noncommutative,
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like in quantum mechanics. This geometry is symplectic, meaning that, unlike the
standard Riemannian geometry, there is no well defined curvature. It can be shown
that, in such a geometry, electromagnetism is a diffeomorphism of a symmetry which
can be spontaneously broken by a symplectic two-form of the background geometry.
Out of this symmetry breaking, gravitation emerges[8].

This model can be used to make testable predictions about cosmological prop-
erties which have already been observed. For instance, without any fine-tuning of
the cosmological constant or invoking dark energy, the age of the universe works
out to be about 13.9 × 109yrs, which compares favorably to the observed value of
13.7 × 109yrs. Another victory for the theory is that it successfully predicts an
inflationary epoch, which has become an important aspect of modern cosmology for
its explanation of the flatness problem (the seemingly improbable coincidence that
space, as a whole, is largely Euclidean). One interesting departure from the stan-
dard cosmological model (ΛCDM) is that the universe evolves in a “big bounce”
rather than the more widely believed “big bang”. Figure 5 shows the evolution of
the scale factor (roughly, the size of the universe). This theory does depend on
certain aspects of Supersymmetry which, while having not been entirely ruled out,
are far from certain at this point[9].

Figure 5: The image on the left shows the evolution of the scale factor as a function
of time in a “big bounce” universe. In a “big bang” model, the universe would erupt
from a singularity at t=0. The image on the right shows evolution of the Hubble
parameter (normalized to the current value). Image originally published in [9].

5 Conclusions:

The most popular emergent theory of gravity, the entropic theory proposed by
Verlinde, is very thought-provoking. Through relatively simple arguments, gravity
can be shown to be a manifestation of entropy by invoking the well known corre-
spondence of entropy and event horizon area. However, experiments involving cold
neutrons trapped in a gravitational well support the more traditional view of grav-
ity, rather than the entropic one. This failure causes one to wonder if all the extra
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machinery built up for this theory (the relatively untested holographic principle) is
really a worthwhile investment or if this is all just a “neat trick” with little physical
basis.

Other theories also run into problems when attempting to match observations.
For example, one theory which admits for gravitons to break Lorentz symmetry
leads to a violation of the equivalence principle, which is verified to one part in
1013. A more successful theory involves numerically solving for the gravitational
path integral on a Monte Carlo grid with spacing less than the Planck length. This
is very good at producing the spacetime foam and smoothly varying large scale
structure of a vacuum spacetime, but has trouble (perhaps more of a temporary
technical difficulty than an inherent shortcoming) getting distinct massive objects
to attract according to Newton’s Law. A final theory uses symplectic manifolds
and noncommutative geometry to allow gravity to emerge from electro-magnetism.
This method is extremely successful in cosmological tests; it accurately predicts the
age of the universe, has an inflationary period, and does not require fine-tuning of
the cosmological constant. However, this theory, too, could be in hot water if the
properties of supersymmetry are not found to match certain requirements.

One common problem which plagues all of these theories, and which also ex-
plains why there are so many, is the lack of robust experiments. Of the theories which
have yet to be ruled out, none of them have an overwhelming body of supporting
evidence. Some what annoyingly for these theories, GR is a very good theory, at
least in every range in which it is feasible to test. This means that the observations
need to be made with extremely high gravity (eg. near a horizon or in the early
universe), which is hard to observe, or on very small scales (like in the experiment
referenced by Kobakhidze), where gravity is an extremely weak force in comparison
to other effects. Thus, the debate about the emergence, or not, of gravity will likely
be along for a long time.
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