Voting, a process of emergence of order
PHYS 569 Term Paper

Chi Xue
netID: chixue2

December 19, 2012

Abstract

Consensus in a vote is an emergence of order. In this term pa-
per, voter models on lattice and graphs are reviewed, with particular
emphasis on dimension and topology underlying the process of ap-
proaching consensus. Its found that when individuals are connected
to few neighbors, like in 1D and 2D lattice, consensus can always be
achieved in both finite and infinite systems; when individuals have
many neighbors, like in high dimensional lattice and graphs, consen-
sus can only be reached in finite systems. Time needed for consensus
is calculated for each finite system discussed. Numerical experiments
are also presented to supplement the theory.



1 Introduction

“How will you decide where to have group lunch?” “Vote by group members!”

Voting is what we will usually do when facing choices as a group, as
it’s a simple way to bring order out of opinion chaos. People are concerned
about vote because the result matters to the way we live. Particularly, vote in
politics gains special attention because it shapes the near future of a country.

Being a social event though, vote has interested both mathematicians
and physicists. From the perspective of math, vote belongs to stochastic
processes, which form an important category of problems in probability the-
ory. Viewed physically, change of mind resembles flip of spin and voters form
a spin system upon which a statistical ensemble can be produced.

Research on vote, especially two-choice vote, has lasted for almost 40
years. Clifford and Sudbury [1] firstly developed a model to describe the
process of species invasion, which was in their context equivalent to a voting
event. Holley and Liggett [2] then formally proposed the name “voter model”.

The definition of voter model is neat: in a system consisting of a certain
number (which can be infinity) of individuals, each individual holds an opin-
ion, either A or B. Any individual is only influenced by its nearest neighbors
and will randomly pick up the opinion of one of the neighbors. Individuals
keep interacting with each other until consensus is realized, where everyone
in the system shares the same opinion, either A or B. Basically, there’re two
questions to answer in voter model: Does there exist a consensus at all? How
long will it take to realize consensus? The answers depend on system dimen-
sion and size. And the topology of the system also casts essential influence
on the evolution of voting.

In this term paper, answers to the above two questions will be reviewed.
The following sections are organized in this way: Section 2 focuses on the
voter model on D dimensional hypercubic lattice, where each point has 2D
neighbors; Section 3 discusses the voter model on graphs, where each node
has an arbitrary number of neighbors; some modifications to voter model are
introduced in Section 4; Section 5 concludes the paper.

2 Voter model on hypercubic lattice

Physicists have shown great interest in voter model, since it can be applied
to describe phase transitions in the absence of interface tension (as will be



clarified below) [3] and heterogeneous catalyst in reaction controlled limit
[4]. Instead of using the random walk process to paraphrase voter model as
mathematicians do, physicists interpret the voter model by Glauber model
of spin lattice [5]. On a D dimensional hypercubic lattice, N nodes are
each endowed a spin, with spin +1 and —1 representing opinion A and B
respectively. The change of opinion then corresponds to a flip of spin.

The essential point of lattice voter model is to assign every individual an
equal number of neighbors, which is equivalent to assume that each individual
is equally connected to and familiar with its environment. This actually
neglects much diversity in human society. It’ll be shown that the model is
valid qualitatively, yet too simple in a quantitative sense.

Let’s denote the lattice points by k= (k1,ko,...,kp). Sy = £1represents
the spin at point k. S stands for the spin configuration of the entire system.
The probability of spin flipping at k, (Sp — —Sp), is

1 1
Wi(S) =~ (1 - ESEZSma) , (1)

where 7 is the time scale of the flipping and the summation is over the 2D
nearest neighbors. 7 was usually selected to be 7 = 4/D for simplification
[6].

Introduce a quantity P(S,t) to denote the probability density of the spin
configuration being S at time t. Then voting process is holographically de-
scribed by the time evolution of P(S,¢). The master equation that determines
P(S,t) comes as follows:

—P S, 1) ZW~ (S)P(SF, 1) = Y Wi(S)P(S., 1), (2)

where SF is different from S only at k. The first term in the above equation
accounts for spin flipping to form configuration S, and the second term for
spin flipping to deviate S. Based on the above equation, the equation of
motion for correlation function of spin (S;...Sp) = > ¢Sz...SpP(S,1), u
to any order, can be obtained.

The first and the second order, or the single-body and two-body, correla-
tion functions are of special interest. For the single-body correlation function

(6],



where Ay is the discrete Laplace operation
Ap(Sp) = —2D(Sp) + > (Sya)-
From the differential equation (3), it’s straightforward to get that

d
3 4sp =0, @

—

This means the magnetization (S) = (limy_o) 1/N Y Si is conserved. Fur-
thermore, the consensus, if can be realized, is determined by the initial mag-
netization.

The two-body correlation function satisfies the following differential e-
quation [6]

d
42 (5550 = (Ag + A7) SpSp (5)

The above equations hold for both finite and infinite lattices. Skipping
the tedious derivations, results of voting in finite and infinite lattices are
presented directly here.

For a finite lattice with N points, consensus can always be obtained no
matter what the dimension is. However, the time cost to realize consensus
depends on the dimension as well as on the size of the lattice. According to
the work by Cox [7], the consensus time scales with N in the following way

N2, d=1
Tv ~< NInN, d=2 (6)
N, d>2

Since the lattice voter model simplifies the real human connection too
much, the resulting T above may not be a good fitting to the real voting
process.

For an infinite lattice, Frachebourg and Krapivsky [6] solved the voter
model problem analytically in an equivalent situation, the heterogeneous
catalyst. In their work, the differential equation (5) with respect to the two-
body correlation function was solved by Laplace transform. The density of
interface between points bearing different spins is related to the two-body

correlation function in the sense that nap(t) = (1 — <SESE+€Z->) /2. And the



asymptotic behavior of n,p as a function of time comes as

1+D/2, D <2
nap(t) ~ < (Int)™!, D=2 t— oo (7)
a—bt=P2 D>2

where a and b are non-zero constants. It’s concluded from the above equation

that for infinite 1D and 2D lattice, nqp — 0 as t — oo and consensus is

realized; however, for higher dimensional infinite lattice, nap — a # 0 as

t — oo and the system takes on a state where both opinions coexist.
Specially, in 2D lattice, the explicit form of n4p is [6]

T Int

nas(l) = 2Tn(t) + In(256) © (T) ' ®)

Since the denominator contains a non-negligible term for small ¢, the time
span must be long enough in order to observe the asymptotic behavior of
nap ~ (Int)~7 with ¢ = 1 in numerical experiments. Actually, people did
not get the —1 exponent but o = 0.59 in the beginning [4], due to too short
simulation time ¢ and too small lattice size. Frachebourg and Krapivsky
performed the simulation with a much larger lattice and found that o ~ 0.51
for t < 15007 and o ~ 0.67 for ¢ < 10%7 [6]. They thus believed that o — 1
asymptotically as t — oo.

The theoretical analyses and numerical experiments on lattice voter model
above tell us that in 1D and 2D lattices, consensus is always realized no
matter how large the system is; however, in higher dimensions, consensus is
only obtainable in finite systems. This means whether an agreement can be
reached among a community is heavily affected by the connection between
individuals within. It’s always possible to get people organized to one opinion
in a society where each person is limited to only few acquaintances; while,
in a more sophisticated society where people are more tightly bonded, it’s
impossible to wash their minds. This reminds me of the dream of Lao Tzu,
more than two thousand years ago, of having a small country with few people
isolated from each other in order for good governance. It’s mathematically
true that smaller isolated population is easier to govern, and the society as
a whole gets confused when individuals are open to many voices around.

Another interesting point about the lattice voter model to demonstrate
before closing the section is that the above model can be applied to simulate
phase transitions with no interface tension. To manifest this, let’s consider a




circular area of spins up surrounded by spins down in 2 dimension. As time
goes by, the radius of the circle stay invariant statistically, implying a zero
interface tension, as illustrated in Figure 1 [3].

Figure 1: Illustration of the domain growth in the D=2 voter model (system
size 256%). Top: Snapshots at times t=4, 16, 64, 256 during the evolution of a
bubble of initial radius 7o = 180 (thin circle). Bottom: same from symmetric
ric. (Figure reproduced from [3])

3 Voter model on network

As has been pointed out before, the lattice voter model assumes that every-
one has an equal number of neighbors. This assumption is too simple for
the complicated social network, where it’s always the case that some people
have more friends than others. To describe such a network precisely, the
voter model based on graph theory is developed. We’ll still assume that the
influence of each neighbor has the same weight, and explore the variation of
voting result due to the change in topology of the network from lattice to
graph.

In the language of graph theory, the number of neighbors of a node is
called the degree of that node. In a finite size graph consisting of N nodes, the
fraction of nodes having degree k is n, = Ni/N. ny obeys certain distribution
with respect to k. Then py = ), kny is the average degree of each node,
or the first moment of the initial degree distribution; ps = 3, k*ny, is the



second moment of the initial degree distribution. Define the average degree-
weighted density of up spins, w, for the initial graph as follows [§]

1
w k., 9
MIPJ j;: Yy ( )
S

y="1

where y in the summation stands for the node in the graph and k, is the
degree of node y. It follows that

1
l—w=— ;ky. (10)

%51
Sy=—1

The time needed to reach consensus depends on the initial distribution and
the number of nodes N. It satisfies the following differential equation [8],

—=w(l —w)PTy = —1. (11)

The boundary condition for the above equation is
Ty(w=0)=0, Ty(w=1)=0. (12)

The solution is then [§]

Ty(w) = —NZ—z [(1—w)n(l —w)+wlnw]. (13)

It’s important to notice that the mth moment p,, ~ f Fmaz kMnydk.

To gain a view into the form of T, we can consider a power law degree
distribution, ng, ~ k7. k.. is related to N in the sense that fk"“”” nrdk =
1/N, therefore ky,qp ~ NY(@=1) " Putting the moments as functions of N
together, Ty is found to be [§]

N, v>3
N/In N, v=3
Ty~ N@ED/E=1 "9y <3 (14)
(In N)2, v=2
O(1), v<2.

It’s immediately seen that the consensus time of voter model on a graph
is essentially different from that (Equation 6) on a lattice. Systems with
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different degree distributions behave distinctively, which demonstrates that
the connection between people affects voting to a dramatic extent. Since the
graph model reflects more a real society than a lattice model, it’s reasonable
to say that the result above is more reliable and more close to the real voting
process.

A remaining question is what will happen if the graph is infinite. To
answer the question, we should investigate the density of interface between
different spins n4p as a function of time. In the numerical experiment by
Castellano et al. [9], nap is found to form a plateau after certain time of
evolution, as shown in Figure 2. The rewiring number p stands for the prob-
ability of a node being connected to nodes besides its geographical nearest
neighbors. p = 0 is equivalent to a lattice and p = 1 to a random graph.

It’s also clear in the figure that the more nodes there are in the network,
the longer the plateau duration will be. The plateau represents a metastable
state in the voting process. As N — oo, the system will stay in the metastable
state, where two opinions coexist, and consensus won’t be realized. This is
understandable, just like the scenario of D > 2 in infinite lattice voter model:
in a large society where individuals have many accesses to information, the
possibility of a complete agreement is destroyed.

4 Modifications

In the voter model discussed in previous two sections, many approximations
have been made, which leads the model inaccurate. For example, it’s as-
sumed that each neighbor exerts the same amount of peer pressure, which
apparently fails to mirror the friendship hierarchy. To polish the model for
a better description of the real voting process, some modifications have been
made. One of them is to change the spin flipping probability Equation (1) in
lattice voter model, which accounts for the unequal influence from different
neighbors. Also, an external magnetic field can be applied so that every spin
feels a global influence, which materializes the media propaganda in society.
And the centrists, whom both the leftists and rightists try to win over, can
be introduced [10]. Another modification can be adding “zealot(s)” [11], who
will never change mind, in the system. Here, I present the work by Mobilia
[11] on “zealot” in lattice voter model.

According to the analytical work by Mobilia [11], in infinite 1D and 2D
lattice, the zealot will influence all the individuals in the system and leads
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Figure 2: log-log plot of the interface density nap (normalized with respect
to the initial value) versus time. Values are averaged over 1000 runs. Time
is measured in Monte Carlo steps per site. Empty symbols are for 1D lattice
case (p = 0). Filled symbols are for rewiring probability p = 0.05. Data are
for N = 200 (circles), N = 400 (squares), N = 800 (diamonds), N = 1600
(triangles up) and N = 3200 (triangles left). (Figure reproduced from [9])

to a consensus in agreement with its own opinion. In higher dimensions,
consensus cannot be achieved for infinite lattice, while individuals around
the zealot finally hold the same opinion as the zealot does.

5 Conclusion

Voting is a process of extracting order out of chaos. The task of voter model
is to visualize this process. In this term paper, voter model is briefly reviewed
from a physical perspective. Firstly, lattice voter model is introduced due to
its simplification and straightforwardness. It’s concluded that in 1D and 2D
lattice, consensus is always achievable regardless of the lattice size; while in
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higher dimensions, only finite systems can reach consensus. The consensus
time dependence on lattice size in different dimensions is derived. Secondly,
to better mimic the real human society, voter model on graphs is discussed.
The consensus time as a function of system size is different from that in
lattice, and consensus can never be realized in infinite systems. The huge
influence of network topology on the model manifests that the connection
among individuals determines the evolution of voting process dramatically.
Finally, some modifications to the model are presented.
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