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Traffic jams and other features observed in vehictraffic are examples of emergent
phenomena. The current understanding of vehic¢tdérc is reviewed, with special
emphasis on traffic jams. Empirical studies haxesaled the presence of multiple
phases in traffic, and have shown that traffic janay form spontaneously. Several

methods from physics have been applied to modélaffic, and the general empirical
features have been reproduced.



|. Introduction

Why study traffic? From an individual's perspeetianything about traffic that can be
understood and controlled will be of great vallBstween 1982 and 2001, the amount of
time Americans spent in traffic increased by 23@%tiring the same time period, the
length of rush hour doubled in many major citiestlsat many commuters now spend
almost a full workweek each year stuck in traffi¢. [ This is not only an incredible cost
in time, but also an increasingly great cost inakimoney, as gas prices continue to
climb [2].

Historically, the study of traffic paralleled thdaption of automobiles and the
development of a highway system. In the 1930s¢®i. Greenshields of the Yale
Bureau of Highway Traffic began to study modelsitialy speed and density, and to
investigate intersection efficiency. After Worldawll, increasing automobile use and an
expanding highway system prompted increased trsfidy [3]. In the 1950s, traffic
volumes in excess of carrying capacities were direaproblem [4], and this trend has
continued, so that congestion is estimated to Aostricans over $78 billion a year in

fuel and time [1]. As a result, interest in undansling and controlling traffic has been
persistent.

While some physicists contributed to the studyraffic before 1990, the majority of
their contributions have been since the early 19@sce they began working on traffic,
they produced a deluge of experiments, theoriespapers [4]. Vehicular traffic has
been known to exhibit phases for some time, anskthave been successfully modeled
using physics methods [5].

Here, | shall try to present a general overviewaffic, as currently studied and
understood by physicists. In Section I, | consitiesome detail experimental techniques
and what they have revealed about real trafficSdation Ill, | summarize various
attempts to model traffic and discuss their success

ll. Empirical results

Comparison with empirical results is importanthe study of traffic just as it is in other
systems investigated by physicists. However, @oglistudy of traffic involves
complications often not present in other systef@sntrolled experiments are difficult or
perhaps impossible to perform. In addition, there problem of human experimental
subjects; under ordinary circumstances, experinistg@annot simply go into the field
and attempt to create a traffic jam. As a resuitpirical methods are generally limited to
passive observation [5].



A variety of observational techniques have beerelbped; these are considered in
Section II.B. The empirical results are considere8ections II.C and II.D. First,
however, it is useful to briefly mention the paraens that should be measured.

A. Parameters

A number of traffic parameters are potentiallyrderest. These include the following

[6]:
* Rates of flow (vehicles per unit time);

» Speeds (distance per unit time);

* Travel time over a known length of road;

» Occupancy (percentage of time that a point onahe Is occupied by vehicles);

* Density (vehicles per unit distance);

* Time headway between vehicles (time per vehicle);

» Spacing between vehicles (distance per vehicla&); an

» Concentration (measured by density or occupancy).

Though these parameters are most frequently mehgtie list is by no means inclusive.
For example, in some situations driver reactioresirar acceleration/deceleration rates
may be of interest [7]. In addition, external paeders such as weather may be relevant

[8].

B. Observational techniques

A variety of observational techniques have beereliged for studying traffic. These
provide a specific context for mathematical deiams of the parameters described
above.

Early traffic data collection relied on hand tadlier on pneumatic tubes placed across the
road [6]. Today, data is collected with considéraibore sophisticated methods.
Photography or video recording can provide dataflovehicles along a stretch of road,
allowing the tracking of many trajectories [4]. rdore limited data set may be obtained
by equipping some vehicles with measurement deyvgtesh as differential GPS

receivers [7]. However, most data are collecteddtgctors located along the road,
primarily induction loops. Two closely spaced lsqpovide time and time difference
measurements from which flow, velocity, and otheafities may be derived [5].

Since induction loops are so widely used, it isttvaonsidering in greater detail how
their data is analyzed and how some of the parametentioned above may be
calculated, closely following the discussion in.[4onsider first the case of a single
induction loop, which can only measure the timestath a vehicle reaches and leaves
it. Label vehicles with the indax and definet’ andt as the times when t&' vehicle

reaches and leaves the detector, respectivelyn theetime between vehicles, tame
headway (gross or brutto time separation), is



At® =10 -t 1)
while the time between vehicte-1 leaving anch arriving, ortime clearance (netto time
separation), is

At =t -t (2)
If AN vehicles cross the detector during a time intefMalthen theoccupancy (ratio of
time that a point is occupied by vehicles) is

O(x,t) = > (th ~t7)/AT, (3)
while the vehicle flow during this time is
Q(x,t) = AN/AT . (4)

When a second loop is added near the first, vehallecitiesv, and length$, may be
estimated, using the approximation that velocityaastant between the loops. This
allows the calculation of the distance from thenfrof one vehicle to the front of the
next, orheadway (brutto distance),

dy’ = v, A" (5)
as well as the distance between vehicles|earance (netto distance),
d=d%® -1 _, =v,At%, (6)
Knowing thev, also makes possible the calculation of the avevatpeity
AN
V(xt)=(v,) =D v,/AN. (7)
n=1
This in turn allows the calculation of the vehidensity, for example,
P(x.t) =Q(x,)/V(xt), (8)

among other methods. It is important to note tiadtulating the density from induction
loop data may introduce errors unless care is takeaverages over time at one loop,
but p should be an average over space; spatial and tahgpa@rages are being mixed.
Thus, some have preferred to calcujateith equations that give greater weight to small
velocities, rather than using equations such as (8)

C. General empirical results: thefundamental diagram

Functional relations between vehicle fl@yaverage velocity, vehicle density, and
occupancyO have been measured since the beginning of trstfiidy. The relation
between vehicle flow and density has been the mgstrtant, so that the plot of flow
and density is know as the fundamental diagram [4].

A typical fundamental diagram is reproduced in Fegl, below (note that this figure
uses], rather tharQ, for flow). Three phases of traffic flow are gealy distinguished

in the diagram: (1freeflow, the almost linear relation beginning at the orignd
labeledF; (2) synchronized flow, the leftward part of the area labeleand, (3)wide

moving jams, the rightward part of the area labelefb]. However, it is important to note
that there is still debate regarding the exactneadd traffic at higher densities in regidn

[8].
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Figurel. Left: Schematical form of the fundamental diagrdfrdenotes the free flow branch and lihe
is determined by the properties of wide moving jams. Rigmpirical fundamental diagram. One can
clearly distinguish the three phases. The differences tectt@matical form are mainly due to the use of
local measurements for the determination of the empirical fundahwagram (from [5]).

In the free flow phase, labeled Byin the figure, the density is low enough that cé&hi
interactions are negligible. Each vehicle candfavith its desired velocity, so flow
increases linearly with density. Note that fomflgreater thad,;, the flow is not
uniquely determined by density [5].

All states that are not free flow states are knaseongested states. Two congested
phases have been observed. The wide moving jaseptiee rightward end of the
shaded aredin the figure, is characterized by a sequenceidé\yams (wide jams are
those in which the width of the jam is much gre#tan the widths of the fronts, the
zones at the edges of the jam where speeds chapigéyy. Within the jams, density is
high while velocity and flow are very low. The jammove upstream (against traffic)
with a characteristic velocity.m, which has been measured to be ~15km/h (~9mifal), a
their outflow is independent of their inflow. Thegn travel through free flow and
synchronized flow without being disturbed. Densstylifficult to determine for the
reasons mentioned previously, so that it is undienaged (this is why, in the right side of
the figure, the moving jam phase is almost a iteg)![5].

The synchronized flow phase, the leftward end efdshaded arehin the figure, is
characterized by congested traffic that is not cosep of wide jams. The average
velocity is much lower than in free flow, but tHevi is larger than in wide jams. There
is no functional flow-density relation; as may lees in Figure 1, the data points are
scattered over a wide region. The time serietafwes are highly correlated for
synchronized flow [5].

The three phases are not only distinguished byuthgamental diagram. They may also
be differentiated using a correlation function.eTdnoss-correlation function



(pM)Qt + 1))~ (PA)XQ(t + 7))
V" ©) = (o) (@ + 1) - (Qre+ 1))

measures the dependence of the f(@at timet+ 7 on the value of the densityat timet.
In free flow, cc,o(7) = 1, meaning that the flow strongly depends on evidensities.
In synchronized flowgc,(7) = 0, so flow and density are essentially independent
described previously [5].

(9)

CC,o(7) =

D. Theorigin and evolution of jams

Several causes of traffic jam formation have basoadered. One interesting result is
that jams may form spontaneously due to fluctuation

Most traffic jams are caused by bottlenecks, swcbra and off-ramps or merging lanes,
that locally reduce carrying capacity. This resuitthe formation of jams upstream,
while a free-flow region usually persists downstneaAn example of the effects of on-
and off-ramps on the speed vs. flow diagram is shbelow in Figure 2. In the absence
of ramps (location C in the figure), the speedsseatially constant over a range of flows.
In the presence of merging traffic (location A)eed decreases dramatically beyond a
certain flow, almost in the manner of a step functi Between the on-ramp and the off-
ramp (location B), the speed is higher at largev$lohan it was upstream, but it is still
less than it would have been in the absence ofsarBy locally increasing flow, the
ramps have effectively reduced capacity (i.e., téshe overall capacity, which is
constant, is available to traffic passing from AQp[8].

TR j

Figure2. Experimental flow-speed diagrams near on- and off-rarhpgloee lane highway. The upper
part of the figure shows the empirical results. Eachejmessents a five-minute average of the local
measurement. The lines serve merely as guide to the eyesowiighrt of the figure shows the location
of the detectors (from [9]).



Other obstructions, not related to the form ofribeed, are an additional cause of jams.
For example, traffic accidents may locally reduaeying capacity. In effect, these
create artificial bottlenecks [8].

Jams may also form under high traffic densitiesiapparent reason. These jams,
known agphantom jams, are the result of spontaneous fluctuations irfldve. An

example is shown in Figure 3. Each line in thergrepresents the trajectory of a single
vehicle in thex-t plane. At the bottom left and the top right, ttegectories are roughly
linear and the vehicles are well separated. Howewehe central region, there is a curve
in the trajectories where a jam spontaneously for8iace the slope of the jammed
region is negative, it is moving upstream. Aftesvimg upstream for a distance, the jam
spontaneously disappears, just as it formed [8].
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Figure 3. Emergence of a “phantom traffic jam.” The depictetiicle trajectories were obtained by Treiterat an
Myers (1974) by aerial photography (reproducticerafeutzbach, 1988). Broken lines are due to dranges.
While the slopes of the trajectories reflect indixél vehicle velocities, their density represehesdpatial vehicle
density. Correspondingly, the figure shows thenfation of a “phantom traffic jam,” which stops veleis temporarily.
Note that the downstream jam front propagates e@strwith constant velocity (from [4]).

l1l. Theories of traffic

Theoretical models of traffic fall into numeroudegories. Here, | shall discuss four:
hydrodynamics models, kinetic models, car-followingdels, and cellular automata

models. Each takes methods from physics and apibléan to traffic, but with widely

varying results.



A. Hydrodynamic models

Hydrodynamic models are macroscopic models that traffic as a compressible fluid.
Individual vehicles are not present in the desmptrather, a continuous density
function o(x,t) and flow functionQ(x,t) are used. In the absence of ramps (i.e., sources
and sinks), these functions are related by theasoaion equation

a_p + a_Q =0. (20)

ot ox
Since this is a single equation for two unknownctions, additional information is
needed. A simple solution is to assume that the i a function only of density,
Q(x,1)=Q(p(x,t)). This leads to wave solutions that are stabte@nnot describe
spontaneous jam formation [5].

In more sophisticated approaches, a Navier-Stofeat®n may be used for the velocity,
of the form

2 —
ov(x,t) +vav(x,t) __10P(xt) +V(p)0 v(>§,t) L Ve(P) —V(x,1) . (11)
ot 0x L 0X 0x 7(p)
P(x,t) is the traffic pressure, related to the velogryiance;p) is a viscosity term
which reduces spatial inhomogeneiiy(,o) is an equilibrium velocity, toward which the

velocity v(x,t) relaxes; and(p) is a relaxation time. In its more sophisticatecins, the
hydrodynamic approach succeeds in producing urestaill metastable traffic states [5].

B. Kinetic models

Kinetic models are microscopic models that treafitr as a gas of interacting particles
(vehicles). They have their origin in the kingteory of gases. In the kinetic theory of
gases, a distribution functidr ,p;t)d’r d*p describes the number of particles at tinrea
volumed® aboutr with momentuntd®p aboutp. The time evolution ofis governed by
the Boltzmann equation,

of p of
—+— [ +Fm_|f(r,p;t)=| — : 12
[Gt m ' p} .50 [Ot jcollision 42

whereF is the external force and the partial time denxeabn the right side represents
the rate of change éfdue to particle collisions. In kinetic modelstiffic,
f(r,p;t)d’ d®p is replaced by(x,v;t), describing the number of vehicles at tinie a
lengthdx aboutx with velocitydv aboutv. An additional distributiorfgedX,v), is
introduced to describe the distribution that drévéesire to achieve. In the version
developed by Prigogine and coworkers, the analofitiee Boltzmann equation was of
the form

ﬂ+v£:[i} +(ﬂj , (13)
ot ox lat), \at).

in which the first term on the right describes xal#on off towardfgesin the absence of
vehicle interactions (analogous to the collisiami®f the Boltzmann equation) and the
second term accounts for changetdue to interactions (analogous to the force term).



Difficulties arise when an explicit form of the exjion is derived. Simplifying
assumptions can produce unphysical results, whilkeraomplex treatments are difficult
to solve. There are several additional difficidtien dense traffic, vehicle size should be
taken into account; all vehicles should not be m&siito be of the same type; and lane-
changing is not accounted for. As a result oferesd other problems, kinetic models
have had limited success [8].

C. Car-following models

Car-following models assign an equation of motimeach vehicle. This equation is
analogous to the Newton’s equation of an indivichaticle in a classical system of
interacting particles. A vehicle is modeled apoggling to the stimuli of the
surrounding traffic by accelerations and decelerati In the earliest and simplest
models, the difference in velocities betweenrfi@nd +1)" vehicle was assumed to be
the only stimulus for the™ vehicle, leading to the equation of motion

(0= 2 (5,00 = 5,0). (14)

wherer sets the time scale. Such models are easily edléptake into account such
factors as delayed driver reaction (e X(t) goes toX,(t+T)), nonlinear response to
stimuli (nonlinearx terms), and response to multiple vehicles ahead, fen.2(t) terms).
The weakness of car following models is that, imfe complex enough to be realistic,
they involve several phenomenological parametesrtiust be calibrated. In addition,
they assume that the vagaries of driver behaviobesapproximated, at least on average,
by a manageable continuous function [8].

D. Cdllular automata models

Cellular automata models are discrete in space, tamd velocity, and are thus ideal for
computational work. Space is generally discretgedhat a cell is occupied by one
vehicle at most. Time evolution follows a set infigle rules containing stochastic
elements [5].

One simple CA model that can reproduce many obtiserved features of traffic is the
Nagel-Schreckenberg (NaSch) model. The statevehilen is characterized by a
positionx, and a velocity, 0 {0, 1, 2, . . . ¥mad. The gap between th#” vehicle and
the vehicle in front of it isl, = X,+1 —Xn. At each timestep, the arrangement of vehicles
on the space lattice is updated in parallel acogrth four steps:

1. Acceleration: 1fVy <Vmax Vn » MIiNVy + 1, Vimay).

2. Deceleration due to other cars:dif< v, Vo - min(vy,, d, — 1).

3. Randomization: If, > 0,v, - max{,— 1, 0) with probabilityp.

4. Vehicle movementx, — X, + V.
Step 1 models the desire of drivers to drive fattp 2 prevents collisions; Step 3
accounts for natural fluctuations, as well as idtimng an asymmetry between



acceleration and deceleration; and Step 4 movegethiele with the speed determined in
the previous three steps [5].

Even this very simple model produces a fundametidégiram with a free flow branch

and a congested branch. Though the NaSch diagieas some details of the empirical
diagram, refinements can reproduce the entire @mgrThese include making the
probability in Step 3 velocity dependent and addingcipation of velocity, time-delayed
acceleration, and more refined braking. When theeements are made, CA models
can reproduce all three traffic phases, as wadlgaseing with empirical single-vehicle
data in all phases. In addition, they can repredbe observed coexistence of phases [5].

The NaSch model also exhibits spontaneous jam fimmaas shown in Figure 4.
Spontaneous jam formation may be understood asaarehe of overreactions by the
drivers; this result is made possible by Step 3 [5]

—— x 1km] space

time

o N R N Y
RN AR

E N\ AN \ ~- . e B
Figure4. Trajectories of single cars showing spontaneous jam faxmatieft: Empirical data; Right:
Computer simulation using the NaSch model. Each numter.0,. v,ox= 5 gives the velocity of the
corresponding car (from [5]).
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V. Conclusion

Empirical studies of traffic have revealed the pres of multiple phases, and have
shown that traffic jams may form spontaneouslyve®a methods from physics have
been applied to modeling traffic, with varied sugxe The most successful approach
seems to be cellular automata, which has reprodaitgeneral empirical features.

While models have successfully reproduced the geeenpirical features, much remains

to be done as additional refinements are made whanie accurately reflect the behavior
of real drivers and real vehicles.
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