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Abstract

Very low temperature dilute trapped atomic gases form a well
known state, the Bose-Einstein condensate (BEC). Recent work has
made it possible to adiabatically transfer condensates from 3 dimen-
sional traps into RF dressed traps that hold the atoms in a small
region around a specific magnetic field. For a quadrupole magnetic
trap, this results in an ”eggshell” potential, where atoms’ movement is
very limited in the radial direction. The addition of gravity causes the
atoms to form a simply connected disc at the bottom of the shell. This
potential can be used as a test bed for two dimensional physics. In this
paper, we will review the basics of the Kosterlitz-Thouless transition.
The Kosterlitz-Thouless transition occurs when a two dimensional sys-
tem with continuous symmetry moves from a quasi-ordered state to a
disordered one by the creation of vortices. The transition will then be
considered in the context of the two dimensional dilute gas mentioned
above.

1 Introduction

The fate of ultra-cold atoms, and systems with continuous symmetries in
general, in two dimensions has long been studied [1][2][3]. Long wavelength
phonons ruin a true Bose-Einstein condensate for any but that most elusive
of temperatures. This was shown in Bugolyubov theory, and can be easily
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proven. However, in studies of thin films of liquid helium, superfluidity was
still observed. The solution to this seeming dissonance is that, while a true
condensate is not formed, a sort of quasi-order characterized by a power
law correlation function reigned below a critical temperature as shown by
Berezinskii [4]. Kosterlitz and Thouless further elucidated the situation by
showing that the transition takes the form of an initial quasi-ordered phase
ruined by the formation of isolated vortex pairs. As the pairs became more
numerous they break apart and form a vortex plasma that eventually ruins
any residual superfluidity and order in the system.

In a dilute atomic BEC the situation will be modified further[5]. Be-
cause of the finite size of the condensate, there is a frequency cutoff for
the phonons that destroy order[6]. It was predicted that for temperatures
far below the Kosterlitz-Thouless transition, there should exist a true BEC.
As the temperature is increased, vortices were expected to appear. Experi-
mental verification of vortex formation in quasi-two-dimensional systems has
only very recently been achieved by the group of Jean Dalibard[7]. They
show evidence of phase dislocations by interfering nearby pancakes in a one
dimensional array.

In this paper I will suggest a different method to observe vortices in a
quasi-two-dimensional geometry. RF dressed potentials mingle atoms and
light to cause distortions in the effective potential an atom experiences[8].
One instance of these potentials is essentially two dimensional. In addition
to the fact that a single pancake can be created, as opposed to very many, the
parameters of the cloud can be changed very quickly, on a timescale faster
than the dynamics of the system. This opens opportunities to implement dif-
ferent imaging techniques, which may reveal new characteristics, previously
undiscovered.

2 The Kosterlitz-Thouless Transition

2.1 Two dimensional system

A two dimensional system is one in which the system’s important physics are
produced by degrees of freedom that are limited to two spatial dimensions.
In atomic physics, one criterion for two dimensionality is that KBT � h̄w3

where w3 is the trap frequency in the third dimension. When the atom’s ther-
mal energy is less than the energy of the excited mode in the third dimension

2



we can consider the direction frozen out. States that include an excited state
in the third dimension are not substantially occupied and contribute to the
system in an arbitrarily small amount as the frequency of the trap in the third
dimension is increased. When loading a trap with a Bose-Einstein conden-
sate, the temperature is significantly lower than the trap frequency energy,
thus if the other two directions have much lower frequencies, the fluctuations
can be thought of as two dimensional.

2.2 Order

A long range ordered state is one that exhibits correlations across the entire
system. As an example of the different types of order that will be considered
in this paper, imagine a football stadium filled with fans (it is unimportant
for the purposes of this paper what kind of football). At the beginning of
the game the stadium is in ordered state with everyone sitting down. When
a goal is scored by the home side everyone stands up and cheers. Both the
sitting and standing state exhibit long range order because the state of a
person sitting in section A will predict the state of a person in section LL. If
the game gets a little boring, the crowd may start a ”wave”. This is a state in
which a group of supporters stands up and then sits down followed directly
after by the same action in the people on their left. As the perturbation
moves around the stadium we can see that the state is still ordered because,
on average, the state of someone predicts the state of a different person very
far away. As the match grows more intense, a person who has a strong interest
in the game (perhaps a gambling wager) may become so nervous that he or
she stands up to get a better view. The person in the next row back, who may
previously, before the game became so intense, have been content to continue
sitting with an obstructed view, now decides to stand as well. The process
plays out in a similar way with the surrounding people. The intense nature
of the game and a gambling addict (as an analogy to quantum or thermal
fluctuation) has now caused a chain reaction that created a whole section of
fans standing. We now can observe that the long range order of the system
has been broken. We can no longer predict the state of a person far away by
the state of a person close by. However if a person is still sitting, there is a
good chance the people very close to him or her are also still sitting. This
state is analogous to what we will call a quasi-ordered state. The correlation
obeys a power law. This means that domains of all sizes will exist throughout
the stadium (in the thermodynamic limit). At the end of the game everyone

3



will grab their belongings and start to get up and head for the exits. Now
whether a person is sitting or standing is completely uncorrelated with the
people around them. This is analogous to what we call a disordered state.

2.3 Long range order in a 2D system with continuous
symmetry

Order must be stable against fluctuations, otherwise the fluctuations will
become so numerous that order will be lost. For a system with continuous
symmetry, we can use an XY model. In this model, a lattice of spins is
coupled such that the spins of neighbors have a minimum in energy the spins
point the same direction in the plane. If this system were in 3 dimensions the
energy associated with a fluctuation in the system grows as E ∼= L3

2πL2 . In the
thermodynamic limit these fluctuations become very energetic and do not
occur at low temperatures. In one dimension, the energy is E ∼= L

2πL2 . For
a very large system, these fluctuations cost no energy, and long range order
cannot be maintained. The case of two dimensions is borderline E ∼= L2

2πL2 .
Thus the energy remains a constant as the system grows. What results is
a state that exhibits a quasi-ordered state with a power law dependence (
G ∼ r−η). The fact that this state is confused about what it wants to do
makes it interesting.

3 Vortex formation in a 2D BEC

In a system defined by an order parameter, certain types of defects cannot
be changed by local deformations. A specific type of topological defect is a
vortex in two dimensions. Bose-Einstein condensates have an order parame-
ter defined as a complex number that can be written as A(r)expiγ(r) where
γ(r) is the phase of the order parameter, and A will be called the amplitude.
One configuration of the order parameter has a constant amplitude over most
of the plane and a phase that makes an integer (m) trips from 0 to 2π as
it winds around a closed loop once. The order parameter must satisfy the
condition that γ(r(θ) = mod2π(γ(r(θ +2π)). As the distance from the origin
increases the phase still must wrap the same number (m) of times around a
loop that contains the first loop. When the loop gets smaller it must either
cross a point where the amplitude vanishes, or it reduces in size till the whole
m × 2π wraps around in an infinitesimal point. This point must have zero
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amplitude because of the stipulation of a continuous order parameter. The
point where the amplitude falls to zero is the vortex. Forming a vortex costs
energy. One can either think of this energy coming from a coupling between
adjacent spins in a lattice (a liquid crystal for example). In the context of
a dilute atomic gas this energy is most easily thought of as coming from
momentum p = ∇γ. The topological defect can be thought of as a spinning
fluid with a whirlpool in the center. There is an energy associated with this
momentum proportional to p2. Also, we can think of our winding number as
an angular momentum quantum number, which must be conserved.

L = r × p (1)

⇒ p = L/r (2)

⇒ p2 = L2/r2 (3)

(4)

integrating the energy in a closed loop in the plane∫ R

0
E(r)rdr '

∫ R

0
dr/r ' ln(R) (5)

The energy associated with the creation of a vortex increases logarithmi-
cally as the size of the system increases, and in the thermodynamic limit,
the energy is unbounded. To calculate whether a vortex will form we must
calculate the free energy difference when we form a vortex. The free energy
is of course F = E − TS. The entropy also turns out to be proportional to
ln(R). Thus the free energy of the vortex is

Fv = Jπln(
R

a
)−KBT ln((

R

a
)2) (6)

Thus one would expect a vortex to form when KBT = πJ/2. This simple
calculation fails when we consider the possibility of the simultaneous creation
of two vortices. In the case of a single vortex, we showed that even at very
large distance the order parameter still retained angular momentum and
energy associated with the vortex. If two vortices were to form that line
integral of the phase around the vortices could be zero if the two vortices
had opposite charge. Since the perturbation to the system dies out in a finite
distance, the energy associated with forming these two vortices in much less
than before. From the calculation of free energy, the system forms vortices
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at lower temperature. The energy of many vortices can be calculated

Hv = −πk
∑

|r−r′|<a

s(r)s(r′)ln(
|r − r′|

a
) + Ecs

2(r) (7)

This equation is equivalent to a two dimensional two component Coulomb
gas with a chemical potential Ec.

As more and more of these vortices are created they eventually come
unbound from each other. To continue the analogy to the screened Coulomb
gas, it will become a vortex plasma. This is the nature of the Kosterlitz-
Thouless transition. On one side there is a quasi-ordered fluid and on the
other we have something akin to a disordered vortex plasma.

4 Trapping Bose-Einstein Condensates in 2D

4.1 BECs as a starting point

To trap a dilute gas, one must create a potential that is deep enough to keep
the atoms from escaping by thermal excitation (i.e. KBT < V (rmax)). When
atoms start out in a Bose-Einstein condensate , the ultra-low temperature
makes it possible to adiabatically fill the ground states of other potentials
that may or may not support off diagonal long range order. An example
of this is a the Mott insulator - superfluid transition. When a BEC is in
a harmonic trap, it is a superfluid. However, if a optical standing wave is
imposed on top of the harmonic potential, the atoms will undergo a phase
transition to an insulating state, where there is no long range order in the
phase, but rather, number squeezing at each site in the optical lattice. BECs
are a good starting point to explore other quantum systems that require a
very low temperature.

4.2 Recent Experimental Work

The group of Jean Dalibard has recently shown that vortices are created in a
two dimensional gas of atoms. They accomplish this by first creating a stack
of pancake shaped traps stacked next to each other. The traps are made
two dimensional by carefully dealing with the tunnelling between traps. At
the temperatures studied, a few vortices will form in the small clouds. The
group was unable to directly image the vortices because the clouds expand so
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quickly in the ”frozen” direction and so slowly in the plane which constituted
the 2D world. The vortices remain very thin but get long, making them hard
to see. Instead of direct imaging, the group interfered the clouds and relied
on the fact that the topological defects cause phase winding over a much
larger area than the depleted core of the topological defect. The detection
method is somewhat indirect and does not give great information about the
number, orientation, or dynamics of the vortices.

4.3 Dressed atoms

We will consider now putting atoms into a 2 dimensional trap by transferring
the atoms into a ”dressed state”. A dressed state is created by applying an
external oscillating field. The oscillating field changes the eigenstates of the
atom. For example, if an atom were originally in state A, it might become
one half state A and no photon mixed with one half state B plus a photon.
We can also think of this change not occurring in the atoms but rather, the
state of the atoms stays the same, and the shape of the potential the atom
sees changes.

To understand why the potential changes, lets think about what happens
when an atom is ”flipped” and expelled from a trap. As it travels through
the trap comes to the point in the magnetic field where the difference in
energy from being in the ”up” state (for example) vs. the ”down” state is
equal to the energy from the RF photon. At this point the atom can undergo
a Landau-Zener transition. The harmonic trap that normally looked like a
parabola, now has its edges flipped over and pointed downward (see figure).
On the other hand the energy manifold that was once the anti-trapped state,
now becomes the mirror image of the other energy state. Near the point
where the Landau-Zener transition occurred in the in the initially untrapped
states, there is now a tight trap. The tightness of this trap can be controlled
by raising and lowering the amount of power in the RF field. The position
of the new trap can be adjusted by changing the frequency of the RF field.
The new trap occurs everywhere the magnetic trap has a specific magnitude.
For a 3D harmonic trap, the locus of a certain magnetic field magnitude will
fall along the surface of an ellipsoid, or on an ”eggshell”. The addition of
gravity to the equation adds a twist, the atoms will all fall to the bottom of
the eggshell. In practice the atoms appear in a very thin very flat bowl shape
below the center of the trap. By adjusting the strength of the RF field, one
can change the thickness of this pancake. However, the heating goes up and
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Figure 1: an RF dressed potential.

the lifetime of the cloud decreases rapidly when the trap is made thin.

4.4 Suggested new method using RF technique

Based on research recently performed in our group at UIUC, I believe that
the type of machine in use in our lab may be capable of exploring more
directly the Kosterlitz-Thouless transition. The group of Dalibard was not
able to image vortices directly because they expand so quickly in the direction
normal to the pancake. If one were able to slow down the expansion of the
(lets call it z) z direction, the XY direction could expand significantly and
allow the vortices to be directly imaged. With the RF technique we have
control over the width of the pancake, by quickly ramping the RF power up
before imaging, we can adiabatically expand the cloud in the z direction and
thus slow its time of flight expansion. If the vortex dynamics don’t change
much over the time scale of adiabatic expansion, one would still be essentially
imaging the smaller scale vortex. In addition, by increasing the frequency at
the same time, one would expand the radius of the ellipsoid that the cloud
sits on, thus increasing the XY extent of the cloud. The core size of the
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Figure 2: pictures of BEC in an RF dressed trap at different RF frequencies

vortex would increase, again allowing for more direct imaging.

5 Conclusion

The Kosterlitz-Thouless transition is a widely studied and interesting phys-
ical phenomenon. It has been observed in a wide variety of systems with
continuous symmetry. The techniques being developed with Bose-Einstein
condensates have recently been able to study the KT transition directly. A
new RF technique suggested in this paper may be helpful in studying more
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phenomenological behavior that was previously unaccessible. The informa-
tion gained from the unique abilities of ultra-cold atoms will augment the
already well developed body of knowledge on this subject and perhaps pro-
vide critical insight and lead to new discoveries.
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