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Abstract

A quantum phase transition (QPT) is a zero-temperature, generi-
cally continuous transition tuned by a parameter in the Hamiltonian at
which quantum fluctuations of diverging size and duration (and van-
ishing energy) take the system between two distinct ground states [4].
This short review discusses the characteristic aspects of QPT and il-
lustrates possible applications in physics and biology.
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1 What are quantum phase transitions?

A phase transition is a fundamental change in the state of a system when
one of the parameters of the system (the order parameter) passes through its
critical point. The states on opposite sides of the critical point are character-
ized by different types of ordering, typically from a symmetric or disordered
state, which incorporates some symmetry of the Hamiltonian, to a broken-
symmetry or ordered state, which does not have that symmetry, although
the Hamiltonian still possesses it.



As we approach the phase transition, the correlations of the order param-
eter become long-ranged. Fluctuations of diverging size and duration (and
vanishing energy) take the system between two distinct ground states across
the critical point. When are quantum effects significant? Surprisingly, all
non-zero temperature transitions are considered “classical”, even in highly
quantum-mechanical systems like superfluid helium or superconductors. It
turns out that while quantum mechanics is needed for the existence of an
order parameter in such systems, it is classical thermal fluctuations that gov-
ern the behaviour at long wave-lengths. The fact that the critical behaviour
is independent of the microscopic details of the actual Hamiltonian is due
to the diverging correlation length and correlation time: close to the critical
point, the system performs an average over all length scales that are smaller
than the very large correlation length. As a result, to correctly describe uni-
versal critical behaviour, it should suffice to work with an effective theory
that keeps explicitly only the asymptotic long-wavelength behaviour of the
original Hamiltonian (for instance, the phenomenological Landau-Ginsburg
free-energy functional).

So far, we have shown that classical theory suffices. However, consider
what happens when the temperature around the critical point is below some
characteristic energy of the system under consideration [2]. For example,
the characteristic energy of an atom would be the Ryberg energy. We see
a characteristic frequency w. and it follows that quantum mechanics should
be important when kT < hw.. In the same spirit, if k7T >> hw. close
to the transition, the critical fluctuations should behave classically. This
argument also shows that zero-temperature phase transitions, where 7T, = 0,
are qualitatively different and their critical fluctuations have to be treated
quantum mechanically.

In such zero-temperature or quantum phase transitions (QPT), instead
of varying the temperature through a critical point, we tune a dimensionless
coupling constant J in the controlling Hamiltonian H(.J). Generically [1], the
ground state energy of H(.J) will be a smooth, analytic function of g for finite
lattices. However, suppose we have the Hamiltonian H(J) = Hy+.JH;, where
Hy and H; commute. This means that Hy and H; can be simultaneously
diagonalized and the eigenstates of the system will remain the same even
though the eigen-energies will vary with J. A level crossing is possible where
an excited level crosses the ground energy level at some coupling constant J..,
creating a point of non-analyticity in the ground state energy as a function
of J, which manifests as a quantum phase transition.
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Figure 1: (A) Schematic phase diagram showing a paramagnetic (PM) and
a ferromagnetic (FM) phase. The dotted path represents a classical phase
transition while the solid line indicates a quantum phase transition. (B)
Vicinity of the quantum critical point (J = J.,T = T.). Indicated are the
critical region, as well as the regions dominated by the clasical and quantum
mechanical critical behaviour(QM) [2].

2 Features of a quantum phase transition

To illustrate the concepts, we consider the example of a metallic or itinerant
ferromagnet [2]. Figure 1A shows a schematic phase diagram in the 7' — .J
plane, with T" the temperature and J the strength of the exchange coupling
that is responsible for ferromagnetism. The coexistence curve separates the
paramagnetic phase (large T', small J) from the ferromagnetic phase (small
T, large J). For any given J, there is an associated Curie temperature T,
and classical phase transition occurs if we vary the temperature through 7.
On the other hand, imagine changing J at zero temperature, for instance,
by alloying/doping the magnet with some non-magnetic material. Here, we
encounter a quantum phase transition between the paramagnet and the fer-
romagnet at the critical value J..

The behaviour at the T = 0, J = J. is very different from 7" # 0. In order
to understand what happens in the vicinity of a QPT, a special mathematical
trick which allows us to connect QPT with classical statistical mechanics is
needed [3]. Consider the partition function of a d-dimension classical system
governed by a Hamiltonian H,



Z(B) = Tre?4 (1)

which can be written, via Feynman’s path integral formulation, as a func-
tion integral of the form (generalized for quantum many-body systems)
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Here, we let H be the Hamiltonian operator and S is the action of the
system,
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1 and 1 are the conjugate fields isomorphic to the creation and annihilation
operators in the second quantized formulation of the Hamiltonian. We have
sneaked in the trick of Wick rotation: analytically continuing the inverse
temperature (3 into imaginary time 7 via 7 = —ihf3, so that the operator
density matrix of Z, e®!| looks like the time-evolution operator e *#7/" The
end result is seen in the action, which looks like that of a d 4+ 1 Euclidean
space-time integral, except that the extra temporal dimension is finite in
extent (from 0 to 5). As T'— 0, we get the same (infinite) limits for a d + 1
effective classical system. This equivalent mapping between a d-dimension
quantum system and a d + 1-dimensional classical system allows for great
simplifications in our understanding of QPT.

Since we know that the quantum transition is related to a classical analog
in a different spatial dimensionality, and since changing the dimensionality
usually means changing the universality class, the critical behaviour at the
quantum critical point J. should be different from that observed at any other
point along the coexistence curve in Figure 1.

Also, another interesting aspect of QPT is that dynamics and thermo-
dynamics(i.e. statics, as thermodynamics is very much a misnomer) cannot
be independently analyzed, unlike the case for classical statistical mechan-
ics. This loss of freedom is due to the non-commutability of coordinates
and momenta in the quantum problem. As a result, both the form of the
Hamiltonian as well as the equations of motion are required, meaning that
one cannot solve the thermodynamics without also solving the dynamics —



a feature that makes quantum statistical mechanics much harder to solve.
Hence, even though it was mentioned in the earlier paragraph that a quantum
transition can, in some fashion, be mapped into a classical thermodynamic
transition, information about the correlations in excited states which drive
the system out of the ground state cannot be extracted from this map.

3 Relevance in experimental Physics and Bi-
ology

Quantum phase transitions attract intense attention because they are rele-
vant to a host of experimental issues, despite the fact that 7" = 0 cannot
be achieved experimentally. This is because associated with the quantum
critical point, there is a sizable region where quantum critical behaviour is
observable (labeled QM in Fig. 1B). Some examples are:

e Anderson-Mott models and metal-insulator transitions [4],
e superconductor-insulator (SI) transition in granular superconductors [5],
e transitions between quantum hall states [3],

e the physics of vortices in the presence of columnar disorder [6].

Besides the above, knowledge of dissipative effects [7] on quantum coher-
ence and QPT is essential to assess the reliability of mesoscopic quantum
devices in performing tasks that strongly depend on their ability to maintain
entanglement (for instance, in quantum computation). Among quantum de-
vices widely used, many are based on a collection of regularly arranged or
single small Josephson junctions (JJ). A Josephson junction comprises two
superconductors linked by a very thin insulating oxide barrier and the cur-
rent that tunnels through the barrier is the Josephson current. Josephson
junction arrays also constitute a particularly attractive testing ground for
the superconducting-insulating (SI) transition, because all parameters are
well under control and are widely tunable. Cooper pairs of electrons are able
to tunnel back and forth between grains and hence communicate about the
quantum state on each grain. If the Cooper pairs are able to move freely
from grain to grain throughout the array, the system behaves like a super-
conductor. If the grains are very small, a large charging energy is incurred to
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Figure 2: (A) Representation of a 1D Josephson Junction array. Crosses
represent junctions between superconducting segments, and 6; are the phases
of the superconducting order parameter. (B) Typical path or time history
of the 1D JJ array. Notice it is equivalent to the configuration of a 1+1D
classical XY model. The long-ranged correlations are typical of the ordered
(superconducting for 1D JJ) phase. (C) Typical path or time history of the
1D JJ array in the insulating phase (or disordered phase for 1+1D XY) [3].

move an excess Cooper pair onto a grain. When this energy is large enough,
Cooper pairs cannot propagate and becomes confined on individual grains,
leading to the quenching of the collective superconducting phase.

As an example, we consider a one-dimensional array of identical JJs (Fig.
2). The essential degrees of freedom are the phases of the complex supercon-
ducting order parameter on the metallic segments connected by the junctions
and their conjugate variables, the charges (excess Cooper pairs, or equiva-
lently the voltages) on each grain. Even without doing further math, from
Fig. 2B and 2C, one can draw an analogy between our system and a 2-D
classical XY model. It turns out that, in an approximation that preserves the
universality class of the system, we can indeed map our 1D JJ array into a 2D
X-Y system [3], with our dimensionless coupling constant K ~ +/E./E; play-
ing the role of the temperature in the classical analog, where E, = (2¢)?/C is
the capacitive charging energy and E; the Josephson coupling in the array.
This equivalence generalizes to d-dimensional arrays and d + 1-dimensional
classical X-Y models. Among the systems studied, two-dimensional ones are
most interesting as no true long-range order is possible at finite temperatures
while a genuine QPT occurs at T = 0. Moreover, 2D samples can be easily
fabricated and experimentally characterized.
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Figure 3: Correspondence between polyelectrolyte bundle and 7" = 0 2D JJ
array. (A) The two degenerate, chiral ground states of the antiferromagnetic
XY model on a triangular lattice. The helical ordering around a triangular
plaquette of the bundle lattice is shown in (B), where the dark black lines
depict the polymer backbone while the spheres depict peaks in the condensed
charge density [9].
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Figure 4: Correspondence between d = 3 classical polyelectrolyte system
(left) and d = 2 + 1 quantum frustrated JJ array system (right) [9].

In biology, nature has a small range of temperatures to play with, due to
the protein nature of life chemistry, and most phase transitions occur with
the variation of a parameter other than temperature. I hypothesize that
it may be possible to draw analogies with QPTs, where the temperature is
fixed (at T'= 0) and some other parameter is varied, and hence tap into the
immerse theoretical and experimental work that has been done on JJ arrays.
Although i do not have anything solid to back up my statement, the field of
polyelectrolyte condensation may show some promise. Polyelectrolyte chains
naturally repel each other, but will nevertheless form condensed bundles
in the presence of oppositely charged counterions beyond a certain valency
(depending on the nature of the polyelectrolyte). Examples include DNA
and F-actin. In fact, polyelectrolytes condense above a certain counterion
concentration and dissociate above another counterion concentration. It has
become clear that this condensation results from some form of organization of
the counterions, either dynamical (correlated charge density fluctuations) or
essentially static, in the form of a counterion lattice (positional correlations
between condensed counterions).

Some theoretical work on the counterion ‘melting’ transition suggest that
the melting transition (i.e. the bundle-to-individual polyelectrolyte transi-
tion) is continuous and can be shown to be in the universality class of the
three-dimensional XY model [8]. In another work [9], researchers managed to
establish a mapping between a model for hexagonal polyelectrolyte bundles
and a two-dimensional, frustrated Josephson-junction array (Fig.3). They
found that the T" = 0 SI transition of the quantum system corresponds to
a continuous liquid-to-solid transition of the condensed charge in the finite



temperature classical polyelectrolyte system. Moreover, the role of the vector
potential in the JJ system is played by elastic strain in the classical system
(Fig. 4). The general conclusion of this work relates the elastic constants
of polyelectrolyte bundles to the phase behaviour of the counterions, which
is significant as elastic constants are easier to measure than the scattering
amplitudes of counterion charge modulation.

4 Further work

Due to constraints, much experimental and theoretical details have been
left out. There are interesting instances of quantum phase transitions in
two dimensional quantum magnets which cannot be predicted with an or-
der parameter using the GLW (Ginzburg-Landau-Wilson) formalism that we
have adopted in this study [10]. Also, studies on the dynamics of QPTs
are still active and a quantum counterpart for the classical Kibble-Zurek
mechanism of second order thermodynamic phase transitions was recently
proposed [11, 12, 13]. It appears that both experimentalists and theorists
have their work cut out for them!
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