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Photons, which are bosons, can form a 2D superfluid due to Bose-Einstein condensation 
inside a nonlinear Fabry-Perot cavity filled with atoms in their ground states. The 
effective mass and chemical potential for a photon inside this fluid are non-vanishing. 
The dispersion relation for this photon gas is identical in form to the Bogoliubov relation 
describing elementary excitations of weakly-interacting bosons. I will summarize the 
basics behind and the ongoing numerical and experimental tests on the possibility of a 
superfluid state for photons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 
Experimental discoveries in the last two decades have shown that Bose-Einstein 
condensation can in fact be realized in laboratories using dilute atomic gasses. Superfluid 
state of matter has been observed for many decades in many systems. At the heart of all 
the experiments lies the quantum statistics of particles. It is the Bose statistics in this 
case, and it does not matter if the bosons are whether alkali atoms, 4He atoms, or Cooper 
pairs. One naturally asks the question: Since, photons – particles of light – are also 
Bosons, is it possible to get similar phenomena with photons as well? If this is the case 
than the nature of these phenomena can also be tested by optical experiments. Can Bose-
Einstein condensation of photons be observed? Can light behave like a superfluid? The 
obvious rejection is that photons are quite different than other bosons. In the usual 3D 
Planck blackbody configuration, which consists of an empty cavity, the photons are 
massless and there is no number conservation, and the chemical potential is zero. Also 
photons do not interact with each other, therefore how can one talk about superfluidity?  
 
In expense of reducing the dimensionality of photons to 2D by placing them inside of a 
Fabry-Perot cavity, the photons can acquire an effective mass. In addition, the cavity can 
be filled with a nonlinear material exhibiting Kerr type nonlinearity (either self-focusing: 
attractive interactions or self-defocusing: repulsive interactions). Light propagating in this 
a Kerr medium behaves like bosonic atoms evolving with a delta-function type 
nonlinearity. In each case it's governed by a nonlinear Schrodinger equation (NLSE) (or 
Gross-Pitaevskii equation). This would also imply the existence of a Bogoliubov 
dispersion relation for the low-lying elementary excitations of a photon fluid. 
 
One may also expect to observe a phase transition with photons in this situation. In 2D, it 
is not the Bose-Einstein phase transition, but rather the Kosterlitz-Thouless transition, 
which creates a quasi-long range order. The phase transition only happens for repulsive 
nonlinearities, as a self-focusing nonlinearity leads to the collapse of the field to a point, 
or breaking into filaments. One could also experimentally test for superfluidity. 
 
One of the advantages of the optical experiments would be that one could directly sample 
and interfere the fields, and thus directly measure correlation functions of the system. 
Although more than a decade has passed since these ideas were born, no concrete 
experiment has shown any of the predictions due to technical difficulties. The difficulty 
mainly lies in generating the initial conditions and sufficient nonlinearity for anything 
interesting to be observed. However, experiments are still on their way. Here I will 
explain the basics, expected results and the experimental progress. 
 
 
Basics 
 
Dispersion relation for free photons in a Fabry-Perot cavity [1, 2, 4]: 
 
We are about to see that the dispersion relation for photons in a short Fabry-Perot cavity 
is the same as the dispersion relation of non-relativistic massive particles (Fig 1). 



 

 
Figure 1 A planar Fabry-Perot cavity. Momentum in z direction is quantized. For a plane 
wave traveling at a small angle with respect to z axis, one gets the dispersion relation for 
massive bosonic particles in 2D. 
  
For high-reflectivity mirrors, the vanishing of the electric field at the reflecting surfaces 
of the mirrors imposes a quantization condition on the allowed values of the z-component 
of the photon wave vector, kz = n π / L, where n is an integer, and L is the distance 
between the mirrors. Therefore the usual frequency-wavevector relation 
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after multiplication with ħ becomes the energy-momentum relation for the photons 
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Where m = ħnπ/Lc is the effective mass of the photon. For waves traveling at a small 
angle with respect to z axis, one can Taylor expand this relativistic relation, and obtain a 
non-relativistic energy-momentum relation in 2D.  
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Where m = ħnπ/Lc = ħω / c2 is the effective mass. One can redefine the zero of the 
energy for convenience, leaving only the effective kinetic energy; . mpp 2/)( 2

⊥⊥ ≅ε
 
As long as one is experimentally exciting the fundamental mode (n=1) of the cavity the 
situation can be represented with a fixed effective mass in 2D. However, when one 
accounts for the interaction in the nonlinear medium, due to the coupling in longitudinal 
and transverse directions, one would need a renormalization in the effective mass [5]. We 
are not going to be concerned with this here. 



 
Interacting photons in a nonlinear Fabry-Perot cavity [1, 2]: 
 
Nonlinearities for photon-photon interactions are in general very small. This makes 
photons an ideal candidate for treating them as weakly interacting bosons. We are going 
to be concerned with the zero-temperature case. This problem is widely known as the 
Bogoliubov problem. The Bogoliubov Hamiltonian reads as follows: 
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Here  and  are the annihilation and creation operators respectively for the state with 
momentum p, and satisfy the Bose commutation relations. Note that the momentum p 
represents the transverse momentum and for convenience we dropped the ‘perpendicular’ 
index. H

pa †
pa

free is the energy of the non-interacting system with ε(p) given as expressed in the 
previous section. Hint is the interaction between the photons arising from the potential 
energy V(κ) which is the Fourier transform of the potential energy V(r1-r2) in coordinate 
space. This interaction represents the scattering of two particles with initial momenta p 
and q to final momenta p+κ and q-κ. The interaction is created by the atomic vapor 
inside of the cavity excited to the red side of the atomic resonance with the incident light 
field. Since the excitation is only near resonant, the population of the atoms mainly stays 
in the ground state, yet one gets enough nonlinearity. The atomic vapor produces a self 
de-focusing Kerr non-linearity, corresponding to repulsive photon-photon interactions. 
 
Here we will sketch the main approximations going into the particular Bogoliubov 
problem and the main results coming out. 
 
It is important to note that the system is an open one, in contact with a reservoir. The 
mirrors of the Fabry-Perot cavity have large but non-unit reflection coefficients. 
Therefore a photon that enters the cavity will, bounce off the mirrors many times and stay 
inside of the nonlinear cavity long enough so that thermalization will occur with other 
photons (See Fig. 2). The incident light field Einc fills the cavity, and the field, after many 
bounces leaks out from the right end which is shown as Etrans.  
 
 
 



 
Figure 2 Fields entering and leaving the nonlinear Fabry-Perot cavity. 
 
The number of total particles, i.e., photons, inside of the cavity is not constant. It can 
fluctuate. In statistical mechanics this is described in Grand canonical ensemble, by 
subtracting a chemical potential term µ Nop from the Hamiltonian: 
 

opNHHH µ−=′→  
 
Here  is the total number operator and µ (which we shall determine) 

represents the chemical potential, i.e., the average energy for adding a particle to the open 
system described by H.  
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In the non-interacting case, condensation is expected to happen to the zero momentum 
(p=0) state. The effect of weak interactions is to slightly populate other states too; 
however there will still be a macroscopic occupation in the p=0 state. When this state is 
macroscopically occupied the operators  and  essentially commute and both can be 

replaced by the c-number
0a †

0a

0N , where N0 is the occupation number of the p=0 state. In 
calculations it is useful to separate the zero momentum state out. Then, one sees that the 
main contribution to the ground state energy comes from the interaction energy of the 
photons in the p=0 state, that is )0()0( 2
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potential is given by 0EN∂=µ . Therefore, )0(0VN≈µ  implies that the effective 
chemical potential of a photon is given by the number of photons in the condensate times 
the repulsive pairwise interaction energy between photons with zero relative momentum 
difference.  
 
Here, it is important to note that Bose-Einstein condensation with truly long-range order 
occurs strictly at T = 0. However it is known that in 2D a quasi condensate can exist with 
an algebraic decay of long range coherence, and it is believed that a phase transition of 
the Kosterlitz-Thouless type should be observed with a 2D photon fluid.  
 



Applying the canonical Bogoliubov transformations to diagonalize the quadratic part of 
the Hamiltonian H’, leads us to the non-interacting quasi-particles in the condensate with 
the well known Bogoliubov dispersion relation for the energy-momentum relation 
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The elementary excitations, which are density fluctuations in the fluid described by the 
dispersion relation above, are phonons. In the classical large phonon number limit these 
are the sound waves with the speed 
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Putting in some real world numbers, one sees that the speed of the sound is on the order 
of thousands of times slower than the speed of light.  
 
Now, we will look at some simulations and experimental situations. 
 
 
Experimental and numerical tests 
 
Dissipative optical flow in a nonlinear Fabry-Perot cavity [3]: 
 
It is extremely important to note that the Bogoliubov dispersion relation also follows 
from classical non-linear optics. This should be expected since the classical limit of 
bosonic particles corresponds to classical waves. Similarly, solving the non-linear 
Schrodinger equation, i.e., the Gross-Pitaevskii equation, (ignoring the many-body nature 
and using a mean field approximation) for weakly interacting Bose-Einstein condensates 
usually captures the physics of these dilute gasses. However note that these classical 
calculations do not give us any hint about the quantum states of the underlying fields, i.e., 
the statistics of particles; whether it is a coherent state, squeezed state, a Fock state, or a 
thermal state, etc.  
 
Without going into details I would like to summarize the proposed experiment and the 
performed numerical tests for the superfluidity and its breakdown in a nonlinear optical 
Fabry-Perot cavity. The essential modification to the previous cavity that we described is 
that now, there is a cylindrical obstacle in the cavity as shown in Fig. 3. This obstacle is 
basically a cylindrical region with a different index of refraction (particularly a 
defocusing region) as compared to the rest of the cavity. The entire cavity is still filled 
with a nonlinear material. The waves are incident at an oblique angle θ. This is equivalent 
to the waves coming at normal incidence and the obstacle moving instead. 
 
 



 
Figure 3 The proposed configuration for observing dissipative optical flow [3]. 

 
If the state is superfluid, the obstacle should not experience any drag force as the fluid 
and the obstacle are moving relative to each other. This condition is satisfied only for 
time-independent fields where the transverse momentum is constant throughout time. A 
force is exerted only in the case of a time-dependent field. 
 
Below a certain critical velocity, one expects no scattering off the obstruction. Above that 
velocity, one would see waves radiating out from the obstruction and/or formation of 
vortices. Because the velocity depends on density, one could as well change the density 
rather than the velocity. To test superfluidity, one can send a laser field at an oblique 
angle, and the field can build up in the cavity. After the transient oscillations due to the 
build up, one would reach a steady state in the cavity. Given the photon density, if the 
corresponding critical velocity is above the transverse velocity of the fluid provided by 
the oblique incidence angle of the field, then the flow around the obstacle should be 
dissipationless, i.e., superfluidity must be observed. The flow inside the cavity can be 
monitored by the light leaking out from the right hand side of Fig. 3. The numerical 
evaluation of the superfluid case is shown in Fig. 4. 
 

 
Figure 4 Transmitted field at the right end of the cavity. Superfluid state. Below the 
critical velocity. a) Magnitude; lighter regions correspond to higher intensity. b) 
Direction of transverse gradient of phase. 



If the incident laser is now turned of the field inside the cavity is going to decay, which is 
to say that the fluid density is going to decrease, and the critical velocity is going to 
decrease as well. At some moment when the critical velocity is lower than the fluid 
velocity, the numerical evaluation of the cavity output field is shown in Fig. 5. 
 

  
Figure 5 Transmitted field at the right end of the cavity. Dissipative state. Above the 
critical velocity. a) Magnitude; lighter regions correspond to higher intensity. b) 
Direction of transverse gradient of phase. 
 
As evident from Fig. 5, there is scattering and vortex pairs form (small dark spots on the 
left side of Fig. 5a ). At even lower densities, i.e., lower critical velocities, the system 
approaches to a linear, geometrical optics regime. 
 
Measuring the speed of sound [1, 2]: 
 
One can also measure the speed of sound, therefore the Bogoliubov dispersion relation. 
One possible experiment is shown in Fig. 6. 

 
Figure 6 Schematic of an experiment to observe the sound waves in a photon fluid in a 

non-linear Fabry-Perot cavity. The gray volume is the nonlinear medium. 



In this scenario, there are who incident optical waves. The first one is a wide beam to 
form the nonlinear background fluid. The second wave is supposed to be injected from a 
single point (from a fiber tip), and should be amplitude-modulated via an electro-optic 
modulator (EOM) at the sound frequency (corresponding to radio frequencies) to 
resonantly create sound waves in the nonlinear background fluid, propagating out from a 
fixed point. The sound waves can be phase sensitively detected by another fiber tip at the 
exit face. The velocity and the dispersion relation of the sound waves can be obtained 
from these kinds of measurements, and therefore the critical velocity can be inferred. 
 
One of the problems encountered in this type of an experiment was that only very lately 
that it was realized that the dispersion relation would be changed by any (coherent) field 
entering the cavity.  Thus in order to do a clear-cut measurement, it would be necessary 
to fill the cavity with light, and then turn off any driving fields and observe the dynamics. 
 This was beyond the capabilities at the time, so it was not done. However, time has 
passed, and better control may be achieved. 
 
 
Achieving sufficient nonlinearities [4, 5]: 
 
There has been work going on in the literature which can achieve sufficient nonlinearities 
for the photon-photon scattering. One necessity is that the interaction is strong enough 
and yet still fast enough. Two systems which fit the description are, first, Rydberg atoms 
in a microwave Fabry-Perot cavity, and second, alkali atoms in an optical Fabry-Perot 
cavity.  Although experimentally, the system of Rydberg atoms have the advantages of 
relatively large cavity dimensions, and a strong dipole coupling, the obvious 
disadvantage is that Rydberg atoms are much harder to create and manipulate then alkali 
atoms in their ground state. With the current experimental values of the nonlinearities in 
alkali vapors and cavity mirror reflectivities, thermalization of the system should be 
feasible and interesting effects should be seen.  
 
 
Conclusion 
 
Clearly light in a Kerr medium is expected to show many of the features of classical 
superfluids, being described by the same differential equations. Theoretical calculations 
show that, the photon fluid formed by the many photon-photon collisions in a nonlinear 
Fabry-Perot cavity should be a superfluid. Furthermore, a Kosterlitz-Thouless type phase 
transition can be observed in the system described. Also, the Bogoliubov dispersion 
relation for the low-lying quasi-particle excitations should experimentally observable. 
The nonlinear cavities for the photon-photon collisions have already been demonstrated. 
It seems feasible to demonstrate the expected effects. 
 
 In this article, we concentrated on repulsive interactions. However, it has also been noted 
[5] that in the attractive interaction regime, bound states of photons may be realizable, 
which has no classical counterpart.  
 



Despite all the similarities with the massive bosons, perhaps the most "super" of the 
superfluid features, the true zero viscosity, may not be present for a photon fluid in a 
nonlinear Fabry-Perot cavity. Any loss of photons will effect the superfluidity, and there 
will always be ‘some’ loss associated with an optical nonlinearity. 
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