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Abstract
Cellular automata provide a basic model for complex systems generated by 
simplistic  rulesets.  While each step in a simulation is  dominated by local 
interactions,  over  time  complex  macroscopic  behavior  can  emerge. 
Observation  of  this  long-term  emergent  behavior  due  to  simple,  easily 
understood and computationally efficient rules has led to attempts to model 
physical  systems within the framework of  simple cellular automata.   This 
paper  aims  to  briefly  review  the  behavior  and  properties  of  cellular 
automata,  provide  some  specific  examples  of  CA  models  for  physical 
systems, and point out the advantages and disadvantages of approaching a 
problem with a CA-based simulation.
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1. Introduction
Cellular  automata  have  for  decades  held  a  foothold  in  the  public 

consciousness thanks primarily to Conway's Game of Life.  The Game of Life, 
consisting of a 2-dimensional grid whose cells are either “alive” or “dead,” 
evolves  in  timesteps  as  the same rules  governing “life”  and “death”  are 
applied to every cell in the grid, using only the cell's knowledge of its eight 
nearest  neighbors.   While  the  rules  are  exceedingly  simplistic,  easily  (if 
tediously)  able  to  be  applied  to  a  finite  grid  by  hand  and  trivially  by  a 
computer, the game is known for the complex animated structures it is able 
to create and its strong reliance on initial conditions.  “Gliders,” repeating 
patterns of living cells which are able to move diagonally across the grid, 
may be infinitely spawned (on an infinite grid) from a single structure called 
a “glider gun,” whereas changing the value of a single cell in the “gun” may 
cause it to spontaneously die or collapse into stable configurations.  Some 
other cellular automata, such as Paterson's worms, have limited recognition 
either  for  the  visually  interesting  patterns  they  create  when  allowed  to 
evolve for long time periods or as a mathematical curiosity, as many cellular 
automata  are  undecidable.   However,  cellular  automata  have  since  also 
gained recognition in science as a useful tool for physical simulations and for 
examining the evolution of complex systems.

The reasoning for using cellular automata as a modeling tool is based 
on  direct  analogy  to  physical  systems.   The  local  interactions  in  many 
physical systems, despite the extreme complexity of macroscopic outcomes, 
may  be  reduced  to  simple  guiding  principles  such  as  kinematics  for 
determining the outcome of a collision between two particles.  In CA, such 
guiding principles are spelled out explicitly as the rule set for that particular 
automaton.  The hope in these cases is that using a computer to allow the 
CA to evolve in accordance with these rules will result in a realistic – or at 
least insightful – picture of the physical system, without necessarily needing 
to know macroscopic theory for the system or needing to do complex math 
such as finding solutions to nonlinear differential equations.  In cases where 
a good theoretical framework for macroscopic behavior already exists, the 
primary benefit of using CA is computational efficiency, as applying a simple 
ruleset  over  many  timesteps  is  typically  much  faster  than  having  the 
computer do complex calculations in accordance with results from theory.  In 
some  instances,  such  as  studying  traffic  flow,  CA  may  also  be  used  to 
demonstrate the emergence of  macroscopic behavior  as directly  resulting 
from local behavior and actors.
1.1 Cellular automata vs. lattice gas automata

Suppose there exists a grid (typically one- or two-dimensional, but may 
be n-dimensional) where each cell in the grid is assigned an element of some 
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set A.  Then Toffoli et al.[1] define a cellular automata by any map f : An → A
where f maps the n relevant neighbors of each cell to that cell's new value. 
Typically some other considerations must be made where a boundary exists 
(such as for a finite grid with non-periodic boundary conditions).

While simplistic (this is explicitly how Conway's Game of Life works), 
this is not typically the way a physical simulation is conceptualized.  A simple 
lattice gas simulation, for example, could work with a grid where any cell is 
either filled with a particle or unfilled, and each timestep the algorithm might 
update  the  position  of  each  particle,  check  for  a  collision,  and  redirect 
colliding particles.  This is a seemingly more complex operation than simply 
looking  at  a  position's  neighboring  cells  and  updating  the  position 
accordingly.  Such a “lattice gas automata” can be defined by a map given in 
the form g :A1 x ... x An → A1 x ... x An where in this case the map would likely take 
the  velocities  and  positions  of  particles  as  inputs  and  assign  their  new 
positions and velocities as outputs.  Since this is easier to conceptualize, why 
should we care about the CA model at all?

First  of  all  lattice  gas  automata  are  primarily  useful  for  describing 
systems undergoing invertible processes, whereas CA are directly used more 
often for dissipative systems.[1]  Second of all, it has been proven (by, for 
example,Toffoli et al.) that any lattice gas automata may be rewritten as a 
CA, whether or not such a rewriting is wholly intuitive.  Therefore any general 
results  proven  for  CA  or  classes  of  CA  immediately  apply  to  lattice  gas 
automata that fall within those classes.  Very often (but not always) CA may 
even be rewritten as lattice gases, although this does not concern us here.
1.2 Emergence and predictability in CA

Given the enormous complexity  of  many CA the fact  that  they can 
express emergent behavior should not be surprising.   In fact,  many CA – 
including Conway's Game of Life – can house universal Turing machines,[2] 
so any emergent behavior which can result from an algorithm at all can be 
expressed within  the  framework  of  CA given enough time.   However,  as 
running a CA in order to simulate a Turing machine is excessively inefficient, 
this  is  not  a  particularly  useful  result.   The  most  interesting  emergent 
behavior is that which evolves naturally due to the CA rules.

While there is no easy way of categorizing non-trivial CA in terms other 
than the lattice they act on and their number of inputs, Wolfram[3] proposed 
the  existence  of  four  general  classes  of  cellular  automata:  those  which 
rapidly tend to equilibrium regardless of initial conditions, those which settle 
into oscillations, those whose output appears to be random, and those which 
are able to propagate complex structures forward in time.  The difference is 
most  easily  understood  with  reference  to  one-dimensional  CA,  as  shown 
below.
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Fig 1.  Four classes of cellular automata, where the vertical axis represents 
evolution in time.  Reproduced from Wolfram[3] via Mainzer[4].

While these designations are subjective,[2] particularly the distinction 
between randomness  and complex  structure,  hey demonstrate  the  broad 
difference  in  possible  outcomes  depending  on  the  ruleset  used  even  for 
simple CA (above, each cell's new value depends only on its old value and 
the  values  of  its  two nearest  neighbors).   In  general,  the  “random”  and 
“complex”  classes  are  the  main  source  of  interest  since  they  do  not 
immediately collapse into easily predictable patterns.

Cellular automata are typically considered emergent in the sense that 
their long-term macroscopic behavior is (for non-trivial CA) very difficult to 
predict even given complete knowledge of the local behavior.  For complex 
enough CA (such as the Game of Life) this has been likened to the behavior 
of biological systems, and the statistical study of such CA has been proposed 
to help develop realistic models for biological networks.[5]  Depending on the 
CA, certainly any able to house a Turing machine, the long-term state of a 
random starting configuration may be algorithmically undecidable.
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From this fundamental undecidability, emergent properties generally, 
and  strong  reliance  on  initial  conditions  for  some  CA,  it  is  tempting  to 
suggest that the behavior of such CA is fundamentally unpredictable.  This, 
as Israeli and Goldenfeld have shown, is not necessarily the case.[2]  Via 
coarse-graining the CA – losing some information by reducing the system 
size and lengthening the timesteps, in exchange for getting a new CA which 
in all cases examined was at less or at most equally complex – it may be 
possible to determine some long-term aspects of the CA's behavior.

Suppose that the system's initial configuration is  a0, that  P Is a map 
that projects the old grid to the coarse-grained grid, that  fA and  fB are the 
initial  CA map and the new, coarse-grained CA map, and finally that  T is 
number of timesteps in the initial system per each step in the coarse-grained 
system.  Then for the coarse-graining to be meaningful it must satisfy the 
commutativity condition P⋅( f A)

T⋅a0= f B⋅P⋅a0 for all initial conditions a0.[2]
Now  consider  site  xn in  a  one-dimensional  grid  of  boolean  values. 

Israeli and Goldenfeld determined, as one example, that Wolfram's[3] rule 
105 (taking xn → xn−1⊕xn⊕ xn+1 ) can be coarse-grained with timescale T=2 to 
rule 150 (taking xn → xn−1⊕xn⊕ xn+1 ) under the projection (xn , xn+1)→ xn⊕xn+1

where the bar represents logical NOT and ⊕ represents logical XOR.  The 
result  is  that the interesting long-term behavior of  rule 105 is  preserved, 
even though information is lost in the coarse-graining:

Fig 2. (a) Rule 105 and (b) Rule 105 coarse-grained to Rule 150[2]
While the possibility such a projection might have been assumed to be 

unlikely, such coarse-grainings were found for 240 of Wolfram's 256 simple 
CA rules[2], including a (trivial) case of an undecidable CA coarse-graining to 
a trivial decidable CA.  These results imply that the emergent behavior of CA 
is not necessarily unpredictable, and that it may be possible to determine 
the interesting features or physical implications of some CA even if the CA 
itself is undecidable.
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2. CA modeling in physical systems
2.1 The Nagel-Schreckenberg CA model for traffic flow

The basic Nagel-Schreckenberg cellular automata model, introduced in 
1992,  represents  a  one-lane  road  as  a  sequence  of  discrete  sites  with 
periodic boundary conditions occupied by cars with discrete velocity values.
[6]   Each “car”  obeys  simple  and  intuitive  rules;  it  slows  down to  avoid 
hitting the car in front of it, and will accelerate whenever possible to reach a 
universal speed limit.  To simulate the random slowdowns and stops that can 
cause  traffic  jams  in  real  life,  each  car  also  had  a  fixed  probability  to 
randomly slow down during a timestep.  Nagel and Schreckenberg showed 
that these simple CA rules yield results which closely resemble real freeway 
traffic data; below, a number represents the velocity of a car at that site:

Fig.  3:  Simulated  traffic  with  a  density  of  0.1  cars  per  site  (left)  and 
trajectories of cars from aerial photography (left) [6]

Fig. 4: Simulated and real traffic flow data, where on the right occupancy is 
defined by the percentage of road covered by vehicles [6]
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The  NS  model  has  several  advantages  over  approaches  based  on 
traffic flow theory, such as computational speed and the results being more 
easily  understood  from  the  perspective  of  a  given  individual  driver. 
However, it by no means represents a complete picture of traffic.  Other than 
the obvious limitations such as the initial 1992 model representing only a 
one-lane loop of road and failure to demonstrate some aspects of traffic flow 
such as metastability (which have been addressed by modified versions of 
the NS model), the model is itself inherently unphysical.

The most common accusation is that cars in the model come to a stop 
essentially instantly, decreasing their speed from its maximum value to zero 
in a few short timesteps when necessary to avoid a collision[7].  Whether 
such a rapid deceleration is physically possible or not, human drivers would 
not generally have the reaction time needed to pull it off – a failure, when 
one of  the supposed benefits  of  the CA technique is  to demonstrate the 
emergence of traffic jams from the point of view of the driver.  More recently, 
other researchers such as Larranga and Alvarez-Icaza[7] have presented CA 
models  with  modified  rulesets  governing,  for  example,  the  idea  of  safe 
driving  distances  and  emergency  braking,  which  remain  both 
computationally  efficient  and  conceptually  simple  while  still  managing  to 
reproduce most essential features of (single-lane) traffic flow.
2.2 Granular flows and CA

The dynamics of granular flows, whose particles can exhibit both liquid-
like and solid-like behavior, are understood relatively poorly and remain an 
active  area  of  research  e.g.  in  soft  matter  physics.   In  theory,  modified 
versions of the Navier-Stokes equations have been used to model the flows 
as a continuum,[8] and while simulations have been carried out attempting 
to  model  the  interactions  of  the  individual  components  of  a  flow  such 
simulations rapidly become computationally expensive when dealing with, 
for example, hundreds of particles.  Cellular automata have been considered 
as an alternative simulation model for granular flow primarily due to their 
computational efficiency; in fact, the original NS model paper for traffic flow 
itself drew an analogy to granular flow, in the case of sand falling through a 
narrow tube rather than traffic on a one-lane road.[6]

In  the  case  of  grains  rotating  in  a  shear  cell,  Jasti  and  Higgs  III[8] 
attempted to simplify these simulations by using a CA or lattice gas approach 
for a shear cell experiment, discretizing space into lattice sites which may or 
may  not  be  filled  with  particles,  and  discretizing  the  velocities  of  each 
particle such that they can move only to one of their eight neighboring sites 
in each timestep.

The rules are relatively simple, if not particularly realistic.  Collisions 
between particles are handled elastically and modeled as well as possible 
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given the ability of particles to only move in 8 directions.  The system itself, 
as a shear cell,  is  taken to have two boundaries, one which is stationary 
(which particles simply reflect off of) and one which is moving (which imparts 
some  forward  velocity  to  colliding  particles  not  already  moving  with  it). 
Finally, moving to an adjacent cell each timestep represents the maximum 
“velocity” for a particle; particles taken to be moving “slowly” may occupy 
the same lattice site for  several  timesteps before moving.  Several  other 
variables  such  as  a  roughness  factor  were  also  present,  used  during 
calculating the effects of a collision.

The  results  of  this  approach  are  more  ambiguous  than  those  for 
modeling traffic when compared to results from continuum-modeling theory.

Fig 5. Height vs. velocity for continuum theory (left) and CA simulation (right). 
H and U are the height and velocity of the shear cell, respectively.[8]

Jasti and Higgs III note that the CA height vs. velocity graph lacks the 
non-shearing granular  flow center  predicted by theory,  and that  its  near-
linear profile more closely resembles that of a Couette flow for a Newtonian 
fluid.   While  success  is  claimed  in  other  areas,  such  as  the  CA  model 
producing,  as  in  theory,  slippage  at  the  boundaries  and  a  higher  solid 
fraction near the center of the shear cell, the qualitatively different behavior 
inside the shear cell seems like it should be some cause for concern, as the 
two models are in effect predicting different physical behavior, with no clear 
indication of which is right or why.

The paper says such differences are the result of, for example, the CA 
simulation being “discrete in nature,”[8] which seems to beg the question. 
This  represents  a  difficulty  in  working  with  CA;  when  all  macroscopic 
behavior emerges from locally-defined interactions, it  may be significantly 
less clear what causes a deviation from either experiment or theory.  That 
being said, despite the discrepancy from continuum theory in one aspect, the 
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agreement of CA modeling with continuum modeling in others implies the 
results may be improved with more work.  That there is any agreement at all  
is  noteworthy given the unrealistic,  idealized results for particle collisions, 
and it is likely that any CA model, if shown to be accurate, would be much 
faster computationally than continuum modeling.
3. Caveats on interpreting CA

While  one  of  the  greatest  advantages  of  CA  is  the  emergence  of 
macroscopic behavior from local behavior, this same macroscopic behavior 
can sometimes be misleading, in particular when the reason it emerges is 
either not apparent or left unexamined.  As an example, we briefly consider 
the density classification task (DCT).  The goal of the DCT is to create a CA 
that accurately converges a system to more common of two boolean values 
in the initial state.  That is, if the system is composed of 0s and 1s, and there 
are more 0s than 1s initially present in the system, the CA should ultimately 
result in every cell containing a 0 (likewise all cells should converge to 1 if 
there are initially more 1s than 0s).  While an exact solution is impossible for 
a large enough system, there are a number of CA that exhibit high accuracy 
(~80% of random initial conditions or more).

Marques-Pita  and  Rocha  performed  a  detailed  analysis  on  two  well 
known DCT CA (FGKL', the mirror rule of a CA developed by Gács, Kurdyumov, 
and  Levin,  and  FGP,  developed  from  genetic  programming)  that,  while 
seemingly exhibiting drastically different macroscopic behavior during their 
evolution,  had  many  similarities  both  in  terms  of  accuracy  and  rulesets. 
While we will  not go into the specifics of their analysis (the CA are much 
more complex than those discussed so far, each requiring information about 
both the original cell and its 6 nearest neighbors), they were able to show 
that the two CA had essentially identical rulesets, with the only difference 
being that FGP causes cells to undergo state changes in several situations 
additional  to  those  causing  state  changes  in  FGKL'.[9]   Therefore,  they 
describe FGP as being a more general case of FGKL'; and, in fact, it has slightly 
higher accuracy.

However,  the  intermediate  macroscopic  behavior  of  the  two  CA  is 
enormously  different.   As  cells  in  FGP undergo  more  state  changes,  FGP 
generates  significantly  more  “domains,”  defined  as  topologically  distinct 
regions.  However, in most cases none of these additional domains has much 
effect, implying that despite the increasingly complex macroscopic behavior, 
new information is rarely being carried through; instead, it is either discarded 
or  simply  duplicate  information  already  present  in  an  FGKL'  simulation  or 
elsewhere  in  the  system.   In  this  sense,  very  little  of  the  new complex 
emergent behavior is ultimately important.

Though this is a different approach, it yields a similar result to that of 
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Israeli and Goldenfeld, namely that the important long-term behavior of a CA 
could  often  be  found even  after  eliminating  “redundant”  information  and 
degrees of freedom through coarse-graining.[2]  Not all of the behavior of a 
given CA is necessarily important or relevant to a system.  Marques-Pita and 
Rocha suggest “too much attention [is paid] to the 'spots' and 'stripes'”[9] of 
CA, and Israeli and Goldenfeld advise researchers to focus their attention on 
the “physically relevant, coarse-grained degrees of freedom” when working 
with CA.[2]
4. Conclusions

Other  than  their  inherent  interest  as  mathematical  objects  and 
computers,  CA  show promise  for  modeling  various  physical  systems  and 
problems.  They are capable of demonstrating rich emergent behavior from a 
handful of simple rules based on local information only, which is familiar to 
anyone who has worked with a system dominated at the microscopic level by 
local (especially nearest neighbor) effects.  When modeled correctly, they are 
therefore capable of exhibiting emergent phenomena even when theory does 
not yet exist, is not fully understood, or is computationally expensive.  All 
traditional lattice gas automata may be rewritten as CA, and many CA (or at 
least  simple CA) exhibit  the curious property of  being able to be directly 
rewritten in terms of a different, often simpler CA via course graining.[2]

However,  CA  are  not  necessarily  suited  for  all  problems  and  all 
applications.  Because the rules for CA are ideally generated without needing 
to know the results of theory – which will be necessary if CA are to be trusted 
and useful in the absence of theory – the local rules governing the evolution 
of the system are frequently far from perfect, as in the granular flow example 
of 2.2.  In some applications, the emergent phenomena associated with CA 
tend may be surprisingly robust, as some of the qualitative behavior of the 
granular flow model (such as solid fraction) indicate.[8]  However, in cases 
where  the  emergent  phenomena  does  not  match  expectations  (such  as 
average velocity in the granular flow), the fact that macroscopic behavior 
emerges naturally from local processes implies figuring out what's “wrong” 
with a given a CA model may be very difficult.

Fixing the model may be as simple as making the rules more accurate 
to  those in  a  real  system,  but  in  some cases  being  unphysical  (such as 
unrealistically rapid deceleration in the NS model) may have little apparent 
impact at all on the macroscopic behavior.  Worse, since CA are capable of 
generating patterns which seem complex at first glance but which simply 
carry  redundant  information,  anyone  looking  too  closely  for  emergent 
behavior  and  patterns  in  a  given  CA  may  be  focusing  on  physically 
meaningless computational data if they are not careful in determining the 
most relevant physical degrees of freedom.
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Therefore,  while  CA  are  computationally  efficient  and  capable  of 
demonstrating  interesting  emergent  behavior  with  carefully  constructed 
rules even in the absence of theory, writing CA to model a system is not an 
excuse to avoid careful consideration of the physical outcomes or the local 
properties of the rules chosen.  That is, it may be expected to be rare to 
write a CA which competently models all interesting physical phenomena in a 
system  without  extensive  modifications,  and  unless  a  given  theory  is 
incomplete the theory may in general be expected to yield more accurate 
results than the relatively simplistic discrete CA model.  Still, the speed of CA 
modeling makes it a valuable tool, and even in cases where CA outcomes are 
not entirely realistic the qualitative results may yield novel supplementary 
data  or  counterpoints.   Research  is  still  ongoing  to  improve  existing  CA 
models,  combine  CA  systems  with  other  mathematical  and  conceptual 
models, and better understand the implications and nature of CA in general.
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