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Abstract

This essay describes the experimental observation as well as numerical simula-

tion and theory of synchronized chaos in systems of coupled oscillators. This work

explores examples of this phenomenon in coupled electronic circuits and optoelec-

tronic systems, as well as possible applications to secure communication.
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1 Introduction and Background

The ever-present demand for secure wireless communication is one of the primary mo-
tivations for studying the synchronization of chaos. This demand, especially in military
applications, led Louis Pecora and Thomas Carroll at the Naval Research Laboratory to
develop a method for synchronizing two chaotic oscillators in 1990 [1], and it continues
to be a reason for innovation in this field of study today [2]. When played through a
speaker, the output of a chaotic system sounds like white noise [3]. But, unlike ran-
dom noise coming from two unsynchronized and unrelated systems, the output of two
synchronized chaotic oscillators is identical. Subtract the two and nothing but silence
remains. The simplest way to apply this to improve the security of communications is to
add a message signal to the “noise” from a chaotic oscillator before sending a transmis-
sion. Any eavesdropper will hear only seemingly random noise. The receiver, if equipped
with an identical chaotic oscillator synchronized to the one in the transmitter, need only
subtract the output of its chaotic oscillator from the transmission. The receiver will then
have the message in its original form. Although this simple method for encrypting a
signal is easily defeated by signal processing methods, synchronized chaotic oscillators
continue to play a role in increasingly sophisticated methods for improving the security
of communications [2, 4].

Synchronization of chaos applies to an extremely broad range of physical systems.
Included are special electronic circuits, optical arrays, and even neurons and other bio-
logical systems [4]. Despite the widely different physical systems that exhibit chaos, it is
often possible to write down simple coupled nonlinear equations to describe the behavior
of the dynamical variables in the system. For example, the circuit shown in Fig. 4 is a
modified Chua circuit. The time evolution of rescaled voltages x and y and a rescaled
current z is described by Eq. 7 [2].

In general, synchronization of chaos requires more than simply preparing two identical
systems with identical initial conditions. Since infinite precision in initial conditions is
not possible to realize in practice, the dynamics of the two systems will at first track
one another but will eventually fall out of step [3]. Synchronization of chaotic oscillators
instead requires either feedback coupling, direct physical coupling, or a chaotic input
signal. There are quite a few synchronization schemes that use these various methods; this
essay will examine three. First, unidirectional linear error feedback coupling is currently
the preferred method for inducing synchronization in two chaotic systems, even if they are
not identical. Second, synchronization can also be induced by physical coupling, as in the
case of parallel laser beams separated by a very small distance. Third, it is possible for
sets of chaotic systems to synchronize when their parameters are driven by an external,
different chaotic signal.

There are countless chaotic systems in nature as well as in the laboratory. To date
there is no criteria that one can use to rule out the possibility of synchronized chaos in
any of these. Rather, it is a matter of choosing two or more interesting systems, then
finding a method to either couple them together or otherwise drive them in a way that
produces synchronized chaos. Often it seems that chaotic systems prefer to synchronize;
the theory given in Section 2.1 provides only the minimum linear error feedback required
for stable synchronization.
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2 Theory and numerical simulation

2.1 Unidirectional linear error feedback coupling

Since Pecora and Carroll’s paper in 1990 [1], various feedback methods have been pro-
posed as the best way to synchronize chaotic systems. In terms of simplicity and ease of
physical implementation, one of the leading theories makes use of unidirectional linear
error feedback coupling. Developed by Liu, et al. in 2002, this method is commonly
used because it requires relatively low feedback gain and does not require the solution of
nonlinear optimization problems [5]. This method was refined by Sun and Zhang [6], as
well as Jiang, et al. [7]. Their work focuses on simple global synchronization criteria for
coupled chaotic systems. This essay will follow Jiang, et al.’s treatment. Given a chaotic
system in the form

ẋ = Ax + g(x) + u, (1)

where x is the n−dimensional state vector, u is the n−dimensional input vector, A is an
n × n matrix of constants, and g(x) is a nonlinear, everywhere continuous function. We
assume that g(x) has a form such that

g(x) − g(x̃) = Mx,x̃(x − x̃), (2)

where Mx,x̃ is a bounded matrix whose elements depend on x and x̃. We create a slave
system based on Eq. 1:

˙̃x = Ax̃ + g(x̃) + u + K(x − x̃), (3)

where K is an n × n diagonal feedback matrix. By a judicious choice of the diagonal
elements ki = Kii, one can ensure global asymptotic synchronization of the two systems.
For a positive definite n × n matrix of constants P , if the ki are chosen such that the
eigenvalues λi of the matrix Q ≡

[

(A − K + Mx,x̃)
T P + P (A − K + Mx,x̃)

]

are all nega-
tive and bounded above by a constant µ < 0, the two systems will be synchronized. Here
we see the advantage of unidirectional linear error feedback coupling. The best choice of
feedback is easy to calculate and implement physically, and the size of the feedback is
necessarily on the order of the adjustable parameters in the system, A and M . The proof
is explained in more detail in Appendix A, but the particular details are not crucial for
understanding the material discussed in this essay. The key idea is that, given a system of
equations that describes the dynamics of two or more chaotic oscillators, using the theory
presented here will yield a feedback gain matrix K. This time-dependent matrix does
not require difficult calculations at each time step and represents the minimum feedback
required to induce synchronization between the two systems.

2.2 Synchronization via chaotic parameter driving

Synchronization via chaotic parameter driving is very different in character from the above
methods of inducing synchronization in that it requires no coupling between the chaotic
systems. A simple example of this phenomenon uses two uncoupled Lorenz systems
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(hereafter systems 1 and 2):











xi = σi(yi − xi),

yi = γixi − yi − xizi, i = 1, 2

zi = xiyi − bizi,

(4)

where σi and bi are chosen so that this systems is in the chaotic regime. The parameters
γi are not fixed; instead we have

γi = d |pn| , i = 1, 2, (5)

where d controls the driving strength and pn is a different chaotic signal:

pn+1 = 1 − µp2

n. (6)

When systems 1 and 2 are started with nearly identical initial conditions and d = 0,
their trajectories diverge. When they are started with very different initial conditions
and d 6= 0, the influence of the chaotic input from Eq. 6 causes systems 1 and 2 to
quickly synchronize. Fig. 1 shows the error (x, y, z) ≡ (x1 − x2, y1 − y2, z1 − z2) between
the dynamical variables of the two systems. This figure was generated by Guo-Hui Li
using a fourth-order Runge-Kutta routine to perform a numerical simulation of the time
evolution of the system given in Eq. 4 [8].

3 Experiment

3.1 Lasers

A laser is an example of a nonlinear oscillator whose behavior can be periodic or chaotic.
It is possible to synchronize two lasers that are operating in a chaotic state. The exper-
imental setup is very simple; two lasers are placed so that, after a series of mirrors and
beam splitters, their beams are parallel and separated by a small distance d. The beam
width is much less than a millimeter, and d ranges from about 0.5mm to 2.0mm. The
beams themselves do not overlap, but for small enough d, the electric fields of the two
beams overlap. This direct physical coupling of the two laser beams is enough to induce
synchronization. For this system, synchronization means that the relative intensities of
the two lasers track one another in time. Fig. 2 shows the relative intensities of the two
beams, before and after synchronization [3].

The work of Wüunsche, et al. contains another example of direct physical coupling
between laser beams [9]. As shown in Fig. 3, two identical semiconductor lasers are
pointed so that their beams are collinear. The beams pass through collimators and a
50/50 beam splitter. Part of each beam goes to an oscilloscope, an electrical spectrum
analyzer, and an optical spectrum analyzer, while the rest is injected into the opposite
laser. This direct injection is the vehicle of physical coupling between the two lasers.
Wünsche, et al. report synchronization similar to that of Fig. 2.
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3.2 Electronic circuits

3.2.1 Two different circuits used to secure communication

There are many examples of experiments in which coupled chaotic oscillators synchro-
nize [1, 2, 10]. The current standard procedure, given one or more chaotic electronic
circuits, is to start with the nonlinear equations that describe certain voltages and cur-
rents as a function of time. Fotsin, et al. [2] begin with a modified Chua circuit (see
Fig. 4). The time evolution of voltages and current in this circuit is given by Eq. 7:











ẋ1 = a(y1 − x3
1 + cx1) + c1s(t),

ẏ1 = x1 − y1 − z1,

ż1 = by1,

(7)

where a, b, and c are constants. The additive term c1s(t) consists of a scaling constant
c1 and an analog information signal s(t) (the message).

This circuit was coupled to a different type of chaotic oscillator: a modified Van der
Pol-Duffing oscillator. The time evolution of voltages and current in this circuit is given
by Eq. 8:











ẋ2 = m(y2 − x3
2 + αx2 − µ) − k̃1(x2 − x1),

ẏ2 = x2 − y2 − z2,

ż2 = βy2 − γz2 − k̃2(z2 − z1),

(8)

where x2 and y2 correspond to the voltages V1 and V2, rescaled and z2 corresponds to IL,
rescaled. V1, V2, and IL are indicated on the schematic of this circuit in Fig. 5. m, α, µ,
β, and and γ are constants.

The next step is to determine the appropriate feedback gains k̃1 and k̃1 (as in Eq. 3)
that ensure synchronization via unidirectional linear error feedback coupling, then imple-
ment the feedback in the electronic circuits. Using the technique presented in Section 2.1,
Fotsin, et al. find that when the feedback gains are updated according to

˙̃k1 = γ1(x2 − x1)
2,

˙̃k2 = γ2(z2 − z1)
2, (9)

with γ1, γ2 > 0, (x1, y1, z1) will asymptotically synchronize to (x2, y2, z2). x1 is then
transmitted as an analog signal. To recover the message without differentiation of the
transmitted signal, Fotsin, et al. use the following algorithm:

{

ŝ(t) = c1kx1 + w(t),

ẇ(t) = −c1k
[

(x2 − y2 − z2) − k̃1(x2 − x1) + c1ŝ(t)
]

,
(10)

where ŝ(t) is the recovered message and the gain k > 0 is a constant. Solving this system,
one recovers ŝ(t) (see Fig. 6) [2].

3.2.2 Chua circuit coupled to plasma discharge tube

Thus far we have examined experiments in which lasers were synchronized via direct
physical coupling, and different types of electronic circuits were synchronized via lin-
ear error feedback coupling. In the last few years, researchers have been exploring the
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possibility of synchronization between a chaotic electronic circuit and an optoelectronic
chaotic oscillator. For example, the work of Rosa, et al. involves the synchronization of
a Chua oscillator circuit coupled to a plasma discharge tube [11]. In this experiment a
voltage in the circuit synchronizes with the light intensity of the plasma discharge. The
coupling is via unidirectional feedback; the voltage across C1 (see Fig. 4) is the driving
signal for the plasma discharge tube. The evidence for synchronization is similar to that
seen in Fig. 2. Despite the differences between these two chaotic physical systems, Rosa
et al. were able to induce synchronization between them.

4 Discussion

Chaotic oscillators abound in both nature and in the physics laboratory, from nonlinear
electronic circuits to lasers to natural chaotic systems such as global weather patterns or
networks of neurons. The ability to induce synchronization between two chaotic systems
is a big step toward exercising some control over their chaotic dynamics. It can also be
the beginning of understanding the way that these systems work. Furthermore, once two
chaotic oscillators are synchronized, it is not difficult to extend the same approach to a
network of many such oscillators.

There are many applications for the the techniques presented in this essay. We have
already seen a simple approach to secure communication; more sophisticated schemes
exist that use synchronized chaotic oscillators. As another example, one could synchronize
an array of chaotic lasers used in industrial manufacturing. If there are sixteen lasers,
all cutting the same pattern, synchronizing their relative intensities will help guarantee
that the parts produced are identical. Finally, there are biological applications. There
is ongoing research in the synchronization of different cells for the purpose of treating
disease [12]. If it is found that certain cells behave as chaotic oscillators, it may be
possible to use feedback methods to induce synchronization.

Because of the broad range of chaotic oscillator systems that are susceptible to syn-
chronization, this essay has been a survey of ongoing research topics in this field rather
than a detailed discussion of a specific experiment or theory. We have discussed uni-
versal linear error feedback coupling theory; this is currently the standard method for
synchronizing two or more chaotic oscillators that can be expressed as systems of coupled
nonlinear equations. One advantages of this method is that it is computationally simple
meaning, that there are no nonlinear systems to solve to determine the right feedback gain
at each time step. Another advantage is that the feedback gains are necessarily on the
order of the dynamical variables of the system. For example, if a voltage in a electronic
chaotic oscillator ranges between 0 and 5 volts, the feedback gain will probably be of the
same order of magnitude (less than 10 volts). Other methods of inducing synchronization
require gains several orders of magnitude greater than those of the dynamical variables in
the system [5]. While effective, this can be difficult to implement in a delicate electronic
circuit. It is also inelegant in the sense that it is simply using brute force to overpower
the natural dynamics of the system.

In this essay we have looked at another method to induce synchronization: driving one
of the parameters in two chaotic systems with a different chaotic signal. Despite different
initial conditions the two systems synchronize quickly in this setup. This is a relatively
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new area of research (2005); this method may prove useful in situations when feedback is
difficult to implement in hardware [8]. We have also examined one of the many instances
of synchronization of two different chaotic oscillator circuits via universal linear error
feedback coupling. Our example was a modified Chua oscillator coupled to a modified
Van der Pol-Duffing oscillator; this particular system included a direct application to
secure communication [2]. Finally, we have discussed the synchronization of chaotic laser
beams via direct physical coupling. Two methods were separating two parallel beams
by a small distance so their electric fields overlap and coupling by directly injecting a
laser beam into the resonant cavity of another laser. Both methods effectively produce
synchronization without the need for delicate time-dependent feedback circuits. We also
mentioned the coupling of a Chua oscillator circuit to a plasma discharge tube. In this
experiment a voltage in the circuit synchronizes with the light intensity of the plasma
discharge. Even though these are very different chaotic physical systems, it is nonetheless
possible to induce synchronization between them [11]. Because of the wide applicability
of synchronized chaos, it is likely that researchers will discover synchronization between
even more exotic systems in the future. Synchronization of biological systems may yield
unexpected but very useful applications, particularly in the field of medicine.

A Appendix: Exponential Lyapunov Stability

The notation in this Appendix follows that of Section 2.1; the theory presented in this
section follows Jiang, et al. [7]. Lyapunov stability theory is the standard tool used to
calculate the feedback required for synchronization [2, 10, 7, 5, 6]. First we define the
error between the two systems as e ≡ x − x̃. For two chaotic systems global asymptotic
synchronization means that the error e is globally exponentially stable about the origin.
Lyapunov stability theory states that for exponential stability, V̇ ≤ 0, where

V ≡ eT Pe, (11)

where P is a positive definite matrix of constants and e is the error defined above. Since
e and eT both depend on time,

V̇ = ėT Pe + eT P ė. (12)

From Eqns. 1 and 3 we calculate:

ė = ẋ − ˙̃x = (A − K)e + g(x) − g(x̃) (13)

After a few lines of algebra we obtain the result

V̇ = eT
[

(A − K + Mx,x̃)
T P + P (A − K + Mx,x̃)

]

e ≡ eT Qe, (14)

where Q ≡
[

(A − K + Mx,x̃)
T P + P (A − K + Mx,x̃)

]

. Given that the eigenvalues of Q
are λi, i = 1, 2, . . . , n, we can make a unitary transformation Q = U∗ΛU , where Λ is the
diagonal n × n matrix with Λii = λi. Thus our condition for stability V̇ ≤ 0 becomes

V̇ = eT Qe = eT U∗ΛUe = eT
1 Λe1 ≤ µeT

1 e1 < 0, (15)
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where e1 ≡ Ue. Provided that we choose the feedback gain K such that the eigenvalues
of Q are negative and bounded above by by a negative constant µ, the two systems
described by Eqns. 1 and 3 are globally asymptotically synchronized. A simple case is
to use P = I, where I is the identity matrix. Then the condition for stability reduces to
the expression

ki ≥
1

2
(Qii + Ri − µ), i = 1, 2, . . . , n, (16)

where the Qij are the elements of Q and Ri ≡
∑n

j=1,j 6=i |Qij|. Note that this analysis
applies even when the two systems are quite different; for example, Fotsin, et al. use this
method to effectively induce synchronization between a Chua oscillator and a modified
Van der Pol-Duffing oscillator [2].
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Figure 1: Complete synchronization for d = 28 and the initial condition (x1, y1, y1) =
(1.5, 1,−5) and (x2, y2, y2) = (−8, 5,−9). Despite different initial conditions, the two
systems synchronize quickly. Here x ≡ x1 − x2, y ≡ y1 − y2, and z ≡ z1 − z2. For this
system, σi = 10, bi = 8/3, µ = 1.95, and p0 = 0.8—all chosen such that the systems in
Eqns. 4 and 6 are all in the chaotic regimes. Figure source is [8].
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Figure 2: Synchronization of intensities for two coupled lasers. (a) shows the relative
intensities of the two laser beams when they are separated by d = 1.0mm. The coupling
is not strong enough to cause synchronization at this distance. (b) shows the relative
intensities of the two laser beams when they are separated by d = 0.75mm. Here the
coupling is strong enough to cause synchronization; the intensity versus time plots are
nearly identical for both lasers. (c) shows the relative intensity of laser 1 plotted against
the relative intensity of laser 2 at each point in time. Here d = 1.0mm and the two
lasers are not synchronized. (d) shows the relative intensity of laser 1 plotted against the
relative intensity of laser 2 at each point in time. Here d = 0.75 and the two lasers are
synchronized. Figure source is [3].
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Figure 3: Experimental setup for two identical semiconductor lasers pointed directly at
one another. (L) indicates a collimator and (BS) indicates a 50/50 beam splitter. Part of
each beam goes to an oscilloscope for analysis, while the rest is injected into the opposite
laser. This direct injection is the vehicle of physical coupling between the two lasers.
Figure source is [9].

Figure 4: Schematic of a modified Chua circuit. The time evolution of voltages and
current in this circuit is given by Eq. 7. Figure source is [2]; the specific values of the
resistors, capacitors, diodes, and operational amplifiers in this circuit are given in this
reference as well.

Figure 5: Schematic of a modified Van der Pol-Duffing oscillator circuit. The time
evolution of voltages and current in this circuit is given by Eq. 8. Figure source is [2];
the specific values of the resistors, capacitors, diodes, and operational amplifiers in this
circuit are given in this reference as well.
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Figure 6: Behavior of the communication for a square wave message s(t) = 0.01(1 +
2 sign(sin πt/5)). (a) Message signal, (b) transmitted signal x1, (c) y1 versus x1, and (d)
message signal s(t) (solid line) and recovered signal ŝ(t) (dashed line). Figure source
is [2].
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