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Abstract

The World Wide Web (WWW) is a directionally linked network of ∼ 109 nodes
(web pages). Unlike a simple random network in which links are distributed with
uniform probability between nodes, the probability P (k) that there are k (web) links
to or from a given node on the WWW behaves as a power law in k over many orders
of magnitude, with exponent ≈ −2.1 for links to a node, and ≈ −2.45 for outbound
links [1],[5]. This emergent property implies that the WWW has evolved into a scale-
free (i.e., “self-similar”) network. In this paper, we will review these observations and
discuss two models that attempt to explain the power-law behavior of P (k).

1



1 Introduction

The World Wide Web (WWW, or simply “the web”) is an enormous, dynamic man-made
network in which web pages are the nodes, and web links comprise the directed links between
the nodes. Generally speaking, web pages are distinct, man-made entities created for a
multitude of reasons, but always with the purpose of conveying information via links to
other web pages, text, pictures, sound, and/or video. Thus from a reductionist standpoint,
full comprehension of the WWW’s complex topology requires insight into the comparably
complex world of human motives. Such a level of reductionism will not take us far in
understanding the large-scale structure of the WWW, but all is not lost; in work reviewed
by this paper, statistical techniques are instead used to comprehend the complex structure
of the web. Such approaches analyze fundamental statistical quantities in the WWW in
the quest for emergent behavior (i.e., patterns indicating some deviation from a random
network). Once a pattern has been found, models are constructed to reproduce it. Such
models lend insight into the structure and evolution of the web, which in turn may be useful
to the design and improvement of web search engines, for example.

Using automated web crawling software to explore the link structure of the nd.edu (U.
of Notre Dame) website in 1999 (≈ 3.3 × 105 web pages & ≈ 1.5 × 106 web links), Barabási
et al. [1],[5] showed that the probability P (k) for k inbound or outbound links (i.e., links to

or from a web page, respectively) on the World Wide Web significantly deviates from that
of a randomly linked network (in which P (k) is sharply peaked, as shown in Figure 1) and
so exhibits emergent behavior. Specifically, they found

P (k) = k−γ, where (1)

γ = 2.1 ≈ 0.1 for inbound links, and (2)

γ ≈ 2.45 for outbound links. (3)

Such behavior is a telltale sign that some level of self-organization has occurred, and Barabási
& Albert’s simple model [1] reflects this. Due in part to the fact that it involves a network of
nondirected links however, their model predicts the WWW scaling exponent γ ≈ 2.9 instead
of the observed values (Eqs. 2 & 3 above).

A breakthrough in modelling P (k) for inbound links occurred when Bornholdt & Ebel [4]
applied a model to the WWW originally designed by Herbert Simon [6] in 1955 to explain
power-law distributions in other systems. Bornholdt & Ebel demonstrated that in this model,
the scaling exponent of the web is not a fundamental quantity, but may be computed directly
from another empirical quantity α, given by

α =
∆web pages

∆web links + ∆web pages

, (4)

where
∆X = [(# of X at time t + δt) − (# of X at time t)]. (5)

For accuracy, δt should be large enough so that ∆X � 1. Finally, Bornholdt & Ebel measure
α directly from WWW data and show that with this α, Simon’s model yields γ ≈ 2.1 for
inbound links, in agreement with the raw data.
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In the proceeding sections, we will show some actual data collected from the web, includ-
ing network graphs and plots of P (k) for inbound links, to which Eqs. 1 & 2 are fit. This
section will also contain limited description as to how these data were collected. Next, we
will review in detail two models used to explain the power law exponent in the data: the
so-called “scale-free” model of Barabási et al. [5], [1] and Simon’s 1955 model. Finally, we
analyze the shortcomings of these models, indicating the gaps that future models will need
to fill.

2 Overview of the Data

Our goal in this section is threefold. First, we will compare the topology of a WWW-like
network with that of a random network. Secondly, we will discuss the methods used for data
collection on the web, and finally, we will show data measuring P (k) on the web for inbound
links.

2.1 Topology of the WWW

Figure 1 compares network topology and link distribution P (k) for two network models:
the “Scale-Free” network model of Barabási & Albert [1],[8], and the Erdös-Rényi random
network model [7]. The link distribution for the random network model possesses a distinctive
peaks about the average connectivity of a node, 〈k〉, whereas the “Scale-Free” model’s P (k)
behaves as a power law, like the WWW. Both of the networks in this figure contain the same
number of nodes and links. The red dots in each model indicate the 5 most connected nodes,
and the green dots their nearest neighbors (1 link separation). In the random network, ≈ 27%
of the nodes are colored green, compared to ≈ 60% in the “Scale-Free” model. Contrast these
results with data collected from the WWW by Broder et al. [9], which indicate that, if the
directionality of the links is neglected, 90% of all nodes connect to the single most connected
node.

2.2 Data Collection Methods

Barabási et al. [1] and Albert et al. [2] used web crawling software that obtained data from
the nd.edu web site in 1999 using the following two-step procedure, starting from the nd.edu
homepage:

• Step 1: Download the web page, save its address, and extract the links. Go to Step 2.

• Step 2: For all links, if the link is within the nd.edu domain, save the link, follow that
link and then return to Step 1 for each link.

This automated procedure accumulated a total of ≈ 3.26× 105 web pages and ≈ 1.47× 106

web links [2].
Broder et al. [9] on the other hand used vast WWW page/link databases collected by

AltaVista in May 1999 and October 1999. These databases were constructed using web
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Figure 1: Comparison between network topology and link distribution P (k) produced by
the Erdös-Rényi random network model (top) [7] and the “Scale-Free”, WWW-like, nondi-
rectionally linked model of Barabási & Albert (bottom) [1],[8]. This figure was copied from
Barabási et al. [8].
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Figure 2: Left plot: the inbound link probability distribution P (k), as measured by Barabási
et al. [5], and Albert et al. [2]. Right plot: the total number of web pages as a function of
k inbound links N(k), as derived from AltaVista web crawling data by Broder et al. [9].
The best fit to the data in the left plot yields γ = 2.1, and, as indicated in the right plot,
the inbound link scaling exponent is given by γ = 2.09 in both the October and May 1999
AltaVista data sets. Note that the left plot is copied from [5], and the right plot is copied
from [9] (labeling modified for notational consistency in the right plot).

crawling technology similar to that by Barabási et al. [8], but with some important excep-
tions. First, it was not restricted to the nd.edu web site, and second, it contained filters
designed to remove duplicate web sites, spam web sites, etc. Since it was not restricted
to the nd.edu domain, the AltaVista data set was about three orders of magnitude larger
than the Barabási et al. [1] and Albert et al. [2] data set. The AltaVista database included
≈ 2.03×108 web pages and ≈ 1.47×109 web links in May 1999, and ≈ 2.71×108 web pages
and ≈ 2.13 × 109 web links in October 1999.

2.3 P(k) Measured from the WWW

Figure 2 shows a plot by Barabási et al. [5] of P (k) and a plot of N(k) by Broder et al. [9].
P (k) is the probability that a given node on the WWW has k links to it, and N(k) is
the number of pages with k inbound links. Since N(k) is equivalent to P (k) without a
normalization constant, we conclude from these plots that regardless of the database size,
web crawling algorithm, or time in which the data was collected, the inbound link power law
exponent on the WWW is given by γ ≈ 2.1.
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3 Model Analysis & Discussion

3.1 “Scale-Free” Model by Barabási & Albert

Introduced by Barabási & Albert in 1999 [1], this model is intended to explain the fact that
P (k) behaves as a power law. It is based on two observed deviations between the WWW
and random network models. First, unlike the static network size in random network models
(such as the Erdös-Rényi model [7]), the web is a dynamic network that has increased in size
at a staggering rate since its inception in the early 1990s. Secondly and most importantly,
random network models link nodes with fixed probability, whereas web pages appear to link
preferentially to those pages that already have the most links.

The Scale-Free model comes in two flavors: discrete and continuous. The discrete flavor is
used to determine properties of the model through numerical simulations, and the continuous
flavor (the continuum limit of the discrete model) is used for an analytical analysis of the
model and to verify the validity of the simulation algorithm.

3.1.1 Discrete Version

As initial data, the discrete algorithm begins with a small number of nodes mo (= 1, 3, 5, or
7) with an unspecified structure of m = mo undirected links (allowing for a node to link to
itself). Next, a node with m links is connected to the network one link at a time, where the
probability that any one of these links connects to another node i with ki links is given by

P (ki) =
ki

2N
, (6)

where N is the total number of undirected links. The factor of 2 arises since each link has
two ends, which makes

2N =
∑

i

ki (7)

the appropriate normalization constant for P (ki).
Figure 3 shows results from simulations of this algorithm, by Barabási et al. [1] [8] with a

variety of initial conditions. Notice that the scaling exponent γ (from Eq. 1) obtained from
these simulations is independent of m (the only initial parameter). Thus γ is a universal
feature of this model, but is found to be 2.9, not between the observed γ = 2.1 (for inbound
links) or γ ≈ 2.45 (for outbound links) on the web, as one might näıvely expect.

3.1.2 Continuum Version

The continuum version of the Scale-Free model by Barabási et al. [1],[8] assumes that the
variables related to the number of links to/from the ith node – ki, and P (ki) – are con-
tinuous. Further, it introduces a new continuous variable: t (for “time”), corresponding to
the iteration step number in the discrete model. In constructing their continuum Scale-Free
model, Barabási et al. start with the observation that the number of links connected to a
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Figure 3: Results from discrete “Scale-Free” model simulations by Barabási et al. (figure
reproduced from [8]). The left plot (Plot a) shows the link probability distribution P (k) after
3×105−m timesteps for a variety of initial conditions. In particular, the open circles, squares,
diamonds, and triangles plot P (k) with parameters m = mo = 1, 3, 5, and 7 respectively.
The dashed line in this plot represents the best fit to the slope, γ = 2.9, of these data sets.
The right plot (Plot b) shows the time evolution of the m = mo = 5 case after 1 × 105 − m
(circles), 1.5×105−m (squares), and 2×105 −m (diamonds) iterations. The inset to Plot b
shows the evolution of the number of links k(t) for two nodes. The dashed line in this inset
possesses slope 0.5, the best-fit slope to these data sets.
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new node i, ki, should increase in time t proportionally to P (ki). Further, since the discrete
model adds m links at each timestep, the proportionality constant must be given by m. Thus
Eq. 6 implies

∂tki = m
ki

2N
. (8)

Since N = mt, the above equation may be written

∂tki =
ki

2t
. (9)

This equation has general solution ki(t) = αt1/2, where α is given by ki(ti) = m, since each
node has m links at ti, the time at which it is added to the network. Thus we have found
the solution to Eq. 9, and it is

ki(t) = m

(

t

ti

)1/2

. (10)

Notice that the above expression agrees with the results plotted in the inset to Plot b of
Figure 3. Next, Barabási et al. use this result to find that P (k), the probability that a given
node possesses k links in their model, has the form

P (k) = 2m2k−3 ∝ k−3 (11)

as t → ∞. This power law exponent agrees with the simulated results of Figure 3, where γ
was found to be ≈ 2.9.

3.2 Herbert Simon’s Model

3.2.1 Original Formulation of Simon’s Model

In 1955, Herbert Simon introduced a model [6] designed in part to describe the distribution
of word frequencies in literature. Given the set of words in a given document R, it was found
that the probability of a word from R occurring i times behaves as a power law, as with
P (k) for the World Wide Web.

Next we reconstruct the basis of Simon’s model ([6], pgs. 427-429), in our own words.
Define f(i, k) as the number of different words, occurring i times each, at the kth word in
the document (k � 1). Also define D as the set of words up to and including the kth word
in the document. Simon’s model is then based on the following two assumptions:

1. Assumption 1: There is a fixed probability α that the next, (k + 1)st word W is not
in the set D (W /∈ D).

2. Assumption 2: If W ∈ D (probability 1 − α), it must be chosen from the set with
probability Pi proportional to the number of words in D occurring i times. That is,
Pi ∝ if(i, k).
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From Assumption 2, we see that Pi (the probability that, assuming W ∈ D, a word
occurring i times will be picked) must be normalized to the total number of words in D:

Pi =
if(i, k)

∑

j jf(j, k)
=

if(i, k)

k
. (12)

Now define a quantity Ek(i) = 〈f(i, k+1)〉−f(i, k), where 〈f(i, k+1)〉 is the expectation
value for the number of words occurring i times at position k+1 in the document. Therefore,
−1 ≤ Ek(i) ≤ 1.

Assuming that W ∈ D and i > 1, let us consider two cases:

• Case 1: Ek(i) > 0 → the k + 1 word must have been a word appearing i− 1 > 0 times
in D.

• Case 2: Ek(i) < 0 → the k + 1 word must have been a word appearing i times in D.

According to Assumption 2, Case 1 will occur with overall probability (1−α)Pi−1 and Case
2 will occur with overall probability (1 − α)Pi. Since Ek(i) involves the expectation value
〈f(i, k + 1)〉, Ek(i) for i > 1 must be equivalent to the following sum of probabilities:

Ek(i) = [Probability of Case 1] − [Probability of Case 2] (13)

= (1 − α)(Pi−1 − Pi) (i > 1). (14)

To complete our expression for Ek(i), we must specify Ek(1). By the same line of rea-
soning, Assumptions 1 and 2 yield

Ek(1) = [Probability that a new word is picked] − P1

= α − P1.
(15)

With the goal of uncovering a steady state distribution of words appearing i times, P (i),
Simon solves the steady state version of the above equations for Ek(i) (where 〈f(i, k+1)〉 →
f(i, k + 1)). He finds

P (i) ∝
Γ(i)Γ(ρ + 1)

Γ(i + ρ + 1)
(16)

where

ρ =
1

1 − α
. (17)

Note that the above ratio of Γ’s may be written approximately as i−(1+ρ), so

P (i) ∼ i−(1+ρ) = i−γ. (18)

Therefore the above set of “evolution equations” for Ek(i) in the steady state limit has
yielded a one-parameter power law distribution in word count. For more information on
how well this model applies to actual documents, see Simon’s original paper on the subject
([6]). Next, we will discuss Bornholdt & Ebel’s application of Simon’s model to networks,
including the WWW.
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3.2.2 Application of Simon’s Model to Networks, by Bornholdt & Ebel [4]

The two assumptions in Simon’s model are incompatible with the vocabulary of networks, so
Bornholdt & Ebel rewrite Simon’s assumptions in the context of a growing network, where
f(i, k) is the number of nodes with i inbound links at iteration k. Specifically, they rewrite
Simon’s assumptions as follows:

1. Assumption 1’: At iteration k + 1 there is fixed probability α that a new node is
added.

2. Assumption 2’: With probability 1 − α, a single, directed link pointing to node i is
added at iteration k + 1 with probability Pi given by Eq. 12. Ignore the source of the
directed link.

Notice from Assumption 2’ that Bornholdt & Ebel’s application of Simon’s model considers
only inbound links. As defined above for networks, all quantities behave in exactly the same
way as in Simon’s model, yielding the same “evolution equations” as Simon’s model (Eqs. 14
& 15) and resulting P (i) (Eq. 18).

Therefore, the probability distribution of inbound links P (i) (identical to P (k) as defined
in Eq. 1) goes as a power law in the number of inbound links i, with exponent given by a
single parameter α. As stated in Assumption 1’, α is the probability that a node is added
instead of a link. For the web, the total number of web pages and web links increases with
time, so α may be determined by:

α =
Npages(δt) − Npages(0)

[Nlinks(δt) − Nlinks(0)] + [Npages(δt) − Npages(0)]
, (19)

where NX(t) is the number of X measured at time t, and for accuracy, δt should be large
enough so that both the numerator and denominator of the above expression is � 1. Using
the AltaVista data sets from May & October, 1999 [9] (also see Section 2.2), we find

α ≈
68 × 106

732 × 106
≈ 0.1, (20)

which yields an inbound link distribution power law exponent that agrees with actual mea-
surements: γ ≈ 2.1.

4 Conclusion

Although the generalization of Simon’s model to networks accurately predicts the power law
exponent of P (k) for inbound links, this model has its faults. For example, it does not specify
the origin of directed links, so its usefulness as a model for topological parameters other than
P (k) (e.g., average path length between pairs of nodes) is severely limited. Viewed in this
way, Barabási & Albert’s model is more robust, since it constructs a network in which each
link has two well-defined ends, allowing the model to predict network quantities other than
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P (k). However, we know that the World Wide Web’s structure is more complex than that
assumed by either of the models we have presented in this paper. As other, more robust
models are developed [3], the web will continue to evolve and grow, one web page at a time.
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[8] A.-L. Barabási, Z. Deszö, E. Ravasz, S.-H. Yook, and Z. Oltvai, Scale-free and hier-
archical structures in complex networks (to appear in Sitges Proceedings on Complex
Networks, 2004).

[9] A. Broder et al., Comput. Netw., 33, 309 (2000).

11


