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Abstract

In high-Tc cuprate superconductors, the pairing state of electrons
is still spin-singlet, as in conventional BCS superconductors. But the
orbital part of the wavefunction, order parameter or gap function,
has a dx2−y2 symmetry, rather than the isotropic s-wave symmetry.
This exotic symmetry has been confirmed by various experiments,
especially the phase-sensitive ones. But the underlying mechanism
of d-wave pairing remains controversial. Investigations on Hubbard
model provide some ideas.
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1 Introduction

Since its discovery in 1986 (Bednorz and Müller), high-Tc cuprate super-
conductivity has always been a heated topic in condensed matter physics.
Throughout these 20 years, great experimental and theoretical efforts are
made in this field. But the theory of High-Tc superconductivity remains un-
clear. In this essay, I will focus on the unconventional electron pairing in
cuprates, which is the key to superconductivity.

As we know, in conventional superconductors (described by BCS the-
ory), electron-phonon interaction will result in an effective attraction between
two electrons, which are of opposite spin and momentum. At low tempera-
ture, this attraction exceeds the Coulomb repulsion. So at the ground state,
electrons will form a condensate of spin-singlet pairs - Cooper pairs. This
condensate can be described by a complex order parameter Ψ(r) (Landau-
Ginzberg), which is proportional to the energy gap Δ(r). In momentum
space, we will have Ψ(k) ∼ Δ(k). The energy gap Δ(k) of BCS supercon-
ductors is isotropic in k-space, meaning it has the same amplitude and phase
in all directions.

In the unconventional superconductors - cuprates, the situations are more
complicated. The integer flux quantum effect observed in SQUID experi-
ments confirmed electrons still form pairs. Andreev-reflection demonstrated
farther that the paired electrons have opposite spin and momentum. So the
pairing state in cuprates is still spin-singlet. As the energy gap Δ(k) corre-
sponds to the orbital parts of wave functions of paired electrons, it must be
symmetric in k-space. This restricts the candidate pairing states to s-wave
and d-wave. Early experiments seemed to favor the s-wave pairing. But the-
oretic workers also proposed the dx2−y2 state starting from the strong on-site
Coulomb repulsion. The significant differences of dx2−y2 wave from s-wave
are the existence of nodes and the sign change with a direction rotation of
π/2. In mid 1990s, d-wave was shown to be dominant in cuprates by several
carefully designed phase-sensitive experiments.

The essay is organized as follows. In Sec.2, we start from the general
consideration of ODLRO and symmetry breaking. By group representation
theory, a set of candidate pairing states is proposed. Then several phase-
sensitive experiments are presented in Sec.3 to confirm the dx2−y2 symmetry.
Finally, in Sec.4, we try to explore the origin of d-wave symmetry in Hubbard
model.
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2 Candidate pairing states

2.1 ORLRO (off-diagonal long-range order) and sym-
metry breaking

The existence of ODLRO is a general property of all superconductors. We
can express it as the particle correlation function

ρ(r, r′) = 〈ψ†
α(r)ψ†

β(r)ψα(r′)ψβ(r′)〉 (1)

where ψ†
α(r) and ψα(r) are field operators for creating and annihilating a

particle at position r with momentum and spin state α. Electrons in Cooper
pairs have opposite spin and momentum, α = −β. With the limit of |r−r′| →
∞, the correlation function is written as

ρ(r, r′) = 〈ψ†
↓(r)ψ

†
↑(r)〉〈ψ↓(r′)ψ↑(r′)〉 (2)

In superconductors, ODLRO denotes the onset of superconducting state

ρ(r, r′)
{

= 0 T > Tc

�= 0 T ≤ Tc
(3)

Thus, the ODLRO corresponds to a non-vanishing expectation value of lo-
cal pair amplitude 〈ψ↓(r′)ψ↑(r′)〉. It is consistent with the claim about the
Landau-Ginzberg order parameter Ψ(r) we made before. In momentum
space, we will have 〈ckc−k〉 ∼ Ψ(k) ∼ Δ(k).

ODLRO exists in all kinds of superconductors. So the energy gap Δ(k) ∼
〈ckc−k〉 is well-defined in high-Tc superconductors, although there is no corre-
spondence between Δ(k) and quasi-particle excitation spectrum. Δ(k) does
describe the pairing the state in cuprates.

The onset of ODLRO is always accompanied by some kind of symmetry
breaking. We know that without magnetic field, the normal to superconduct-
ing phase transition is of second order. Thus the symmetry breaking should
be continuous at transitions. We can use ODLRO, order parameter Ψ(k),
energy gap Δ(k) as a measure of symmetry breaking in the superconducting
phase.

The symmetry group describing the superconducting state H must be a
subgroup of the whole symmetry group G describing the normal state:

G = X ⊗R ⊗ U(1) ⊗ T (4)

and
H ⊆ G (5)
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where X is the symmetry group of crystal lattice, R is the symmetry group
of spin rotation, U(1) is the global gauge symmetry and T is the time rever-
sal symmetry. As we know, in BCS superconductors, U(1) is spontaneously
broken in superconducting phase. In cuprates, one or more symmetries, in
addition to U(1) are broken at Tc. The degree of symmetry breaking is re-
flected in the symmetry property of gap function Δ(k). According to Landau
theory of second-order phase transition, the order parameter describing the
transition must transform according to one of the irreducible representation
of symmetry group of high-temperature phase. We can expand Δ(k) by the
basis function χj

μ(k) of the irreducible representation Γj of group G:

Δ(k) =

lj∑
μ=1

ημχ
j
μ(k) (6)

where lj is the dimensionality of Γj. For simplicity, we can assume that Δ(k)
transforms as the identity representation of R and T . Thus we can take G
to be given by X ⊗ U(1).

2.2 Structure of cuprates and candidate pairing sym-

metry

Figure 1: Crystal structure of La2−xSrxCuO4

First let’s look at the lattice structure of cuprates (Figure 1). As we
can see, La2−xSrxCuO4 are tetragonal crystals. They have CuO2 planes,
seperated by layers of other atoms. In general, CuO2 plane is a common
property of all cuprates. It is believed that the superconductivity process
mainly occurs in CuO2 planes. And other layers function as charge reservoirs,
providing electrical carriers (electrons or holes). Thus the gap function Δ(k)
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is restricted to the kx-ky plane. Its symmetry should reflect the symmetry of
Cu-O lattice.

Cuprates, such as La2−xSrxCuO4 have a tetragonal crystal structure. The
Cu and O atoms form square lattice. It has a symmetry of C4v. In other
cuprates with a orthorhombic structure, such as YBCO, The CuO2 planes
take the form of rectangular lattice with a symmetry of C2v. The structures
and corresponding symmetry operations of these two are shown in Figure 2.

Figure 2: A schematic of CuO2 planes: (a)square; (b)rectangular.

Here we will concentrate our study on square lattice. The group C4v

consists of the following symmetry operation elements: mirror reflections
(m) with respect to lines x = 0, y = 0 and x = ±y; a fourfold (C4) and a
two-fold (C2) rotation about the c-axis. By subtracting C4 and reflections
along the diagonals, we get the C2v symmetry group of rectangular lattice.
According to the group representation theory, we arrive at the following
candidate pairing states for C4v (Figure 3). The actual pairing states will be

Figure 3: Candidate states for C4v symmetry: black and white represent
opposite signs of order parameter.
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determined by experiments.

3 Phase-sensitive experiments

In this section, we will concentrate on experimental confirmation of dx2−y2

pairing in cuprates. In short, we need to make distinctions between two
leading candidate states: anisotropic s-wave and dx2−y2 wave. Their order
parameter (energy gap) is expressed as:

[dx2−y2 wave]Δ(k) = Δ0[cos(kxa) − cos(kya)] (7)

[anisotropic s-wave]Δ(k) = Δ0[cos(kxa) − cos(kya)]
4 + Δ1 (8)

They, along with the isotropic s-wave, are drawn in Figure 4.

Figure 4: Magnitude and phase of superconducting order parameter as a
function of k.

Early experiments, such ARPES, only measure the magnitude of gap
function (so as referred to magnitude-sensitive tests). Although they did
give a highly anisotropic picture of order parameter, they cannot distinguish
the anisotropic s-wave from dx2−y2 wave.

Investigating on Figure 4, we find that the two states are clearly distin-
guished by their phases. The s-wave has a uniform phase, while the d-wave
exhibits discontinuous jumps of π at (110) lines. This observation is the fun-
damental of the several following phase-sensitive experiments, which provide
direct evidence of d-wave pairing in cuprates.
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3.1 DC SQUID interference

Figure 5: Design of dc SQUID experiments: (a) corner SQUID to determine
the relative phase between orthogonal directions. (b) edge SQUID used a
control sample.

The experiment setup is shown in Figure 5. We build Josephson junctions
on two orthogonal faces of a high-Tc superconductor single crystal (YBCO).
The two junctions are connected by a loop of a conventional s-wave super-
conductor. This circuit form a two-junction interferometer that can be used
to study the pairing symmetry.

According to dc Josephson effect, the supercurrent in a Josephson junc-
tion satisfies

I = Ic sin γ (9)

where Ic is called the critical supercurrent, the maximum current with a zero
voltage bias, and γ is the gauge-invariant phase difference

γ = ϕL − ϕR +
2π

Φ0

∫ R

L

(A) · dl (10)

where Φ0 is the flux quantum πh̄c/e.
So, in the above dc SQUID, we’ll have

I = Ica sin γa + Icb sin γb (11)

subject to the phase constraints

γa − γb + 2π
Φ

Φ0

+ δab = 0 (12)

where Φ is the magnetic flux in the loop and δab is the intrinsic phase shift
inside the YBCO. If we neglect the loop’s self inductance, then Φ = Φext.
Further we assume that Ica = Icb = I0 By simple calculation, we find

Ic(Φext) = 2I0| cos(πΦext/Φ0 + δab/2)| (13)
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If YBCO has s-wave symmetry, δab = 0 and the circuit is the same as an
ordinary dc SQUID. The critical current Ic has the maximum value for zero
applied field. In contrast, for dx2−y2 symmetry, δab = π. Thus, at zero flux,
Ic is the minimum 0.

The experiment results are shown below (Figure 6). We see that dx2−y2

symmetry dominates in the pairing state of YBCO.

Figure 6: Results for dc SQUID experiments: (a) Extrapolation to zero
bias current for different samples: an intercept of Φ/2 indicates a dx2−y2

symmetry. (b) Comparison of corner SQUID and edge SQUID: edge SQUID
extrapolates to zero, while corner SQUID extrapolates to Φ/2

3.2 Single Josephson junction modulation

Consider a rectangular junction with length L, W , D in x, y, z direction
respectively. D is the thickness between two superconductors. Applying
a magnetic field B in y direction, we can choose the vector potential A as
Az = Ax. By using Eq.(10), and integrating from −L/2 to L/2 in x direction,
we finally get the supercurrent

Is = J0
sin(πΦ/Φ0)

(πΦ/Φ0)
sin(ϕR − ϕL) (14)

where J0 = j0LW , j0 is the current density, and Φ = BLD is the magnetic
flux through the junction. Thus the critical current

Ic(Φ) = J0|sin(πΦ/Φ0)

(πΦ/Φ0)
| (15)

We test the pairing symmetry on the corner junction. Then the tunneling
is partly into a-c face and partly into b-c face. The magnetic field is applied
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along the c-direction. If we have s-wave pairing, Ic satisfies the same equa-
tion as Eq. (15), featuring the maximum at zero applied field. For d-wave
symmetry, the critical current modulates as

Ic(Φ) = J0|sin
2(πΦ/2Φ0)

(πΦ/2Φ0)
| (16)

Thus at zero flux, Ic = 0
It’s claimed this single-junction modulation approach has great practical

advantages over the dc SQUID tests, because it avoids a lot of complicated
issues in data interpretation. The results are shown in Figure 7. The dip in
the corner junction test is a strong evidence for dx2−y2 pairing.

Figure 7: Results for single-junction modulation experiments: (a) edge junc-
tion; (b) corner junction

In fact, we can think of the single-junction modulation as an analogue of
one-slit diffraction in optics. And Eq.(15) is just the formula of Fraunhaufer
diffraction. Similarly, the previous dc SQUID is just like two-slit interference.

3.3 Half-integer flux quantum effect

We know that the magnetic flux is quantized in superconductors. It follows
directly from Ginzberg-Landau equation.

Φ =

∫
S

B · dS = nΦ0 (17)

But an odd number of π shifts will spontaneously generate a half-integer flux
quantization.

Φ = (n+ 1/2)Φ0 (18)

This is called half-integer flux quantum effect.
By MBE techniques, Tsuei et al. firstly fabricated a YBCO ring made

up of segments with different orientations. And they observed this half-
integer flux quantization in this ring, which is the strongest evidence for
dx2−y2 pairing so far.
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4 Theory work on Hubbard model

Hubbard model is believed to capture the essence of strong correlated elec-
trons in cuprates. It is expressed as

H = −
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − μ
∑

i

ni (19)

where tij = t if (i, j) are the nearest-neighbor sites and zero otherwise, U is
the one-site Coulomb repulsion, and μ is the chemical potential. Consider
the retarded Green function

〈〈ci↑; cj↓〉〉 = θ(t− t′)〈{ci↑(t), cj↓(t′)}〉 (20)

where θ(t − t′) is the Heaviside function, and {A,B} denotes the anticom-
mutator. Its equation of motion is

ω〈〈ci↑; cj↓〉〉 = 〈{ci↑, cj↓}〉 + 〈〈[ci↑, H ]; cj↓〉〉 (21)

where H is the Hamiltonian defined in Hubbard model Eq.(19), and [A,B]
denotes the commutator. Calculate the commutator

[ciσ, H ] = Uni−σciσ +
∑

j

tijcjσ (22)

[ni−σciσ, H ] = Uni−σciσ +
∑

j

tij(ni−σcjσ + c†i−σcj−σciσ − c†j−σci−σciσ) (23)

So this equation of motion will not be closed. It involves infinite higher-order
Green functions. This is the intrinsic difficulty of strong correlation.

What facilitates our calculation is to introduce two new operators

ηiσ = ciσni−σ ξiσ = ciσ(1 − ni−σ) ciσ = ηiσ + ξiσ (24)

These two operators describe composite excitations: ηiσ describe an electron
restricted to move on sites already occupied by an electron with opposite spin,
while ξiσ requires no occupancy on the sites. The commutator of ηiσ and ξiσ
with the interaction part of Hubbard Hamiltonian yields −(μ − U)ηiσ and
−μξiσ, respectively. So they can be used to diagonalize the t = 0 Hubbard
model. If we use this basis to compute correlation functions, all higher-order
corrections will be multiplied by a hopping term t. Thus, in the limit of
t/U � 1, where high-Tc superconductivity occurs, we can treat the kinetic
energy as a perturbation. By this strong-coupling expansion, we will be able
to calculate the correlation functions.

10



Due to the page limit here, I cannot go to the detailed computations
performed in ref. 6, 8, 9. What they find is that the traditional correlation
function, 〈ci↑cj↓〉 does not determine the pairing gap in 2D Hubbard model.
Rather

θij = 〈ci↑ci↓njτ 〉 = 〈ηij↑ηij↓〉 (25)

is the relevant anomalous correlation function that determines the dx2−y2

pairing. Here ηijσ is defined as

ηijσ = ciσnjτ (26)

where (i, j) are nearest-neighbor sites.
One of their results regarding dx2−y2 symmetry is shown below (Figure

8). It clearly shows the d-wave symmetry.

Figure 8: The energy spectrum of the Hubbard two bands

5 Final remarks

By now, we’ve shown, both theoretically and experimentally, a predomi-
nant d-wave pairing symmetry in high-Tc superconductors, namely cuprates.
But there exists an inconsistency between the traditional correlation func-
tion 〈ci↑cj↓〉 and the anomalous correlation function θij we introduced in
Sec.4. Does this mean the pairing actually occurs between composite par-
ticles rather than the electrons? Present work seems to favor so. More-
over, this anomalous pairing requires that a double-occupied site neighbors
a single-occupied site and the double occupancy will be shared between the
two sites.
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After 20 years of discovery, the mechanism of high-Tc superconductiv-
ity remains unsettled. In this systems, antiferromagnetism, pairing, spin-
density-wave, charge-density wave, quantum phase transition all occur. There
is no accepted analytical methodology. It is still a big challenge for physics
researchers.
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