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Abstract

This essay is a review of the topic of vortices in rapidly rotating
BECs, where the system is in a quantum Hall-like regime and the
density profile is of the Thomas-Fermi form. Also, in this paper, de-
viations from a triangular lattice is being considered while the system
condensates into the lowest Landau levels.
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1 Introduction

In 2001, an experiment at MIT [1] resulted in creation of a large number (∼
100) of vortices in a Bose-Einstein condensate of alkali atoms rotating with
frequency ∼ 0.36ω⊥ where ω⊥ is the trap frequency. Since then, experiments
have been performed [2] with rotation frequencies much higher than that of
the MIT group’s experiment, i.e. ∼ 0.99ω⊥. In this regime, the radius of
the trapped cloud increases, and so does the number of vortices; therefore,
there exist many-vortex interactions instead of pair-wise ones which lead
to emergence of exotic properties among which are the similarity to the
quantum Hall liquids and the existence of a vortex lattice.
In this paper, we investigate, by quoting analytic [3, 4, 6] and numerical
calculations [5, 6], the properties of the emerging vortex lattice in the fast
rotation regime and determine the cloud’s coarse-grained average density
under the assumption that, although working in the fast rotation regime,
the total number of vortices Nv is small compared to the total number of
atoms N so that the ground state of the system could be described by a
marcoscopic condensate wave function Ψ (r) in what is known as the mean-
field quantum Hall regime.

2 Physics Of A Particle In A Rotating Frame

Let the system rotate around the z axis with angular frequency Ω while being
subject to a 2D harmonic trap in the x− y plane. Then, the single-particle
Hamiltonian in the rotating frame would be

H⊥ =
p2
⊥

2m
+

1
2
mω2

⊥r
2 − ΩLz (1)

where r = (x, y), ω⊥ is the transverse trap frequency, p⊥ = −ih̄∇⊥ is the
momentum in the x − y plane, and Lz = −ih̄ẑ · r × ∇⊥ is the angular
momentum around the z axis. Adding and subtracting ω⊥Lz, we could
rewrite the Hamiltonian as

H⊥ =
1

2m
(−ih̄∇⊥ −mω⊥ẑ× r)2 + (ω⊥ − Ω)Lz. (2)

2.1 The energy spectrum

The first term in (2) is similar to the Hamiltonian of a charged particle
moving in the x − y plane in a magnetic field, i.e. 1

2m (−ih̄∇⊥ − eA/c)2.
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Figure 1: Landau levels grouped by the index j for Ω = 0.9ω⊥; the energy
is in units of h̄ω⊥.

Thus, its normalized eigenfunctions are the Landau levels

φj,k (r) =
e|u|

2/2d2⊥∂k+∂
j
−e

−|u|2/d2⊥√
πd2

⊥j!k!
(3)

with eigenvalues h̄ω⊥ (2j + 1) where d⊥ =
√
h̄/mω⊥ is the transverse oscil-

lator length, u = x + iy, ∂± = (d⊥/2) (∂x ± i∂y), and j and k are integers
characterizing the Landau level index and the degenerate states within a
Landau level respectively. However, φj,k are also eigenstates of Lz with
eigenvalues h̄ (k − j); therefore, the eigenvalues of H⊥ are just

h̄
(
(ω⊥ + Ω) j + (ω⊥ − Ω) k + ω

)
. (4)

Note that, as can be seen in figure 1, the degeneracy has been removed
and that, when Ω ≈ ω⊥, there exists an energy gap of O (2h̄ω⊥) between
the two adjacent Landau levels while two states in a given Landau level are
separated by a gap of O

(
h̄ (ω⊥ − Ω)

)
� h̄ω⊥.

It is obvious that the rotation frequency Ω must be smaller than the trans-
verse trapping frequency ω⊥ in order to prevent the particle from escaping
the trap.

2.2 The lowest Landau levels

In section 3.2, it will be shown the system will reside in the states char-
acterized by j = 0, namely the lowest Landau levels (LLL) (see figure 1).
Since φ0,k (r) ∝ uke−r

2/2d2⊥ , any general wave function in the LLL function
space is a linear combination of φ0,k’s and can be written as φLLL (r) =
Ce−r

2/2d2⊥p (u) where p (u) is a polynomial in (and therefore an analytic
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function of) u and C normalizes φLLL (r) to unity. Using the fundamental
theorem of algebra then leads to

φLLL (r) = Ce−r
2/2d2⊥

∏
α

(u− uα) (5)

where uα are complex zeros of p (u). It’s obvious from (5) that going around
each uα changes the phase of φLLL (r) by by 2π, so each uα is the position
of a single-charge vortex.
A way to interpret (5) is to write |φLLL (r)|2 = |C|2 e−U(r) where

U (r) =
r2

d2
⊥
− 2

∑
α

ln |r− rα| (6)

could be interpreted as the energy of a unit-charge particle interacting in two
dimensions with a positive uniform background charge of density ρ = 1/πd2

⊥
and a set of qα = −1 charges located at rα, written in Gaussian units [3].
This can easily be seen by rewriting (6) as

∇2
⊥U (r) = 4π

(
1
πd2

⊥
−
∑
α

δ (r− rα)

)
(7)

which is just Gauss’s law in two dimensions for the system described above
[3].
Another way to look at (6) is to define the atomic density na (r) =

∣∣φLLL(r)
C

∣∣2
and the vortex density nv (r) =

∑
α δ (r− rα) and note that

∇2
⊥ lnna (r) = 4π

(
− 1
πd2

⊥
+ nv (r)

)
(8)

which shows that there’s a one-to-one relation between the atomic and vortex
densities in the LLL regime [4, 6].

3 Interactions In A Rotating Gas

Let’s assume that there exist interactions between the atoms of a cold gas
of N bosons with mass m which is subject to a cylindrically symmetric
harmonic potential with frequencies ω⊥ in the x− y plane and ωz along the
z axis.
If h̄ωz is very large compared to all other energy scales in the system, we can
safely assume that the system resides in the ground state of the harmonic
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trap in the z direction where dz =
√
h̄/mωz is the axial extent of the cloud

in that direction. Thus, the gas is now a quasi-two-dimensional system
rotating around the z axis with frequency Ω close to ω⊥.
The macroscopic wave function of the system Ψ (r) is determined by the
Gross-Pitaevskii energy functional. If we define Ψ (r) =

√
Nψ (r) where

ψ (r) is normalized to unity, then the energy per particle in the rotating
frame would be

E [ψ] =
∫ (

ψ∗H⊥ψ +
1
2
g2D |ψ|4

)
d2r (9)

where H⊥ is defined in (2) and g2D = Ng/
√

2πdz is the effective coupling
strength in two dimensions where g = 4πh̄2as/m is the two-body interaction
strength and as is the s-wave scattering length. Minimizing (9) with respect
to ψ (r) would lead to the Gross-Pitaevskii equation(

H⊥ + g2D |ψ (r)|2
)
ψ (r) = µψ (r) (10)

where the chemical potential µ ensures that ψ (r) is normalized to unity, i.e.
it is a Lagrange multiplier for the constraint

∫
|ψ (r)|2 d2r = 1.

3.1 The LLL regime in the presence of interactions

Because of the presence of interactions, the states φj,k (r) are no longer the
eigenstates of the system. This means that interactions mix different (j, k)
Landau levels. However, as will be seen later in section 3.2, for a given
g2D and for sufficiently fast rotations, i.e. Ω ≈ ω⊥, the system resides in the
lowest Landau levels with good accuracy. In fact, as Ω approaches ω⊥ (as the
number of vortices increase), the trapping force −mω2

⊥r is nearly balanced
by the centrifugal force mΩ2r and, therefore, the cloud expands and the
distance between the particles increases. Hence, the effect of interactions
gets smaller and the system looks more and more like the non-interacting
case where the energy per particle is h̄ω⊥.
Choosing ψ (r) to be in the LLL, the angular momentum per particle could
be written

〈Lz〉 = h̄

∫ (
r2

d2
⊥
− 1
)
|ψ (r)|2 d2r (11)

plus terms of O
(

1
Nv

)
where Nv is the total number of vortices [4]. Thus, in

the LLL regime, (9) could be written as [3, 4, 6]

E [ψ] = h̄Ω +
∫ (

h̄ (ω⊥ − Ω)
r2

d2
⊥
|ψ (r)|2 +

1
2
g2D |ψ (r)|4

)
d2r (12)
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or, when rescaled [6], as

ε [ψ] =
E [ψ]− h̄Ω
h̄ (ω⊥ − Ω)

=
∫ (

r2

d2
⊥
|ψ (r)|2 +

1
2
Λ |ψ (r)|4

)
d2r (13)

where
Λ =

g2D
h̄ (ω⊥ − Ω)

. (14)

As can be seen in (13), when the reduced energy ε [ψ] is minimized in the
LLL regime, ψ (r) will depend only on one parameter, Λ, rather than on two
separate parameters for the general case in (9), namely g2D and Ω.

3.2 Validity of the LLL approximation

Minimizing ε [ψ] with respect to ψ (r), i.e. δε[ψ]
δψ = 0, with the only constraint

that ψ (r) be normalized to unity, we will find after some algebra

|ψmin (r)|2 =
2

πR2

(
1− r2

R2

)
(15)

where R =
(

2Λd2⊥
π

)1/4
is the radius of the cloud, i.e. |ψ (r)|2 = 0 for r > R

[6]. The reduced energy, then, would be

εmin =

√
8
9π

√
Λ
d2
⊥
. (16)

It is clear from (15) that ψmin (r) does not belong to the LLL - the only func-
tion in the LLL function space which depends only on r is exp

(
−r2/2d2

⊥
)

-
since we had the freedom of choosing the most suitable function to minimize
the reduced energy functional without any restrictions on the funtion space.
Therefore, the reduced energy εmin is lower than ε [ψ] when ψ (r) varies only
in the LLL function space. So, while minimizing ε [ψ] in the LLL function
space, we should look for a function which is the closest to ψmin (r) so that
its corresponding reduced energy is the closest to εmin.
As will be seen in chapter 4, the result of minimizing the reduced en-
ergy functional in all cases would be ε [ψ] = c

√
Λ/d2

⊥ where c is O (1).
Thus, according to (13), the energy of the ground state of the rotating

cloud E [ψ] would be h̄Ω + ch̄ (ω⊥ − Ω)
√

Λ/d2
⊥. So if the excess energy

ch̄ (ω⊥ − Ω)
√

Λ/d2
⊥ is small compared to the separation between the LLL
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and the first excited Landau level, i.e. 2h̄ω⊥, then the assumption that the
system resides in the LLL is valid. After some algebra, we find

mg2D

h̄2

(
1− Ω

ω⊥

)
� 1 (17)

which is quite easy to satisfy since Ω → ω⊥.

4 The Vortex Lattice

Our goal, in this section, is to minimize the reduced energy functional in
the LLL regime with different lattice configurations. First, we consider the
case of an infinite regular lattice and its effect on the atomic density profile.
Then, we let the vortex lattice relax from its uniform configurations and
calculate the density profile associated with this distorted lattice.

4.1 Regular lattice : averaged vortex approximation

Looking back at (7), since {rα} designates an infinite regular lattice, we
could write [3]

∑
α δ (r− rα) = A−1

∑
k e

ik·r where A, the size of the unit
cell, is equal to 1

nv
where nv is the average vortex density. So, since U (r)

should be real, we could write

∇2
⊥U (r) = 4

(
1
d2
⊥
− π

A

)
− 4π
A
∑
k6=0

cosk · r. (18)

Now, defining

1
σ2

=
1
d2
⊥
− π

A
, (19)

na (r) =
1
πσ2

e−r
2/σ2

, (20)

and

f (r) =
∏
k6=0

e−
4π
Ak2 cosk·r, (21)

we could write [3, 6]
na (r) = na (r) f (r) (22)

where na (r) is the atomic density defined in section 2.2, na (r) is the coarse-
grained average of the atomic density over a linear size large compared with
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the vortex separation but small compared with σ, and f (r) is a periodic
function over the lattice which vanishes at rα’s 1.
As (21) suggests, f (r) contains information mainly about the lattice type
and, therefore, its contribution in determining the overall density profile is
small. Thus, we could ignore f (r) in (22) and replace na (r) by its coarse-
grained average na (r), namely the averaged vortex approximation [3].
Now that the overall behavior of the density profile is known using the the
averaged vortex approximation, the reduced energy could be written as [4, 6]

εava ≈
∫ (

r2

d2
⊥
na (r) +

1
2
bΛna2 (r)

)
d2r (23)

where b = n2
a (r) /na2 (r) ≈ 1.159 is the Abrikosov parameter for the trian-

gular lattice. We should note that the interaction coefficient is renormalized
by a factor of b since instead of working with the exact atomic density na (r),
we’re only dealing with its coarse-grained average na (r).
Minimizing εava with respect to σ, we find that

εava =

√
b

π

√
Λ
d2
⊥
. (24)

This reduced energy is greater than the one in (16) by a factor of
√

9b/8 ≈
1.14 which is due to (a) coarse-grained averaging of the atomic density and
(b) using an atomic density with a Gaussian profile rather than the optimum
profile of an inverted parabola.

4.2 Distorted lattice : Thomas-Fermi profile

Going back to (13), we could use the averaged vortex approximation here
to obtain an approximate form for the reduced energy [4]

εTF ≈
∫ (

r2

d2
⊥

〈
|ψ (r)|2

〉
+

1
2
bΛ
〈
|ψ (r)|2

〉2)d2r (25)

where 〈· · · 〉 denotes averaging over a linear size large compared with the
vortex separation but small compared with the radius of the cloud. The
interaction coefficient is renormalized again to take into account the effects

1Let us define the regular lattice as rα1,α2 = α1a1 + α2a2 where a1 and a2 are the
lattice primitive vectors (α1 and α2 are integers). Then the reciprocal lattice primitive
vectors are k1 = (2π/A)a2 × ẑ and k2 = (2π/A) ẑ× a1 where A = |a1 × a2| is the size of
the unit cell. Thus, k = β1k1 + β2k2 (β1 and β2 are integers) [3].
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of this coarse-grained averaging of the density profile.
One might be tempted to think that εTF obtained above is just the one
we have already had in (23), but there exists one important difference: in
(23), we had obtained a Gaussian form for the smoothed density profile,
namely na (r), by imposing the constraint of the lattice being triangular
and infinite before minimizing the reduced energy, while here, we do not
impose any constraint on the lattice and, therefore, are just minimizing εTF

with respect to
〈
|ψ (r)|2

〉
.

After some algebra, the coarse-grained average of the atomic density that
minimizes (25) is found to be [4, 5, 6]

〈
|ψTF (r)|2

〉
=

2
πR2

TF

(
1− r2

R2
TF

)
(26)

where RTF =
(

2bΛd2⊥
π

)1/4
is the radius of the cloud. Note that (26) looks

exactly like (15); however, unlike (15) which is not a LLL wave function,
there exists a ψTF (r) in the LLL function space whose coarse-grained average
is an inverted parabola. Using (26) to calculate εTF leads to

εTF =

√
8b
9π

√
Λ
d2
⊥
. (27)

It’s worth noting that (27) is larger than the reduced energy in (16) by just
a factor of

√
b ≈ 1.07.

Since εmin < εTF < εava, it is energetically favorable for the system to distort
the lattice rather than be in a regular one. In other words, changing the
amplitudes of the LLL components of the wave function without exciting
any higher Landau levels leads to changing the positions of the vortices
from a regular lattice. Thus, the smoothed density profile

〈
|ψTF (r)|2

〉
and

the reduced energy εTF are the closest that we could get to the optimum
solutions while remaining in the LLL function space.
Numerical calculations [5, 6] also confirm these analytical results (see figure
2). It is easy to notice that figure 2a has a Gaussian profile which dies off
more rapidly than the profile in figure 2b which is an inverted parabola.
Also, figure 3 shows a more quantitative comparison of the two lattice types
where the coarse-grained average atomic density obtained by minimizing the
reduced energy while letting the lattice relax from a triangular one is closely
matched by the Thomas-Fermi profile. Also, the smoothed density profile
of a regular lattice is reprodued by the Gaussian profile.
The amount of deformation of the lattice from a regular one can be estimated
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(a) (b)

Figure 2: The atomic density for (a) triangular lattice and (b) distorted
lattice [5].

Figure 3: Atomic density (in units of d2
⊥) as a function of r (in units of d⊥).

The solid line corresponds to the atomic density in a distorted lattice and
the dashed line to a triangular lattice. The dotted line is the Thomas-Fermi
profile and the dot-dash line is the Gaussian profile [5].
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using (8) for a general density distribution. Thus, assuming a Thomas-Fermi
form for the smoothed atomic density, we find [4]

nv (r) =
1
πd2

⊥
− 1

πR2
TF

(
1− r2/R2

TF

)2 . (28)

The second term above is O
(

1
Nv

)
compared with the first, since Nv ≈

R2
TF/d

2
⊥. This means that very small deviations from a regular lattice, i.e.

small changes in the vortex density, can cause very large variations in the
smoothed atomic density profile in the LLL regime.

5 Conclusion

We have done analytical and shown numerical calculations of physical quan-
tities of vortex lattices in rapidly rotating cold weakly-interacting atomic
Bose-Einstein condensates. We have shown that at the rotation rate in-
creases, the gas condensates into the lowest Landau levels and becomes
quantum Hall-like. The results presented in this paper show that the vortex
lattice distorts slightly from a triangular configuration and that the atomic
density averaged over a length scale larger than the vortex separation is
given by a Thomas-Fermi profile. All these results are experimentally ver-
ifiable and have indeed been confirmed. It should also be noted that the
results of this paper are true for regions away from the boundaries of the
cloud.
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