
 

Emergence of traffic jams in 
high-density environments 

 
Bill Rose 

12/19/2012 
Physics 569: Emergent States of Matter 

 

 

“Phantom” traffic jams, those that have no apparent cause, can arise as an 
emergent phenomenon in many models of traffic flow. These jams emerge when 
the density of traffic is sufficiently high. This survey paper will describe the basic 

elements of traffic flow that are consistent across all models and will also analyze 
the differences in predicted states that occur depending on the chosen model, 

making comparisons to experimental data when possible. 
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Introduction 

Due to the many human elements of traffic patterns, flow, and jams, one might expect it 

to be difficult to determine a simple set of equations to predict or model traffic. However, 

physicists and engineers have been using modeling techniques to study traffic patterns for 

several decades. There are two main categories of models. The first to be developed were 

macroscopic models which concern themselves only with the behavior of the entire system. The 

alternative, microscopic models, attempt to determine the behavior of individual cars and then to 

induce the behavior of the whole system from that of its constituent parts. Since models from 

both of these categories can be useful in different situations and for achieving different goals, 

this paper will discuss several models of each type. 

An engineer’s motivation for modeling traffic flow would likely be to learn something 

that would inform future highway or roadway design. A physicist might be more interested in the 

form of the equations involved, and how they relate to other physical phenomena and 

experiments. We will consider these models in regards to available experiment, and also with 

some interest in the engineer’s perspective: that of applying the models to inform highway 

planning. This paper seeks to introduce several of these models, and provide analysis of their 

strengths and weaknesses. We hope to provide the reader with a broad look at the many types of 

models proposed for describing traffic flow, as well as to provide some history of how the field 

has developed over time. 

Fluid Dynamics Models 

One of the earliest attempts to employ mathematical equations to study traffic flow was 

by M. J. Lighthill and G.B. Whitham, using the theory of kinematic waves that they developed. 

Their theory evokes kinematic waves as a means for transporting information about the state of 

flow of the system at a given location. These waves have velocity equal to the slope of the 

standard flow vs. concentration diagram for displaying highway throughput [1]. These kinematic 

waves applied to traffic are sent out when, for example, one car brakes, and then cars behind it 

react to the brake lights and also slow down, and then more cars respond to those brake lights 

[1]. Lighthill and Whitham note that their model is only useful on long, “crowded” roads, which 

they define as being in the regime where mean speed depends on the concentration of cars [1]. 

Lighthill and Whitham use their theory to describe shock waves in traffic, which occur 

when fast moving cars in an area of low density catch up to slow moving, densely packed cars: 

in other words, that moment when one hits the back of a traffic jam. If one knows the flow-

density relationship for a given road or situation, one can model these shock waves graphically 

(Fig. 1b). 
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Fig. 1a [1] (left): Flow (q) as a function of concentration (k). This is a sample flow-concentration relationship. Lines tangent to 

the slope of points A and B represent the speed of kinematic waves, while the line between A and B shows the average speed of 

cars. 

Fig. 1b [1] (right): Shock wave diagram showing position (x) as a function of time (t) corresponding to the flow-concentration 

diagram in Fig. 1a. The bold line shows the shock wave, and the other lines represent kinematic waves on either side of the shock 

wave, all of which intersect with it. In front of the shock wave (above the bold line), density is high, and kinematic waves move 

slowly, while behind the shock wave, density is low, and kinematic waves move quickly.

Using this model for shock waves, Lighthill and Whitham study how traffic jams 

propagate. Beginning with a model of a road that has an area of higher concentration where the 

shock wave will form, Lighthill and Whitham trace the movement and development of the shock 

wave. They find that it slowly propagates forward in time, and the shock wave produces a jam of 

cars behind it. Initially, the shock wave grows in strength, as more cars join the jam, but over 

time, it spreads out backwards until it eventually disappears. Lighthill and Whitham also apply 

their model to bottleneck situations, such as a lane closure or a tunnel, but we will keep this 

paper focused on free travel situations. 

Lighthill and Whitham’s shock wave model was an early attempt to gain a mathematical 

understanding of traffic jams, and as such, has as many flaws as strengths. In order to apply their 

model, one must already have either a theory or experimental data to provide a flow-

concentration relationship. In addition, the functional relationship between flow and 

concentration may change depending on the time of day, the weather, or other external factors, 

which would make it very difficult to determine. Also, the model requires that one presume 

situations in which the concentration of cars, and therefore the mean-speed and the flow, vary at 

different points on the road. 

 M. R. Flynn et al. have a more specific theory using a macroscopic model that is 

designed to explain the shape of certain traffic jams. They begin with these standard fluid 

mechanics equations [2]: 

   (  )    

       
  

 
  

 

 
( ̃   ) 

 In these equations, ρ is the density of cars, u is the speed, ũ is the desired speed, p is the 

traffic pressure, a quantity that increases with density, τ is a relaxation time, and subscripts 
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represent differentiation with respect to that quantity, either time or position [2]. The behavior 

that the authors are trying to model was found in an experiment by Sugiyama et al. [3]. It is a 

traffic jam that moves backwards in position and forces cars to rapidly decelerate as they 

approach it, move very slowly for a brief period of time, and then accelerate freely out of it. One 

may experience this type of jam frequently while driving on busy freeways. To model this 

situation, the authors define the variables:   (    )  , and   (    ⁄ )  ⁄ , where s is the 

traveling wave speed, and c is defined by the equation for the speed of sound in a compressible 

medium [2]. By introducing η and c, we can combine our two initial fluid dynamics equations 

into one [2]: 

  

  
 

(   )(   ̃)

(   )    
 

 This equation can be solved by integration, provided that     ⁄  is finite at       [2]. 

This means that ( ̃   )    at this point, and this quantity goes to zero in such a way as to 

make the full equation finite. The waves that result are shown in Fig. 2. One can also look at the 

position of individual cars as a function of time and compare that to data collected from highway 

observations. Those relationships are shown in Fig. 3. 

 
Fig. 2 [2]: Density waves as a function of position. ρM is the maximum density. The orange line is the theoretical description 

outlined here, and the blue one is a numerical model obtained using a Lagrangian particle method, described in Appendix A of 

the referenced paper [2]. The top portion is a zoomed-in view of the first density wave. 

One of the most interesting things to note about the data from Flynn et al. is that it shows 

a backwards traveling jam. This runs contrary to that proposed by Lighthill and Whitham, but 

seems to coincide with data taken in experiments and observations of real roadways. The authors 

also note that the functional form that they have derived for the density of cars matches that of 

detonation waves [2]. 

The Flynn et al. paper does an excellent job of providing a set of mathematical 

calculations to model one type of traffic jam that match up very well with experimental and 

observational data. While somewhat narrow in its scope, they have expanded upon this in other 

papers. They also have adjusted certain starting values to produce results that match 

experimental data, but have not provided a discussion of whether those initial values make sense 

on their own. 
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Fig. 3a [2] (left): Time vs. space plot of vehicle trajectories from Flynn et al.’s theoretical equations using         ⁄ , and 

   ⁄  ̃     . 

Fig. 3b [3] (right): Vehicle trajectories from aerial photograph by Treiterer and Myers  The green line shows the velocity of the 

jam cluster in Sugiyama’s experiment.

Gas-Kinetic (Boltzmann-like) Models 

An early microscopic approach to modeling traffic flow was the gas-kinetic model. In 

this model, initially created by Prigogine and Herman [4], cars are modeled as particles in an 

interacting gas. The Boltzmann equation that governs the kinetic theory of gases is [5]: 

(
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 In this equation,  (     ) is the density of particles as a function of position, momentum, 

and time. (    )⁄
    

 is the derivative of f caused by collisions with other particles. F is an 

external force on the system. Prigogine et al. adapted this model to traffic by introducing a 

desired density function (    (   )) which the system wants to tend towards over a relaxation 

time τrel [5]. They then suggest that the analogue of the Boltzmann equation should take the form 

[5]: 
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 Here, (    )⁄
   

 is the analogue of the collision term in the Boltzmann equation for gas 

particles, and (    )⁄
   

 corresponds to the external force term      (     ) [5]. One 

simplification made by Prigogine et al. was that the whole system would relax at the same rate, 

so that (    )⁄
   

  (      )      [5]. A further assumption that made was that the desired 

speed distribution was the same at all points, regardless of the density at that point. These 

assumptions, and the model based on them, were shown by Paveri-Fontana to give unphysical 

results in the zero interaction, or low density, limit [6]. 

 S. L. Paveri-Fontana provided some improvements on this Boltzmann-like theory of 

traffic. He introduces a series of assumptions about what happens when a fast moving car catches 

up to one moving more slowly on a multi-lane highway [6]: 
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1) The “slowing down event” has prob. (1-P) and the passing event has prob. P, with 

     . If the fast car passes the slow one, its velocity is not affected at all. 

2) The velocity of the slow car is unaffected by the interaction or by the fact of being passed. 

3) Vehicle lengths can be neglected. 

4) The “slowing down” process has instantaneous duration. 

5) Only two-vehicle interactions are to be considered, multivehicle interactions being 

excluded. 

6) The assumption of “vehicular chaos” is valid; namely, 

  ( 
          )   (     ) (       ). So that vehicles are not correlated. 

 Some of these assumptions may seem to over-simplify actual highway driving, but they 

are necessary to reduce the equations to manageable form. These assumptions were presented by 

Paveri-Fontana, but also underlie the Prigogine methodology [6]. They lead to the equation [6]: 

(
  

  
)
   

  (     )∫    ( 
 

 

  )(    ) (      ) 

 Paveri-Fontana admits that these assumptions, and therefore this equation, are only valid 

in a dilute traffic limit, where the interaction is small. 

The major change that Paveri-Fontana makes to the Prigogine model is to assign each driver 

a desired speed, rather than having an overall desired speed distribution. While a subtle 

difference, it makes a large difference in the system’s behavior. Defining  (     )  

∫  (       )  
 

 
, where w is the desired speed of a given vehicle, we can write the new 

Boltzmann-like equation [6]: 
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 This equation does not produce the same unphysical results in the zero interaction limit as 

the simpler Boltzmann-like equation given by Prigogine et al., and while it appears somewhat 

unwieldy, it is in fact only slightly more complicated than the Prigogine equation. 

Car-Following Models 

So far all the models we have looked at are adaptations of canonical physics equations – 

either fluid dynamics, or an interacting gas. Next, let us move onto models that specifically 

attempt to account for the vehicular nature of traffic. The first are a class of theories called car-

following theories. The main supposition of these theories is that in dense environments, drivers 

will adjust their behavior based on the movement of the car in front of them. The simplest of 

these suggests that drivers will try to maintain a certain following distance behind the car in front 

of them for a given speed [7]. This suggests that if one car brakes, the car behind it, if already 

following at the desired distance, will brake also to maintain a safe cushion between cars. One 
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slight modification to improve the realism of this model is to introduce a lag time of about a 

second between when one car accelerates and when the following car reacts. 

 
Fig. 4 [7]: Experimental data taken in a follow-the-leader setup where one car remains behind another. The data was taken using 

a spool of piano wire attaching the two cars with sensors on the spool to determine how far apart the cars were as a function of 

time. 

However, experimental data (Fig. 4) suggests that an even more realistic model is that 

instead of trying to react primarily to the distance between one’s car and the next, drivers 

primarily base their reactions on the difference in speeds between one’s car and the next. 

Following some lag time, drivers will adjust their speed so that the distance between their car 

and the next car allows them sufficient time to reduce their speed to match that of the car in front 

of them [7]. The equation that Herman and Gardels present to explain this behavior is as follows 

[7]: 

      (   )

   
 

    

  ( )      ( )
[
   ( )

  
 

     ( )

  
] 

 In this equation, n is a label for cars, with the     car being directly behind the n
th

 car. 

G is a car’s gain coefficient, and represents how strongly a driver reacts to the motion of the car 

in front. T is the reaction time of drivers, which experiments suggest is slightly less than one 

second. This equation is obviously valid only for the single-lane case, and Herman and Gardels 

refer back to a modified Boltzmann equation for modeling multi-lane flow, although one could 

also more directly modify the car-following theory to allow for multiple lanes. Other possible 

modifications to the model described here include introducing some desired velocity which cars 

will revert to when possible [5]. This would help extend the model to the dilute case where other 

cars are far away. Another extension would be to include stimuli from multiple cars in front, 

rather than just the one directly ahead [5]. Drivers-education teachers always stress that looking 

several cars down the road is important for avoiding accidents. 
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Cellular Automata Models 

Kai Nagel and Michael Schreckenberg developed a simple cellular automata model [8] 

that describes several important aspects of traffic flow, and that has been used as a basis for other 

more complicated models since then. Their model consists of a one-dimensional array of L sites, 

with each site either having a one or a zero to represent being filled by a car or being empty. 

Secondly, each filled site has an integer velocity between zero and vmax, which the authors chose 

to be five, for reasons to be explained later. From this starting point, they introduce four rules to 

govern motion of the cars. These are those four rules, as described by Nagel and Schreckenberg 

[8]: 

1) Acceleration: if the velocity v if a vehicle is lower than vmax and if the distance to the next 

car ahead is larger than    , the speed is advanced by one [     ]. 

2) Slowing down (due to other cars): if a vehicle at site i sees the next vehicle at site     
(with    ), it reduces its speed to     [     ]. 

3) Randomization: with probability p, the velocity of each vehicle (if greater than zero) is 

decreased by one [     ]. 

4) Car motion: each vehicle is advanced v sites. 

The model consists of many iterations of these four steps, applied to the entire one-

dimensional array. One can see how these steps, while quite simple mathematically, resemble the 

standard motion of cars on a freeway. Step three, randomization, is necessary so that the model is 

not entirely deterministic, and is justified by fluctuations in the speeds of cars that are so 

common on freeways, as drivers lose attention for a few seconds, or take a sip of a drink, or 

answer a cellphone. 

  
Fig. 5a [8] (left): A representative piece of Nagel and Schreckenberg’s model with       . Each number represents the 

velocity of a car at that location. 

Fig. 5b [8] (right): Same as Fig. 5a, but with      .

 The authors define the density ρ to be the number of times a certain site is occupied out 

of the total number of iterations as the number of iterations goes to infinity. The authors began 

the simulation with random placement of cars at the desired density ρ. They start all cars with 

zero velocity, and run the simulation until it reaches equilibrium (     iterations) before 

studying the results. As one expects from our real-world experiences, at low-densities, the 

authors find smooth, laminar flow (Fig. 5a). Cars may occasionally have to slow down just a bit 

for the car in front of them, but generally all cars are moving at speeds close to vmax. However, at 

somewhat higher densities (Fig. 5b), the authors see mostly smooth flow punctuated by random 
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clumps of cars moving very slowly, which are caused by the random deceleration of a car or 

cars. 

For many highway engineers, throughput, or flow, is the quantity of highest interest, 

because this tells how many cars can be moved on the road in a given amount of time. Flow is 

simply the number of cars passing a certain point over a unit time, and is usually averaged over 

long time spans. Nagel and Schreckenberg performed their model for a range of different 

densities (Fig. 6a), and compared it to real data collected from highway measurements (Fig. 6b). 

  
Fig. 6a [8] (left): Average flow of cars as a function of density from Nagel and Schreckenberg’s model. 

Fig. 6b [8] (right): Average flow of cars as a function of density collected from highway measurements.

 Coupled-map Lattice Models 

 Krauss, Wagner, and Gawron created a model that is similar to the cellular automata 

model of Nagel and Schreckenberg, but has a continuous spatial coordinate. As such, the 

equations they give for their model are [9]: 

         [ ( )                  ( )] 

 (   )     [                ] 

 (   )   ( )   (   ) 

Where      is the free space to the next car,      is a car’s maximum acceleration,          is a 

random number between zero and one, and σ is the maximum deceleration due to noise [9]. 

          in this model is analogous to the probability p of reducing velocity by one unit in the 

Nagel-Schreckenberg model. Krauss, Wagner, and Gawron note that their model can be 

expressed as the continuous limit of a cellular automata model, assuming they set their 

parameters to certain values. The continuous model is especially different from the discrete one 

in the case where density is very high [9], because in this regime distances and velocities are 

small, so values between one and zero become very important. Accounting for these differences 
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could also be achieved by decreasing the unit length scale of the discrete model, rather than 

going to the fully continuous limit. 

 Krauss, Wagner, and Gawron conclude their paper in part by providing descriptions of 

the different phases they find. My summaries of those phases are as follows, with physical 

analogues provided by Krauss, Wagner, and Gawron [9]: 

       
:  Free flow regime. In this density range, most cars move freely at or near their 

maximum velocity. Occasional clusters of a few cars occur, but quickly spread 

out again. The physical analogue is a dilute gas. 

   
      

: Two flow regime. For these densities, regions of free flow occur, but so do 

heavily jammed regions. The physical analogue is liquid in equilibrium with 

saturated vapor. 

   
    :  Jammed regime. This state is one large traffic jam, with all cars moving slowly 

almost all the time. As seen in the free flow regime, occasional outliers exist, but 

these cars quickly become stuck again. The physical analogue to this state is a 

compressible liquid. 

Analysis and Conclusions 

 We have presented several of the most important types of traffic models that have been 

developed and used over the past fifty years. While some of the models described in this paper 

only deal with the behavior of traffic flow on one side of the transition or the other, all of them 

relate to the idea of an emergent behavior of the system, traffic jams, for sufficiently high 

densities of cars. They all attempt to describe the form of the system in different states, although 

the various models we discussed may contradict each other in certain cases. 

The fluid dynamics models posit a relationship between density and flow, while the other 

models show that such a relationship exists from their initial assumptions. However, all models 

require some amount of fitting to external parameters to make them align with experiments. One 

important thing to test, which for the most part is not within the scope of this paper, is which 

theories can be calibrated for one set of observations or experiments, and then applied accurately 

to other highway situations. In other words, which of these models is actually most useful for 

informing future highway planning? Also of note is that some of these models only work in 

certain limits, like the Lighthill and Whitham model which applies only in high-density 

situations, the gas-kinetic models which apply only in the low-density regime, or the Krauss, 

Wagner, and Gawron model which is only substantially different from the cellular automata 

model in high-density environments. Additionally, only a few models take into account the 

possibility of multiple lanes of traffic. These are primarily the Boltzmann-like models, although 

the car-following models have been adapted for multiple lanes as well. 

That the Boltzmann-like models account for multiple lanes makes them good candidates 

for applying their predictions to true highway situations. However, that they are only valid in the 
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low-density regime negates much of their usefulness for studying traffic jams. The cellular-

automata models, and the coupled-map lattice models based on them, can be fit to experiment 

and observations well, and seem to take more information into account in an accurate way than 

many of the other models discussed. Their one major weakness is that those mentioned here 

apply only to one lane. Perhaps a model which extended Nagel-Schreckenberg to multiple lanes 

by positing the behavior of drivers with cars next to them or when passing would be the best 

option for guiding roadway planning. Finally, note that other models may need to be considered 

if one is interested in studying traffic patterns in cities or areas with traffic lights, as these are 

altogether different from the highway models presented in this paper. 
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