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Bosonic atoms in an optical lattice are a useful tool for understanding strongly-interacting
systems. This paper presents some of the basic theory for this system and calculations
have been performed to reveal some of the properties of each phase. To compliment theory,
important experimental research is highlighted which pioneered this area of study in AMO
physics, including the observation of a quantum phase transition, fundamental properties of
each quantum phase and excitations of the system.



Introduction

An intense area of research in modern condensed matter physics is the behavior of strongly-
interacting systems at low temperatures. Perhaps the most actively studied are the high-Tc
superconductors, where the electron pairing mechanism responsible for phases transitions to
the superconducting state at critical temperatures in excess of 130 K has yet to be fully iden-
tified and understood. One model that has received a fair share of attention from physicists is
the Hubbard model since it is thought to be able to yield the correct phase diagram of these
materials. The Hubbard model describes particles on a lattice using second quantization
language in the form of fermion field operators and is represented as a Hamiltonian con-
taining the particle tunneling energy to neighboring lattice sites and the interaction energy
between particles. It can be considered an improvement on traditional band theory since it
is able to predict the existence of an insulating state mediated by interactions, the so-called
Mott insulator, but the full phase diagram is not yet known since the strong interactions
greatly increase the complexity of solving the Hamiltonian with a large number of particles
and lattice sites using theory or computational methods.

Instead of fermions, we can model bosonic particles in a lattice by using boson field
operators in what is known as the Bose-Hubbard model. This is relevant for understand-
ing the behaviour of certain traditionally condensed matter systems like superfluid He-4 in
disordered media. In this paper, we will discuss the physics of bosonic atoms in a three-
dimensional optical lattice at ultracold temperatures, a system which is an ideal realization
of the Bose-Hubbard model. Ultracold atomic systems like this are highly advantageous for
studying Hubbard models due to the experimentalist’s ability to tune the system parameters
with a knob and map the phase diagram through measurements of the gas density profile.
For the work discussed here, this atomic system is being used as a quantum simulator, a
highly-controllable quantum system whose low-level physics we understand and behavior is
similar to the system of interest. Drawing comparisons to solids, this quantum simulator em-
ploys atoms as electrons and the optical lattice potential formed by standing electromagnetic
waves as a crystal lattice. Atoms can move between minima in the standing wave potential
via tunneling just as electrons can move between lattice sites in the crystal while atom-atom
interactions take the place of Coulomb interactions between electrons.

An optical lattice is produced by interfering pairs of counter-propagating laser beams to
form a standing wave in three mutually orthogonal directions. The potential formed by this
setup is given by:
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where k; are the lattice laser wavenumbers along each of the orthogonal directions. The
variable V) is the lattice depth and depends on the frequency of the atomic transition, the
frequency and polarization of the laser and the spin state of the atom. It is common to
measure the lattice depth in units of the recoil energy Er = 522‘:1'2, where k is the wavevector
of the laser and m is the mass of the atom. The wavenumbers are usually quite close to
equal in each direction so a good approximation is that we have a cubic lattice as far as the

precision of our measurements is concerned. Atoms are first cooled to quantum degeneracy




and loaded into an optical lattice from a magnetic or optical trap by slowly increasing the
laser power at the atomic cloud. The dispersion relation is modified by the presence of
this periodic potential and instead of the typical F |E]2 for a free particle, the energy-
wavevector relation now has a band structure similar to a solid. As previously mentioned,
the presence of strong interactions make this a difficult problem to solve and thus the exact
band structure is unknown. Once the atoms have been loaded into the lattice their collective
behaviour can be understood by studying the Bose-Hubbard Hamiltonian.

Bose-Hubbard model

In the simplest case of an infinite, uniform system, the Bose-Hubbard Hamiltonian is:

<ij>

where b;r is the boson creation operator at site ¢, b; is the boson annihilation operator at site
7, t is the tunneling energy to a nearest neighboring site, n; = b}bi is the number of atoms
at site ¢, U is the on-site atom-atom interaction energy and p is the chemical potential. The
first term is related to the kinetic energy of atoms in the lattice and represents an atom
tunneling from site j to site 7 at an energy cost to the system of ¢. For this term, the
tight-binding approximation has been used to reduce the sum to nearest-neighbor lattice
sites only, represented by the < 7,7 > notation, so that ¢ is equal for all terms. This is
a good approximation for lattice depths of 5Er and above. The second term is related to
atom-atom interactions. Each pair of atoms on the same lattice site increases the energy of
the system by U. The last term is simply the chemical potential of the system.

Deriving the Bose-Hubbard Hamiltonian

This model can be derived from the general form of a Hamiltonian using field operators
which is given by:
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where @/AJ is the boson field operator, P is the momentum operator, V(?j — ) is a atom-
atom interaction potential and N is the total number of particles. It is common to expand
the boson field operators in terms a particular superposition of Bloch states called Wannier
states. In this basis, the field operators are given by:

%&(F) = ZMO(F_ 77)b; (4)



where wo (7 — 77) is a Wannier state of the ground band centered at site i. Only the ground
band is considered here due to the ultracold temperatures that the gases are cooled to before
being loaded into the lattice.

Plugging in eq. 4 into the first term in eq. 3 and restricting the sum to nearest-neighbors,
we find t = — [w§(F—77) (—%62 + Vo>, sinZ(knxn)) wo (7 — r;)d*7 and hence obtain the
first term of eq. 2. To evaluate the two-body interaction term, a pseudopotential approx-
imation is used in the form of V(r' — 7) = Uyd(r’ — 7). The constant of proportionality is
determined from a scattering calculation utilizing the first-order Born approximation and it
would be found that U, = % where ag is the s-wave scattering length. This approxi-
mation to the interaction term is valid for a sufficiently dilute and cool gas. Substituting
the definition of the field operators given by eq. 4 into eq. 3 and using boson commutation
relations it is found that U = % [ |wo(7)[*d37. The last term is easily derived using

This system undergoes a quantum phase transition at zero temperature, the phase dia-
gram for which will be shown later. In the limit that U/t — 0, the system is a superfluid in
the ground state with a wavefunction given by [1]:
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where M is the number of lattice sites and N is the numbers of particles. Since it is
energetically favorable for atoms to tunnel to other lattice sites in this regime, the above
represents a delocalized state where each atom occupies every lattice site equally. Individual
measurements would yield a random result for the number of particles on a single site. In
the regime where t/U — 0, it is energetically costly to have atom number fluctuations on
lattice sites and the system is a Mott insulator where the ground state is [1]:

(W) = (H bj) 10). (6)

The above represents a localized state where there is a single atom in every lattice site in
order to minimize the energy of the system. It is important to note that the above is valid
when the number of particles is equal to the number of lattice sites. For a particle number
equal to an integer multiple, n, of lattice sites, the product in eq. 6 is raised to the exponent
n. When this condition is not satisfied, the superfluid state persists even if the values of ¢/U
and p/U correspond to a Mott insulator region of the phase diagram.

Site-decoupled mean-field theory

A mean-field approximation can be used to simplify eq. 2 to generate a phase diagram [2].
The mean-field treatment involves ignoring fluctuations and considering the mean value of
the boson creation and annihilation operators by making the approximation:

blb; — (b1)b; + bl(b;) — (b)) (b)) (7)



to the first term in eq. 2. We define (b)) = ¢ and (b}) = ¢* where 1 is the mean-field
superfluid order parameter. Substituting eq. 7 into eq. 2, the mean-field Bose-Hubbard
Hamiltonian is found to be:

U
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As shown above, the mean field approximation from eq. 7 has produced a site-decoupled
Hamiltonian. To generate a phase diagram from eq. 8, we consider the Hamiltonian on a
single site 7, use a Fock state of the number of atoms on that site as the basis and truncate
the Hilbert space at some maximum number of atoms. The order parameter v is then varied
to find the minimum possible value for the ground state energy at a fixed p/U and t/U.
Figure 1 is the phase diagram generated for an atom number truncation of 10. Figure 2 is
a plot of the average atom number in the phase diagram. The Mott insulator phase occurs
where the mean-field superfluid order parameter is zero and has integer values for the average
occupation while the superfluid phases generally takes on non-interger values for the average
atom number.

0.02 0.04 0.06 0.08 0.1

t/U

Figure 1: Plot of the mean-field superfluid order parameter of p/U (y-axis) and t/U (x-
axis) using the site-decoupled mean-field Hamiltonian. The grey lobes are where the order
parameter is equal to zero indicating the presence of the Mott insulator phase. Outside of
these lobes, the order parameter takes on a finite value and the superfluid phase exists.



0.01 002 003 004 005 006 007 008 0.09 01

Figure 2: Plot of the average atom number on a single lattice site as a function of u/U
(y-axis) and t/U (x-axis) using the site-decoupled mean-field Hamiltonian. The dark blue
section in the bottom left has an average occupation of 0 while the light blue, green (difficult
to see) and orange lobes have average occupations of 1, 2 and 3 respectively. Away from
these areas there is generally a non-interger value for the average occupation.

Experimental studies

In this section of the paper, experiments that first observed the emergent phases of this
system, studied their properties and probed the excitation spectra will be discussed.

Observation of quantum phase transition and atomic Mott insulator
properties

Greiner et al. were the first to study the superfluid to Mott insulator transiton in this system
and probe some of its properties [3]. In their experiment, a pure Bose-Einstein condensate
(BEC) of roughly 2x10° 8"Rb atoms was loaded from a magnetic trap into an 852 nm three-
dimensional optical lattice by slowly ramping up the intensity of the lattice lasers to ensure
the BEC always remains in the ground state of the combined potentials. The gas occupies
about 15x10* lattice sites with an average filling of 2.5 atoms per site in the center of the
lattice potential. The BEC was loaded into a shallow lattice such that the system was in the
superfluid state. A superfluid has the property of macroscopic phase coherence and to verify
its presence between lattice sites after the gas had been loaded into the optical lattice, the
trapping potentials were snapped off and the gas was allowed to expand. Absorption images
of the gas yielded a high-visibility interference pattern as shown in Figure 3 confirming the
existence of phase coherence between lattice sites.

Increasing the lattice depth allows for the observation of the phase transition from the
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Figure 3: Absorption images of the atomic gas after the trapping potentials have been
snapped off. For low lattice depths the gas is in a phase coherent state yielding an interference
pattern. As the lattice depth is increased, the system enters a state where there is no phase
coherence and the interference pattern has vanished. (Figure from [3])

superfluid state to a Mott insulator. The interaction energy U is an increasing function of
the lattice depth V; while the tunneling energy t is a decreasing function as shown in Figure
4. Changing the lattice depth then translates into tuning the ¢/U ratio and allows access to
different areas of the phase diagram of Figure 1. As shown in Figure 3, the visibility of the
interference pattern degrades at larger values of the lattice depth and finally at a depth of
22FR (Figure 3h), there is no recognizable interference pattern. The gas density profile is
consistent with the idea that atoms want to occupy a single lattice site (or a single lattice site
harboring an integer multiple of atoms) to minimize the energy of the system with no phase
coherence between lattice sites. This absence of phase coherence between lattice sites is one
of the properties of the Mott insulator state. Greiner et al. also demonstrate the reversibility
of this process by showing that an interference pattern and hence phase coherence is restored
after the lattice is ramped back down.

Another property of the Mott insulator state is the presence of a gap in the excitation
spectrum. The energy gap E, depends on the lattice depth and approaches U when the
system is deep in the Mott insulator regime. For integer filling at small ¢/U, the lowest-
lying excitation is taking an atom from a lattice site and putting it in a neighboring site
at an energy cost U. This is a particle-hole excitation. Excitations were probed in the
Mott insulator state through application of a potential gradient which causes tunneling to
become a favorable process when the energy difference between two neighboring lattice sites
equal U. To observe excitations, Greiner et al. relied on the effect that excitations in the
Mott insulator phase have on the phase coherence of the superfluid state when the lattice
is ramped back down. The result is a broadening of the interference pattern when the
confining potentials are snapped off where the amount of broadening is used as a measure
of the proximity to resonance for the excitation. Figure 5 shows data for excitations in the
Mott insulator state where a gap can be seen for large lattice depths (Figure 5 e & f). The
first resonance corresponds to particle-hole excitations and the second is hypothesized to be
from a number of other processes.
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Figure 4: Plot of the atom-atom interaction energy U and the tunneling energy J versus
the lattice depth Vj. The dotted line is the curve for J and the solid line is the curve for U.
(Figure from [4])
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Figure 5: Data showing the excitation probably for various lattice depths. (Figure from [3])

This was pioneering work in creating the sub-field of quantum simulation of strongly-
interacting solids in AMO physics. Though the authors claim that the energy gap and
resonance in the excitation spectrum are direct evidence that they are in the Mott insulator



phase, the defining property of this phase is incompressibility, dn/0u[l]. While there is a
wealth of indirect evidence here for the existence of these phases, Greiner et al. did not
probe the compressibility of the Mott insulator phase or the presence of a critical velocity
for the superfluid phase.

Observation of incompressible Mott insulator

Gemelke et al. used a BEC of ¥3Cs atoms in a 2D optical lattice to experimentally verify
the incompressibility of the Mott insulator phase [5]. In their setup, two pairs of orthogonal,
counter-propagating 1064 nm laser beams in the horizontal(x-y) plane form the 2D optical
lattice. Two more lasers beams are crossed at an angle of 15° and the resultant interference
forms a lattice potential in the direction along the z-axis with 4 pum spacing between sites.
The BEC was loaded into a single site of the vertical lattice and the lattice depth of the
2D lattice was ramped up to enter the Mott insulator phase. Absorption imaging along the
z-direction was used to capture the atomic density profile in the x-y plane.
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Figure 6: In situ absorption images of the lattice gas (top) and slices through the density
profile (bottom) showing the gas density as a function of position. (Figure from [5])

At a lattice depth of 22 Eg, corresponding to a t/.J value where the system is predicted
to be in the Mott insulator phase, Gemelke et al. observe a flat density profile, shown in
Figure 6 c, in the center of the trap. The atomic density in this region was measured to be
3.5(3) um~2 (standard error in parentheses) which agrees well their theoretical calculation
of 3.563 um~2 for a filling of one atom per site. Additionally, Gemelke et al. found that
Kk o< On/Or where k is the compressibility and n is the atomic density. The compressibility
near the trap center, shown in Figure 7 (red dots), was calculated and can be seen to be



consistent with zero. This experiment gives confidence in previous work claiming to observe
the Mott insulator phase of bosonic atoms in an optical lattice.
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Figure 7: Compressibility of the lattice gas as a function of the distance from the center of
the trap. The red dots are for a 22Fg lattice where a Mott insulator phase exists in the
center. (Figure from [5])

Observation of critical momentum in a lattice superfluid

The approach taken by Mun et al. was to use a BEC of " Rb atoms in 3D optical lattice
created by counter-propagating laser beams where one dimension had a frequency difference
between the interfering beams forming the standing wave [6]. This frequency difference
resulted in a moving lattice along this direction. The effect of the moving lattice is a state
of the lattice gas with momentum p = —mM\d f/2 where A is the lattice laser wavelength, § f
is the frequency difference producing the moving lattice and m is the mass of the atom.
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Figure 8: Plot of the condensate fraction versus the momentum imparted to the lattice gas
for two values of U/t. (Figure from [6])
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Once the moving lattice had perturbed the system, the external potentials were snapped



off and the gas was allowed to ballistically expand. The condensate fraction was then deter-
mined by measuring the broadening of the central peak of the resulting interference pattern.
At a fixed ratio of U/t, the condensate fraction was measured as a function of the imparted
momentum p and Figure 8 shows the data obtained for U/t = 0.22 and 0.53. The presence
of a critical momentum is evident here in the rapid decrease of the condensate fraction. This
procedure was repeated for various values of U/t and the data in Figure 9 was obtained.
Taken together, Figures 8 and 9 provide direct evidence for the existence of a superfluid
phase for small U/t.
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Figure 9: Plot of the critical momentum of the lattice gas as a function of the ratio of the
atom-atom interaction energy to the tunneling energy U/t. (Figure from [6])

Conclusion

This paper has discussed the theory of bosonic atoms in an optical lattice and some important
experiments that verified and probed the properties of the quantum phases of this system.
The Bose-Hubbard Hamiltonian was derived from the general form of the Hamiltonian in
the language of field operators and a mean-field approximation was used to obtain a site-
decoupled Hamiltonian. From this, numerical calculations yielded the phase diagram and the
average atom number in each part of the phase diagram. Various experiments were presented
and discussed which observed the quantum phase transition, verified the defining properties
of superfluid and Mott insulator phases and probed certain excitations of the system.
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