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ABSTRACT	
  

This	
  essay	
  introduces	
  the	
  Bose-­‐Hubbard	
  model	
  (BHM),	
  which	
  describes	
  the	
  

behavior	
  of	
  bosonic	
  atoms	
  in	
  optical	
  lattices	
  with	
  strong	
  interactions.	
  Then	
  

this	
  model	
  is	
  applied	
  to	
  describe	
  two	
  phases:	
  superfluid	
  and	
  Mott	
  insulator.	
  

The	
  phase	
  diagram	
  and	
  experiments	
  concerning	
  this	
  are	
  also	
  discussed	
  in	
  

this	
  essay.	
  

	
  

  



1. Introduction 
Since	
  the	
  realization	
  of	
  Bose-­‐Einstein	
  condensation	
  in	
  ultra	
  cold	
  dilute	
  gases,	
  atomic	
  

and	
  molecular	
  physics	
  has	
  stepped	
  into	
  a	
  whole	
  new	
  chapter	
  [1].	
  During	
  the	
  recent	
  

decade,	
  using	
  atoms	
  confined	
  in	
  optical	
  lattice	
  to	
  simulate	
  strongly	
  correlated	
  

electrons	
  and	
  to	
  explore	
  the	
  physics	
  nature	
  has	
  grasped	
  great	
  attention.	
  With	
  the	
  

ability	
  to	
  tune	
  interaction	
  between	
  atoms	
  through	
  Feshbach	
  resonances	
  [2],	
  and	
  to	
  

generate	
  strong	
  optical	
  periodic	
  potential	
  [3],	
  we	
  can	
  achieve	
  this	
  goal.	
  In	
  this	
  essay,	
  

I	
  first	
  develop	
  Bose-­‐Hubbard	
  model	
  (BHM)	
  describing	
  ultra-­‐cold	
  atoms	
  in	
  optical	
  

lattices,	
  then	
  two	
  novel	
  phases,	
  superfluid	
  and	
  Mott	
  insulating	
  phases,	
  coming	
  from	
  

different	
  limits	
  are	
  discussed	
  based	
  on	
  BHM	
  and	
  simulations.	
  Besides,	
  experimental	
  

results	
  are	
  also	
  presented.	
  

	
  

2.	
  Theoretical	
  Approach	
  
1) Bose-Hubbard Model 

At the beginning, I’ll first introduce the Hamiltonian operator using spatial operators, 

which describes the behavior of bosonic atoms in an optical lattice with external trapping 

potential [4], 

 

𝐻 = 𝑑!𝑥  𝜓! 𝑥 −
ℏ!

2𝑚 ∇! + 𝑉! 𝒙 + 𝑉! 𝒙 𝜓 𝒙  

+   
1
2
4𝜋𝑎!ℏ!

𝑚 𝑑!𝑥   𝜓! 𝑥   𝜓! 𝑥 𝜓 𝒙 𝜓 𝒙 . 

(1) 

In this first term, 𝜓 𝒙  is a boson field operator for atoms in a given internal atomic state; 

𝑉! 𝒙  is the optical lattice potential; and 𝑉! 𝒙  describes an additional external trapping 

potential (varying very slowly over space). As the simplest example, 𝑉!(𝒙) has harmonic 

form: 𝑉! 𝑥 = sin! 𝑘𝑥!!
!!!  with wave vector 𝑘 = 2𝜋/𝜆 and 𝜆 the wavelength of laser 

light. This harmonic lattice has a period of 𝑎 = 𝜆/2. The magnitude of 𝑉!, which is 

induced by the Stark effect of interfering laser beams, is related to the polarizability of 

dynamic atoms times the laser intensity.  



 

The second term of the Hamiltonian approximates the interaction between bosonic atoms 

by a short-range pseudo-potential with 𝑎! the s-wave scattering length and m the mass of 

the atoms. 

 

Obviously, this “bosonic” Hamiltonian has the same form with that describing electrons 

in solid, so they should have the same set of solutions. Therefore, the energy eigenstates 

are Bloch wave functions. To move forward, we can transform these Bloch wave states to 

a set of Wannier functions, which are well localized on each site.  

 

Then we can expand field operator 𝜓 𝑥  in Wannier basis and only keep the lowest 

vibrational states, 𝜓 𝑥 = 𝑏!𝑤 𝑥 − 𝑥!! . An important assumption here is that the 

energies involved in the system dynamics are small compared to excitation energies to 

the first excited band. We will then obtain the Bose-Hubbard model (BHM) Hamiltonian 

 

𝐻 = −𝐽 𝑏!!𝑏!
!!,!!

+ 𝜖!𝑛!
!

+
1
2𝑈 𝑛! 𝑛! − 1

!

, 

(2) 

where the operators 𝑛! = 𝑏!!𝑏! represent the number of bosonic atoms at lattice site 𝑖; the 

annihilation and creation operators 𝑏! and 𝑏!! obey the canonical commutation relations 

𝑏! , 𝑏!! = 𝛿!". The parameters U corresponds to the strength of the on site repulsion of 

two atoms on a same lattice site; J is hopping matrix element between nearest neighbor 

sites 𝑖, 𝑗; 𝜖! is related to the trapping potential. 

Fig.	
  1.	
  (a)	
  BHM	
  in	
  an	
  
optical	
  lattice.	
  Flat	
  
bottom	
  curve	
  is	
  the	
  
external	
  trapping	
  
potential.	
  (b)	
  Relation	
  
between	
  𝑈𝑎/𝐸!𝑎!	
  and	
  
well	
  depth	
  𝑉!.	
  



Before moving on, let us recall the Hubbard model for electrons (fermions). 

 

2) Hubbard Model for Fermions 

This model is well known as a paradigm of strong electron correlation in condensed 

matter [5], 

 

𝐻 = −𝑡 𝑎!"! 𝑎!"
!!"!

+ 𝑈 𝑛!↑𝑛!↓
!

, 

(3) 

where 𝑡 is the hopping term, and 𝑈 represents the on-site interaction. 

 

Besides the dimensionality, the behavior of this Hubbard Hamiltonian is characterized by 

three dimensionless parameters: the ratio of Coulomb interaction to the bandwidth 𝑈/𝑡, 

average number of electrons per site 𝑛, and the temperature 𝑇/𝑡.  

 

Let us consider a special case, half-filled system 𝑛 = 1  under zero temperature. In the 

limit 𝑈/𝑡 ≪ 1, the interaction is weak, the Hamiltonian turns to 𝐻 = −𝑡∑𝑎!"! 𝑎!". 

Therefore we can expect that electrons could hop freely from one site to another to gain 

kinetic energy. In this case, this model describes a weakly interacting electron system. In 

the opposite limit 𝑈/𝑡 ≫ 1, hopping is inhibited between sites, so filling number 𝑛 = 1 is 

“pinned” on each site and this makes a special insulator called Mott insulator. 

 

3) Superfluid Phase in Optical Lattices 

Now, we come back to Mott-Hubbard model. When 𝑈 = 0, just like I mention in the 

second section, the BHM Hamiltonian 𝐻 = −𝐽∑𝑏!!𝑏! = ∑𝜖!𝑎!!𝑎!. All N atoms stay in 

the ground state, which is 𝒌 = 0 Bloch state of the lowest band. In a lattice with 𝑁! sites, 

at zero temperature, this state could be written as [1] 

 

|𝛹! 𝑈 = 0 =
1
𝑁!
𝑎!!!! !|0 =

1
𝑁!

1
𝑁!

𝑏!!

!

!

|0 . 

(4) 



The simplest excitation state is 

 

𝛹 = 𝑎!! 𝛹! 𝑈 = 0 . 

(5) 

When 𝑈 is non-zero, in the limit of 𝑈/𝑡 ≪ 1, (1) can be reduced to a Gross-Pitaevskii 

equation 

 

𝐻 = −
ℏ!

2𝑚 ∇! + 𝑉! 𝒙 + 𝑉! 𝒙 +
4𝜋𝑎!ℏ!

𝑚 𝜓 𝒙 ! 

(6) 

Then, the ground state is the Gross-Pitaevskii-type superfluid with a condensate fraction, 

which is equal to 1. 

 

If the filling number 𝑁/𝑁! is not an integer, but a finite number, the ground state can be 

written in coherent state form [1] 

 

exp 𝑁𝑎!!!! |0 = exp
𝑁
𝑁!
𝑏!!   |0 !

!

. 

(7) 

From the left side, we can see that the average total atom number is N (all with 𝒌 = 0). 

The right side means that there are 𝑛 = 𝑁/𝑁! atoms at each site. We can expand the 

exponential operator on each site (I assume 𝑁/𝑁_𝐿   = 1 here) 

 

exp
𝑁
𝑁!
𝑏!! = 1+ 𝑏!! +

1
2! 𝑏!

!! +
1
3! 𝑏!

!! +⋯. 

(8) 

The probability that there are more than one particle on each site is (𝑒 − 1− 1)/𝑒 = 1−

2/𝑒 = 0.27. So if 𝑈/𝑡 were finite, this state would not be energetic favorable, which will 

lead to the next state: Mott insulating phase. 

 



4) Mott Insulating Phase in Optical Lattices 

In the limit 𝑈/𝑡 ≫ 1, with unit filling number (𝑁 = 𝑁!), compared to the case for 

fermions, hopping of atoms between sites is negligible, so the ground state is [1] 

 

|𝛹!!!! 𝐽 = 0 = 𝑏!!

!

  |0   . 

(6) 

This is just a simple product of local Fock states with precisely one atom per site. 

 

In fact, there is a very interesting calculation result [6] to demonstrate this state in 

𝑈/𝑡 ≫ 1 regime. These results calculated the entropy vs. temperature figure of bosonic 

atoms on a cubic optical lattice with 𝑁! ≈ 3×10! sites. 

 

It should be noted that the well depth V is related to bosons interaction term parameter U 

as, 

𝑈
𝐽 ~

𝑎
𝑑 exp 2

𝑉!
𝐸!

, 𝐸! ≡
ℏ!

2𝑚 𝑘!. 

Therefore, 𝑉! = 20𝐸! means 𝑈/𝐽 ≫ 1, which should be Mott insulating regime. 

	
    

 

Fig. 2. Entropy vs. temperature curves for 𝑁! ≈ 3×10! site cubic lattice, with filling fact n=1 
(left) and n=4 (right). The well depth varies from V=0 to 20𝐸! (with a spacing of 2𝐸! between 
each curve). The entropy plateau 𝑆! is shown as a dashed line in each graph.  

 



Now, I assume at low temperature, the 𝑉! = 20𝐸! curve represents Mott insulating phase 

and calculated entropy plateau in a simple way. 

 

Then the simplified problem is what is the entropy of 𝑁! = 𝑛𝑁! bosons occupying 𝑁! 

sites at temperature T. 

 

𝑆 = 𝑘!𝑇 log𝛺 ,      𝛺 =
𝑁! + 𝑁! − 1 !
𝑁!! 𝑁! − 1 !

 

Apply Stirling’s approximation, 

𝑆
𝑘!𝑇

≈ 𝑁! log
𝑁! + 𝑁!
𝑁!

+ 𝑁! log
𝑁! + 𝑁!
𝑁!

= 𝑁! 𝑛 log
𝑛 + 1
𝑛 + log 𝑛 + 1 . 

 

So for 𝑛 = 1, !
!!!

= 2 log 2𝑁! = 4.13×10!; for n=4, !
!!!

= log 5+ 4 log !
!
𝑁! =

7.45×10!.  

 

These two results both coincide with Fig. 2. 

 



3. Phase Diagram and Experimental Demonstration 

 
 

 

The zero-temperature phase diagram of BHM is shown in Fig. 3(a). In this graph, 

normalized chemical potential denotes roughly the local density of atoms. At a given 

chemical potential, the phase is a function of the ratio of hopping and on-site interaction 

𝐽/𝑈. In fact the chemical potential is a spatially slowly varying function, 𝜇! = 𝜇! − 𝜖! 

with 𝜖! = 0 at the trap center. While at the boundary of the trap, 𝜇! vanishes. Fig. 3(b) 

assumes that 𝜇! falls into filling number 𝑛 = 2 “Mott lobe”. One obtains series of Mott 

insulating phases and superfluid phases from the center to trap boundary [1]. Therefore, 

the density profile is like a wedding-cake. 

 

It should be noted that, the compressibility 𝜅 = 𝜕𝑛/𝜕𝜇 equals to zero in Mott insulating  

(MI) phase because n stays as a constant, which means that MI states are incompressible. 

 

This very novel density profile is demonstrated numerically and experimentally as shown 

in Fig. 4 [7] and Fig. 5 [8]. 

 Fig. 3.  (a) zero-temperature phase diagram of BHM. (b) Corresponding real space figure. [1] 



 
 

 

 

 

Fig. 4. Monte-Carlo results of local density vs. position relation of a 2D confined bosonic atoms 
system.  The lattice depth of b) is stronger than that of a). a) U/t=6.7 b) U/t=25. 

Fig. 5. Integrated distribution of (a) a 

superfluid and (b) a Mott insulating 

state of bosonic atoms in a harmonic 

trapped optical lattice. Grey solid line 

represents the total density profile over 

z-direction. Blue and red are for singly 

and doubly occupied sites. It is shown 

that the n=1 blue dashed line has a 

plateau through the core n=2 region in 

z-direction. Therefore this graph 

indirectly proves the wedding-cake-

like density profile. 



4. Conclusion 
In this essay, I introduced Bose-Hubbard model and two novel phases coming from this. I 

also showed the numerical and experimental evidence to support this model. The 

realization of Hubbard model gives us another perspective to investigate strongly 

interacting condensed systems, which is very meaningful. 

 

Reference: 

[1] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases”, 

Rev. Mod. Phy. 80, 885-964 (2008). 

[2] P. Courteille, R. Freeland, D. Heinzen, F. van Abeelen, and B. Verhaar, Phys. Rev. 

Lett. 81, 69 (1998). 

[3] Greiner, M., M. O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature 415, 39 

(2002a). 

[4] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold Bosonic Atoms 

in Optical Lattices”, Phys. Rev. Lett. 81, 3108 (1998). 

[5] A. Altland and B. Simons, “Condensed Matter Field Theory”, Cambridge, (2010) 

[6] P. B. Blakie and J. V. Porto, “Adiabatic loading of bosons into optical lattices”, Phys. 

Rev. A 69, 013603 (2004) 

[7] Wessel, S., F. Alet, M. Troyer, and G. G. Batrouni, Phys. Rev. A 70, 053615 (2004). 

[8] Fölling, S., A. Widera, T. Müller, F. Gerbier, and I. Bloch, Phys. Rev. Lett. 97, 

060403 (2006). 


