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Abstract

The Anderson localization is introduced as well as the scaling theory
of localization. These predict the absence of the metallic state in 1 and
2 dimensions. In such a theoretical background, the random dimmer
model is shown to be novel due to its ability to escape from localization.
This model is also shown to be applicable to describe the insulator-metal
transition in a wide range of conducting polymer, such as polyaniline.
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1 Introduction

Most of the Modern devices are build upon the property of a small particle: elec-
tron. The electrons in devices have two basic types of states, moving around the
device or staying in a certain point or region. This makes the metal-insulator
transition(MIT) an important issue in condensed matter physics. Experimen-
tally, to characterize the difference of these two states, we can measure the DC
conductivity σ(0) . For metallic state, we have σ(0) 6= 0, for insulator state,
σ(0) = 0. Theoretically, we view the metal as a extended state which means
that the charge carriers can move around from one side of the sample to the
other side. While we call the insulator state localized state which means the
charge carrier can only move inside a small region of a sample and cannot move
from one side to the other side.

There are mainly three kind of insulators, so called the band insulator, Mott
insulator and Anderson insulator. Also there respectively have three kind of
MIT. These different insulating state arise from different mechanisms. For band
insulator, due to the periodic lattice potential, the energy of the electrons form
different energy bands between which there exist band gaps. The electrons can-
not move freely in the fully filled band due to the Pauli exclusive principle. For
Mott insulator, the strong Coulomb interaction make the moving of the electron
( or other boson such as Cooper pairs) cast a large energy, so called the Mott
gap. This energetic unfavorable motion is forbidden if the gap is much large the
kinetic energy of the charge carrier, which is the insulating state. For the An-
derson insulator, the insulating state is mainly from the incoherence scattering
from the random static potential, which makes a destructive interference of the
propagating wave, thus make the forward motion of charge carrier impossible.
My essay mainly focus on the Anderson insulator state, or Anderson localiza-
tion and the defiant of Anderson localization, one of which is the random dimer
model.

This essay is organized as following, in section (II) the Anderson localization
is introduced based on a 1 dimensional site-disordered model. In section (III)
The scaling theory of localization is shown to predict the absence of metal phase
in 1 or 2 dimension disordered system. After all this theoretical background
introduction, the random dimer model is presented in section (IV). In section
(V), a possible experimental system showing the behavior of random dimer
model is introduced.

2 Anderson localization: A site-disordered model
based on perturbation theory

In 1958,Anderson give rise the first localization model[2],so-called the site-disordered
model. The model is shown as the figure(1) The electron (or spin) on the site n
has energy En. The energy is has a random distribution P (E) which has a width
W ( 2nd order moment). The hoping matrix element is Vjk(rjk), which transfer
a electron on one site to the other (we assume it is not a random variable here).
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Figure 1: The site-disordered model

The Hamiltonian is,

H =
∑

n

Enc+
n cn +

∑
m,n

Vm,nc+
mcn + c.c. (1)

where c±n is the creating and anihilating operators of electron on site n. The
Hamiltonian consists of on site potential energy and the hoping term. Here,
we only consider the motion of a single electron on this chain. If we set the
wavefunction as,

Φ(t) =
∑

n

an(t)c+
n |vacuum〉 (2)

We will get the equation of motion as,

i
daj

dt
= Ejaj +

∑
k 6=j

Vjkak (3)

After a Laplace transformation fj(s) =
∫∞
0

e−staj(t)dt and setting the initial
condition as a0(0) = 1,aj 6=0(0) = 0, we have the following equation of motion,

i[sfj(s)− aj(0)] = Ejfj +
∑
k 6=j

Vjkfk(s)

fj(s) =
iδ0j

is− Ej
+

∑
k 6=j

1
is− Ej

Vjkfk(s) (4)

This equation can be solved by iteration, which reads,

f0(s) =
1

s + iE0 − iVc(0)
=

1
s + Im[Vc(0)] + i(E0 −ReVc(0))

(5)
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Vc(0) ≡
∑

k

V 2
0k

is− Ek
+

∑
k,i

V0kVklVl0

(is− Ek)(is− El)
+ · · · (6)

For simplify, we can assume Vk 6=j±1 = 0 and Vj±1,j = V , that is the on-site
disorder tight-binding model.

To tell whether the system is in a localized state (insulating state) or ex-
tended state (metallic state), we need a quantity. The most natural way is the
conductivity (or conductance which will be used on next section ). But since
we are solving the wavefunction, a quantity directly related to the wavefunction
will be more convenience. This quantity is so-call return probability. It is
defined as the probability to find the electron on the initial original site 0. If we
can find the electron on the original site with a probability one, that means it is
a localized state, i.e. the system is a insulator. If this probability is zero, which
means the electron has gone away, thus we have a extended state or metallic
state. We have two limit cases, one is W = 0 which means the on site potential
is fixed constant. We know this situation correspond to the Bloch wave which
is a extended state. Another limit case is V = 0 which means no hoping from
site to site, that is the localized state. This two cases can be characterized by
a quantity W

V of which is 0 and ∞ respectively. And between these two limit
cases, we should have a transition which is the so called Anderson transition at
a critical value (W

V )c.
The return probability is determined by |a(t →∞)|2 thus by f0(s). And the

property of f0(s) is determined by the crucial quantity Vc(0). You can see from
equation(5), the physical meaning is that a state with a perturbation energy
(E0 − ReVc(0)) will decay at a rate of e−Im[Vc(0)]t. Thus,if Im[Vc(0)] 6= 0, the
life time for this state is 1/Im[Vc(0)], which means that it will die out and
cannot go back to the original site. That is the extended state. On the other
hand, if Im[Vc(0)] = 0, this state doesn’t decay. Then the electron always have
enough time to can go back to its original site although it has a finite amplitude
a0(t →∞) smaller than one due to spread to the neighbor site. It is the localized
state.

In his paper, Anderson used the perturbation theory order by order and dis-
cuss the convergence of the series. Because the energy Ej is a random variable,
the calculation becomes more complicated, the result is the quantity of Vc(s)
with probability distribution. The conclusion is just as what we have said, there
is a region in which Im[Vc(0)] → 0 as Re[s] → 0 with a probability one. That
is the localized state.

3 Scaling theory of localization

In the above section,we have introduced a simplified on-site disorder model based
on perturbation theory. This model give rise the conclusion that disorder can
induced localized state. In this section, we will use a more powerful tools, renor-
malization group to get some more general knowledge about the localization.
That is the so called scaling theory of localization[4].
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This theory based on one character quantity, dimensionless conductance
(NOT conductivity), defined as,

g(L) =
2h̄

e2
G(L) (7)

Where L is the system size. Our purpose is to see how the dimensionless con-
ductance varies with the system size L. If L → ∞, g(L) divergent, then we
have extended state. On the contrary, if g(L) monotonically tend to zero, then
it is localized state. The behavior of the conductance g(L) is determined by
a function β(g(L)) = d ln(g(L))

d ln(L) as we always define in renormalization group
theory. If β is positive, we have divergent g(L) as L →∞, thus extended state.
If β is negative, we have zero g(L) thus the localized state.

The basic idea is assuming that β(g(L)) is a monotonic increasing function
(The first assumption). Then for the large and small g(L), the author argue the
asympotitics of β(g(L)) from general physical consideration.

For large g(L), the macroscopic transport theory work well. The conduc-
tance depends on the following variables,

2h̄

e2
G(L) =

∆E(L)
dE(L)/dN

(8)

∆E(L) is the geometric mean of flucutuation in energy level (not exactly but
accuarate enough here), dE(L)/dN is the mean spacing of the energy levels.
Supposing that we have a constant density of charge carrior ne, dE(L)/dN =
(neL

d)−1. ∆E = h̄
τ where τ is the mean free time. If assuming that the pure

system ( without disorder ) can be described by the Fermi liquid theory (The
second assumption), τ = (L

2 )2/D0 where D0 is the diffusion constant. So the
dimensionless conductance behavior as,

G(L) =
g(L)
2h̄/e2

= σLd−2 (9)

so that,

limg→∞βd(g) = d− 2 (10)

For small g(L), exponential localization is expected, so,

g = gae−αL (11)

Hence,

lim
g→0

βd(g) = −α = ln[g/ga(d)] (12)

Combining the above the asymptotic behavior, we have,

dg

d lnL
= g(d− 2− α/g) (13)

d ln g

d lnL
= (d− 2 + ...) (14)
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Figure 2: Plot of β(g) vs ln g for d > 2, d = 2, d < 2. From [4]

A schematic curve for d ln g/d lnL vs ln g is shown in figure(2). We can see
for d ≤ 2, we always have negative β(g), so the conductance g(L) will always
decay to zero. This implies the absence of metallic state in d ≤ 2 dimensions.

For d > 3 dimension, there exist a critical value gc such that β(gc) = 0.
By linearizing the β(g) function around gc, another result from scaling theory
is that near the critical point on the extended state side (more specifically, the
mobility edge), the conductivity is,

σ = A
e2

h̄

gc

Ld−2
0

|ε|(d−2)/s (15)

where A L0 are constant, gc is the critical point of g and |ε| is the distance to the
mobility edge. s = 1/ν and ν is the exponent of the localization length. The
exponent (d − 2)ν is the conductivity exponent which can be measured from
experiments.

4 Escape from localization: random dimer model

In the above section a strong conclusion is draw that for d ≤ 2, the metallic
state behavior is absence and the conductivity behavior as a power law on the
mobility sides. This agrees with some experimental result such as conductivity
exponent results. But it is also contradict to some experiments which show the
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existence of metallic state in d ≤ 2 in disordered system. So physicist need to
explain why.

According the Anderson localization theory based on perturbation theory,
the localization appear only at some circumstance such a fitable value of W/V ,or
density. If you get out of these parameter region, we can escape from localiza-
tion. But the point is for the scaling theory, there always is absence of metallic
state no matter the parameter values. So we need a circumstance for the scaling
theory to fail. As we have mention, the scaling theory based on two assump-
tions, one is that β(g) is a monotonically increasing function. The second one
is for pure system, it can be described by a Fermi liquid[1]. So we can have
a possible way to escape from localization. That is the pure system is in the
superconductivity state. Although the electron will be localized by disorder, if
they form Cooper pairs, they can escaper from localization. But in this sec-
tion, we focus on another possibility to escape from the localization, that is the
quantum dimmer model.

For the on site disorder model of Anderson, one always assume that the
site energy or the matrix elements are statistically independent. That is En is
statistically independent to En±1 and other site energy. But in a real system,
the site energy and matrix elements are always statistically dependent. We
consider a modified on-site disorder tight-binding model. For simplify, the site
energy are assumed to have only two value Ea and Eb with probability q and
1− q. The equation of motion becomes,

i
dan

dt
= Enan + V (an+1 + an−1) (16)

The initial condition is set to am(0) = δm,0 and choosing the most disorder case
q = 1

2 . And from the site amplitude an(t), the mean square displacement can
be calculated to see whether it is a extended state or a localized state.

m̄2 =
∑
m

|am(t)|2 (17)

For different (Ea − Eb)/V , the m̄2

(V t)3/2 versus t are shown in figure(3)

We can see for (Ea−Eb)
V < 2, the mean square displacement divergent with

time, thus the extended state. (Ea−Eb)
V ≥ 2, the mean square displacement is

decay to zero, thus the localized state.
To understand this, let us have look at the scattering process first. Assuming

the random dimer is on the site 0, 1 and assuming the following site amplitude,

an =
{

eikn + Re−ikn (n ≤ −1)
Teikn (n ≥ 1)

a0 = 1 + R = T
(
E−e−ik + V

)
/V (18)

E− = Ea − Eb (19)

Then the refection probability is,

|R|2 =
(W + cos k)2

(W + cos k)2 + sin2 k
where W ≡ E−

2V
(20)
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Figure 3: The mean square displacement divided by (V t)3/2 for different disorder
(a) (Ea−Eb)

V = 1 (superdiffusion) (b) (Ea−Eb)
V = 2 (diffusion) (c) (Ea−Eb)

V =
3 (localized) From[5]
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We can see if W = − cos k, R = 0 which mean a perfect transmitted electronic
state at ko = cos−1 W . This is possible when W ∈ [−1, 1]. In fact, it is a
kind of resonance effect that the refection from the second site of the dimer is
completely out of phase with one from the first site.

From this scattering process, we can see at ko = cos−1 W electron can prop-
agate through any dimer with a perfect transmission. Now we need to consider
the disordered chain case. The transport across the chain can be described by
the product of transfer matrixes,

Tn1
a T 2n2

b Tn3
a T 2n4

b · · ·
(21)

And the tranfer matrix is defined as,(
an+1

an

)
=

[
E−En

V −1
1 0

](
an

an−1

)
(22)

The transmition through the dimer Tb is,

Tb =
[

0 −1
1 0

]
T 2

b = (−1)
[

1 0
0 1

]
(23)

So the phase change through a dimer is −2k + π. So the phase of different site
are[1],

e−i2k, eik, 1,−e−ik,−1, eik, 1, e2ik, . . . (24)

It is still Bloch wave that can propagate through the whole chain.
Here the situation is different from Anderson’s model. In Anderson’s model,if

W is less than a certain critical value Wc (Wc < 1), we always have extended
state. That is independent of the wave vector. In the random dimer model,
W ≤ 1 is not enough to give rise a extended state. To have a extended state, we
should have a certain resonance wave vector. So we can have a region [Wc, 1] in
which state should be localized predicted by the Anderson localization theory,
but in fact it could be extended state due to resonance. That is the main result
of random dimer model.

5 Numerical Experiment: Polyaniline as a Ran-
dom Dimer Model

The above model seems theoretical beautiful. But is it just a idealized model
of theory, or a real model based on real world? In this section, a suitable
material which will be shown to have the behavior of quantum-dimer model,the
Plyaniline, is introduced.

Based on the scaling theory of localization, in 1 dimension disordered system,
there is not metallic state. But in some experiments, physicist do find the
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Figure 4: Parent forms of polyaniline: (a) leucomeraldine, (b) emeraldine ,((a)
& (b) are unprotonated) (c) protonated emeraldine. From [6]

insulator-metal transition in the disordered conducting polymer. A example is
the Polyaniline.

The Polyaniline are linear chain constructed by connection of three parent
forms which are shown on the figure(4),

The quinoid defect in the emeraldine can be viewed as a dimmer (shown
in figure(4,5)). The polyaniline can be map to random dimer model in the
following way, see figure(5),

The different between the reduced model with the original one is that there
are two transfer matrix elements on this model. Just following the calculation
of the random dimer model, the reflection probability is,

|R|2 =
(V 2

1 − V 2
0 −W 2 − 2V0W cos k)2

(V 2
1 − V 2

0 −W 2 − 2V0W cos k)2 + (2V0V1 sin k)2
(25)

In the real system, using the resonance energy for benzene which is ≈ 2.5eV as
unit of energy β, and just noticing that E(β) could be viewed as h̄2k2/2m, the
numerical results are shown in figure(5),

For both protonated and unprotonated quinoid,the reflection coefficient is
zero between −0.32β and −0.29β. This means that at this region, the electron
are completely unscattered by the quinoide defect thus, behavior as a metallic
state. This result agree with the numerical calculation which shows that at a
protonated level of 50% (most disordered case), at the range of −0.21 to −0.35β,
this kind of polymer exhibits its maximum conductivity (more metallic state).
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Figure 5: (a) A typical quinoid defect in emeraldine. n (nitrogen atoms) ti
(transfer matrix elements) (b) The random-dimer model of meraldine. Vi

(effective transfer matrix elements) Ei (on site energy) From[6]

Figure 6: Reflection coefficient through a protenated and unprotonated quinoid
defect

Page 11



6 conclusion

This term essay have reviewed some important results on Anderson localiza-
tion ,scaling theory of localization and the defiant of localization, especially on
random dimer model. Application of the random dimmer model to the real
polymer conductor are also introduced . This model are shown to be applicable
to the insulator-metal transition in the conducting polymers.
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