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Abstract

In this essay, we will consider the interplay of quenched disorder with frustration
and how it gives rise to emergent behavior. The field was experimentally motivated
by an observed phase transition and properties of structural and spin glass phases.
The latter provides a natural setup for our discussion and we will focus on Edwards-
Anderson and Sherrington-Kirkpatrick models originally suggested to describe spin
glasses. In the process, we will get acquainted with replica theory, the concept of
replica symmetry breaking and discuss its physical meaning.
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1 Introduction

In order to introduce the subject of spin glasses we will first define what we mean by spin
glass, discuss its crucial features and pose several important questions that we will focus on.

Spin glass is a an ordered state of magnetic system with frustration due to quenched
disorder.

Remark: The term spin glass is used both to mean the ordered phase of a system as
well as a material.

Sometimes a picture is worth a thousand words, which is why before we dive into detailed
description, we give a pictorial comparison of a square lattice ferromagnet with spin glass
on Fig. 1.

Figure 1: Spin configuration of ferromagnetic and spin glass phases.

Now lets unpack the definition. By quenched we mean disorder that is frozen and does
not change on the time-scale of observation. Now imagine a random system of magnetic
moments. Depending on the sign of interaction between two magnetic moments they try to
align or anti-align. It is not hard to imagine that in a random system of magnetic moments
many magnetic moments will be in conflict with each other. This is what we call frustration.

It is precisely the interplay between quenched disorder and frustration that causes the
unusual behaviour of spin glasses, but also creates great challenges for analytical treatment.
Note that frustration does not imply quenched disorder and visa versa. For instance, in a
pure lattice with basis anti-ferromagnetic frustration is easily attained in cycles with odd
number of members. Likewise, quenched disorder may be present without frustration in
systems with ferromagnetic interaction.

Naturally, the high temperature state of spin glasses is characterized by thermal fluc-
tuations with no magnetic order. However, as the temperature is lowered such magnetic
systems undergo a transition into an ordered state, with:

〈si〉t 6= 0 (1)

where the average is taken over times much longer than some microscopic scale. One could
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say that spin freezing takes place. However, due to disorder, in thermodynamic limitN →∞:

1

N

∑
i

〈si〉t e
ik·ri = 0, ∀k (2)

Clearly some kind of ordering happens at low temperature, but its nature is hard to describe
due to quenched disorder. This brings us to an important question. Q: What is an order
parameter characterizing the spin glass phase? Furthermore, in the LGW paradigm we
always associate a broken symmetry with a phase transition. This poses another question.
Q: What symmetry gets broken in the spin glass transition?

Before we start answering these questions, we will make a brief historic digression and
describe how this field was motivated experimentally. This will not only provide us with
physically relevant context, but also will unveil some unexpected features of spin glasses
that we will try to explain in later sections.

2 Dilute Magnetic Alloys

Materials that we now call spin glasses were first produced by introducing a small amount
(up to several percent) of magnetic impurities into a metallic non-magnetic host. Typically
the latter was a noble metal, such as gold, silver or copper. As a magnetic impurity iron
or manganese were usually used. As early as the 1930’s it was already know that these
materials possess some unusual properties, such as the behaviour of electric conductivity
at low temperatures. In the 1960’s Kondo formulated a model [1] to explain a minimum
in electrical conductivity as a function of temperature in very dilute magnetic alloys. This
model assumes that each magnetic impurity does not feel the presence of any other. This
gave birth to the Kondo problem, which played a prominent role in 20th century condensed
matter physics and was only resolved with formulation of renormalization group.

Setting aside highly diluted alloys, another productive direction turned out to be the
study of properties of alloys as a function of concentration of magnetic impurity. The idea
was to bring the concentration high enough, so that the interaction between the impurities
is not negligible. And indeed it was observed, for instance in gold-iron alloys by Cannella et
al. [2] (Fig. 2a) at a concentration of iron of several percent, that magnetic susceptibility
as a function of temperature acquires a peak. This peak was a clear evidence of magnetic
ordering from a paramagnet to what we now call a spin glass.

Many other remarkable experimental observations were made on spin glasses in the
1960’s to 1980’s. For instance, if a spin glass material is cooled in a non-zero magnetic field,
then even after removal of the field there is a remanent magnetization [4]. The latter relaxes
away over time, but very slowly. A related feature of spin glasses is magnetic hysteresis (Fig.
2b)[3], which is a history dependent response of magnetization to external magnetic field.
Both of these properties of spin glasses display dependence on history, which is characteristic
of systems that are far from equilibrium. Another fascinating property of spin glasses is
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(a) Magnetic susceptibility of
Au-Fe alloys as a function of
temperature for several Fe-
concentrations: c=1%, 2%,
5%, and 8% [2].

(b) Hysteresis cycle of Au-Fe alloy with Fe-
concentration c=8% at 4.2 K [3].

Figure 2

revealed in aging experiments [5], in which one quenches the system in a magnetic field
below the spin glass transition temperature. The field is not switched off right away, but
rather after a waiting time tw. Remarkably, after the field is turned off, the rate of decay is
dependent on the waiting time tw.

In this essay we will not try to qualitatively describe these complicated memory effects.
However, we can fairly easily get an appreciation and qualitative picture for them. Imagine a
multidimensional space with each spin orientation being a parameter and an energy surface
that represents a particular configuration of disorder. Due to the random nature of the
latter, such a surface will be highly irregular (Fig. 3), with many troughs and crests. Then
if one imagines a system performing a random walk on this rugged landscape, it is easy to
see that the system will constantly get stuck in local minima, until a large enough thermal
fluctuation will free it. This demonstrates a high level of metastability inherent to spin
glasses. It also reveals the connection of spin glasses to broader complexity science and
topics such as protein folding.

Before we proceed to the issue of how we can build a statistical model that describes
spin glasses, lets take a closer look at the interaction that produces spin glass behaviour.
Although all spin glasses are magnetic by definition, not all them are magnetic alloys. Many
spin glasses are insulators with magnetic impurities. So what is the unifying feature of
the interaction in spin glasses? It turns out that direct dipole-dipole interaction between
magnetic moments is too weak to produce the observed behavior. Rather then interacting
directly, it is mediated by electron scattering, which leads to the RKKY exchange interaction.
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Figure 3: Sketch of a rugged landscape.

The latter oscillates with distance:

J(r) = J0
Cos[2kF r + φ0]

(kF r)3
(3)

where J0, φ0 are constants and kF is the Fermi momentum of the host material. It is precisely
this oscillation that results in ferromagnetic and anti-ferromagnetic interaction being equally
likely between a pair of magnetic impurities. And since the impurities do not migrate on
the timescale of experiment, this results in frozen-in disorder.

3 Averages and Replicas

Given the set of behaviours that we described in the previous section, one is faced with a
question: Q: What is the simplest model that incorporates universal features of spin glasses?
Such a model was suggested by Edwards and Anderson in 1975 [6]:

H = −
∑
〈i,j〉

Jij~si · ~sj − ~h ·
∑
i

si (4)

where 〈i, j〉 designates summation over the nearest neighbours and ~si is an n-vector. The
EA Hamiltonian resides on a d-dimensional cubic lattice with one spin per site. Note that
the disorder is incorporated in the interaction between spins rather then their position. One
typical example of the probability distribution of interaction strength is Gaussian:

P (Jij) =
1√

2π(∆Jij)2
exp
[
− (Jij − J̄ij)2

2(∆Jij)2

]
. (5)

Although we spoiled the role of disorder and frustration from the get go, it was the insight
of Edwards and Anderson to suggest the simplest model that displays these features. An
even simpler model that exhibits glasslike behavior is an Ising EA model:

H = −
∑
〈i,j〉

Jijσiσj − ~h
∑
i

σi (6)
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where σ = ±1 and Jij takes values from a random distribution analogously to EA model.
Note the difference in our description of thermal and quenched disorder. “Thermal” disorder
is conventionally taken into account by assignment of different probability weights derived
from a Hamiltonian, but quenched disorder parameterizes the Hamiltonian itself. In fact
there is infinitely many such Hamiltonians. At first sight this presents a formidable challenge.

Q: How can one derive universal features of systems with frozen-in disorder that are not
produced by a specific instance of Hamiltonian?

The answer to this question naturally leads to a discussion of statistical averages and
the method of replicas. Let’s assume that quenched disorder can be described by a highly-
multidimensional random variable X, which instantiates the Hamiltonian H[X]. One com-
mon quantity of interest is the annealed average. For instance, the free energy of a system
given by:

F = −kBT Log
{
Z[X]

}
X

(7)

Z[X] = Tr Exp
[
− βH[X]

]
(8)

where {· · · }X gives the average over all configurations of disorder. Here the average is taken
over all partition functions, rather than the free energy. However, it turns out the annealed
average is not appropriate for describing spin glasses. One can use the annealed average if
an observation time is much larger than the fluctuation time of random variables. Since spin
glasses do not exhibit disorder fluctuations on the timescale of observation, we do not have
the luxury of straightforward averaging over all configurations of x. We are thus faced with
the problem of calculating properties of a system in a particular configuration of disorder.

Here the thermodynamic limit comes to our rescue. The random variable has macro-
scopic dimensionality and therefore in certain cases we can average over its probability dis-
tribution P [X]. The subtlety lies in which quantities can be averaged in this way. Consider
a system that can be split into a macroscopic number N1 of macroscopic subsystems of size
N2. Since the coupling between their interfaces is suppressed by a factor of 1/N2 in compar-
ison to the bulk, extensive quantities can be averaged over all subsystems. This property is
called self-averaging :

lim
N1→∞

{
A[X]− {A[X]}X

}
= 0 (9)

Therefore in our aforementioned example of free energy calculation, rather than averaging
over partition functions one has to average over free energy, which is an extensive quantity.
It can be shown [7] that the annealed average, over partition functions, provides an upper
bound for quenched averages of extensive quantities. It the fact that we have to average the
free energy, which contains the random variable inside the logarithm, that makes analytic
treatment of spin glasses so tricky. To resolve this issue several methods were introduced,
one of which is the replica method.

To motivate the replica method consider the following relation:

{Log[Z[x]]}X = lim
n→0

1

n

({
Zn[X]

}
X
− 1
)

= lim
n→0

∂

∂n

{
Zn[X]

}
X

(10)
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where we used an ' 1 + nLog[a] for small n. Using this simple relation we moved from
averaging logarithms to averaging over n-replicas of the same system, and the consequent
limit of n→ 0. The new partition function that we average over is:

Zn[X] =
n∏
µ=1

Exp[−βH[X,Sµ]] = Exp[−β
n∑
µ=1

H[X,Sµ]] (11)

where µ is a replica index and Sµ a collective variable for all the spins in µ’s replica. This
partition function may be calculated for an integer n and needs to be analytically continued
to real n in order to take the limit of n → 0. According to our simple derivation, we need
to take the limit n → 0 before N → ∞. However, we would like to perform the average
in thermodynamic limit before analytic continuation to real n. It is currently believed that
such reversal of order of limits does not cause any problems [8]. However, as we will see
soon, another very important issue related to symmetry upon interchange of replicas may
still arise when we analytically continue replica number.

To demonstrate the issue, consider an integer number of replicas n. We first take a
thermodynamic limit, which allows us to perform the average:

Z(n) =
{
Zn[X]

}
X

= Tr Exp[−βHeff (n)] (12)

where we introduced an effective Hamiltonian. Unlike the original Hamiltonian, it has no
disorder and is translationally invariant. But there is a price to pay. The original independent
replicas are now coupled to each other. However, it is clear that the effective Hamiltonain is
invariant under permutation of replicas, it has replica symmetry. This may cease to be the
case when we analytically continue and send n to 0, causing replica symmetry breaking.

4 Sherrington-Kirkpatrick Model and Replica

Symmetry Breaking

In the previous section we have offered a minimal model, EA model, that contains all the
essential ingredients for description of spin glasses. However, we still have not given an order
parameter that becomes non-zero at the onset of the spin glass transition. Such an order
parameter was proposed by Edwards and Anderson [6] along with their model:

qEA = lim
N→∞

1

N

∑
i

〈σi〉2t . (13)

This definition pertains to Ising-type models and assumes taking the thermodynamic limit.
As before, the average is taken over a time much longer than microscopic scale. In the high
temperature phase, 〈σi〉t = 0 and thus qEA = 0. In the spin glass phase , 1

N

∑
i 〈σi〉t = 0 due

to random orientation of frozen-in spins, but this difficulty is circumvented by squaring the
magnetization at each site. In principle, now we have all the tools to describe the thermo-
dynmics of EA spin glass. However, analytic treatment of such models is very challenging.
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Q: How can we simplify the EA model while preserving spin glass behaviour?

Quenched disorder in spin glasses is a manifestly non-perturbative effect. We are thus
compelled to resort to another common method in statistical physics, mean field theory. Such
an analysis was first given by Sherrington and Kirkpatrick [9] in the form of an infinite-range
EA Ising model:

H[J, S] = −
∑
〈i,j〉

Jijσiσj −
∑
i

hiσi (14)

where 〈i, j〉 designates summation over each pair in the sample and Jij is drawn from a
Gaussian distribution:

P (Jij) =

√
N

2π∆J2
Exp

[
−
NJ2

ij

2∆J2

]
(15)

which is the same for arbitrary i and j. Note the first moments of this distribution:

[J ] = 0 [J2] = ∆J2/N (16)

which were chosen to ensure the independence of energy density from the number of spins
N . Using this probability distribution:

Z(n) =
∏
i,j

∫ ∞
−∞

dJijP (Jij)
∑
{σ}

Exp
[
β
∑
a

∑
i,j

Jijσ
a
i σ

a
j + β

∑
a

∑
i

hiσ
a
i

]
(17)

To clarify this loaded expression, the integral over Jij is taken to average over disorder. The
sum over {σ} is taken to account for all spin configurations. The sum over a represents
summation over all replicas. And lastly, there are summations in the exponent over all the
sites of the spin glass. Now since disorder is assumed to be Gaussian distributed, we can
easily perform the integral over Jij. Since we will eventually take the thermodynamic limit
N → ∞, we only keep the terms that are leading order in N . Furthermore, we can also
perform the Hubbard-Stratonovich transform in order to turn quartic terms into quadratic
using the identity:

Exp[ax2/2] =
1√
2πa

∫ ∞
−∞

dy Exp[−y2/2a+ xy] (18)

If we then assume the magnetic field to be constant, after all these steps we arrive at:

Z(n) = Exp[−Nnβ2∆J2/4]

∫ ∞
−∞

∏
a<b

{
β

√
N

2π
dqab

}
Exp

[
N

2
β2∆J2

∑
a<b

q2
ab+

+N Log
[∑
{S}

Exp
[
(β∆J)2

∑
a<b

qabS
aSb + βh

∑
a

Sa
]]]

(19)

where we have introduced n variables Sa = ±1, one for each replica. Furthermore, there are
n(n−1)

2
variables qab, that may be thought to constitute a symmetric matrix with 0’s on the

diagonal. The latter fact is caused by (Sa)2 = 1.
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Now a thermodynamic limit may be taken allowing us to calculate the integral in Eq.
19 using the method of steepest descent. Then the free energy density is:

f = −kBT lim
n→0

{
β2∆J2

4
− β2∆J2

4n

∑
a,b

q2
ab +

1

n
Log

[∑
{S}

Exp[L]
]}

(20)

where we defined:
L = (β∆J)2

∑
a<b

qabS
aSb + βh

∑
a

Sa (21)

and qab satisfy the saddle-point conditions:

∂f

∂qab
= 0. (22)

At this point Sherrigton and Kirkpatrick guess the qab matrix to have the following form:

qab = q for a 6= b and qab = 0 for a = b (23)

Figure 4: Magnetic susceptibility without external field (solid) and with magnetic field

H = 0.1∆J (dotted) for a) [J ]
∆J

= 0 and b) [J ]
∆J

= 0.5 [9].

Note that this form of qab is consistent with ”replica symmetry”. Using this form of
matrix qab we can easily evaluate the expression for free energy in Eq. 20

f = − ∆J2

4kBT
(1− q)2 − kBT√

2π

∫ ∞
−∞

dz Log
[
2Cosh

[∆J√qz + h

kBT

]]
Exp[−z2/2] (24)

where q is given by the self-consistency condition:

q =
1√
2π

∫ ∞
−∞

dz Tanh2
[∆J√qz + h

kBT

]]
Exp[−z2/2] (25)
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and is equal to the Edwards-Anderson order parameter (Eq. 13).

We thus used the replica method to derive the free energy of the SK model. Our solution
was an inspired guess by Sherrigton and Kirkpatrick motivated by replica symmetry. From
our final expression for free energy in Eq. 25, one can see that without an external magnetic
field, there is only one solution above the critical temperature Tc = ∆J , which is q = 0.
Above Tc another solution for q appears, which corresponds to the spin glass transition.

Furthermore, from the free energy all thermodynamic parameters of the model may be
derived. Remarkably, as was shown by Sherrigton and Kirkpatrick in [9] (Fig. 4), magnetic
susceptibility has a cusp at the transition temperature Tc. These is great news! Not only
does the model predict a spin glass transition, it also reproduces some of its experimentally
observed features. But there is bad news too. At small temperatures the Sherrington-
Kirkpatrick (SK) solution predicts negative entropy. Clearly this is an unphysical result
that was realized already by the authors of the model. It was quickly realized that this issue
stems from taking the limit n→ 0, and resolving this problem necessitated an introduction
of a new concept, replica symmetry breaking.

5 Breaking the Replica Symmetry

Q: Where did our replica symmetric calculation for the SK model go wrong?

If we go through the calculation and “check our premises”, we can spot the resolution.
It lies in our cavalier assumption that the replica symmetry is preserved in the limit n→ 0.
Although the SK solution satisfies:

∂f

∂qab
= 0 (26)

that does not imply that the free energy is minimized. We can clearly see the origin of the
problem by looking at the stability of the SK solution. Near the stationary point the free
energy is equal to:

f [qab] = f [qSPab ] + kBT lim
n→0

1

n

∑
a<b,c<d

Rab,cdδqabδqcd (27)

where f(qSPab ) is a saddle point free energy. Depending on Rab,cd, the saddle point free energy
may or may not be stable with respect to fluctuations around qSPab . Stability of the saddle
point is synonymous with having a local minimum, which is realized when the Hessian matrix
Rab,cd has only positive eigenvalues.

Careful analysis of the eigenvalues of R has been done by Almeida and Thouless [10]. It
shows that for positive integer number of replicas all the eigenvalues are positive. However,
when 0 ≤ n < 1, there always exist a small enough temperature such that the SK solution
becomes unstable. The result of their calculation is shown on the Fig. 5. This plot depicts
two phases in the parameter space of temperature and magnetic field. Above the AT line,
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Figure 5: Almeida-Thouless (AT) line for SK model that separates the paramagnetic and
spin glass phases [10].

the SK solution is unique and exact. This region corresponds to the paramagnetic phase.
Below the AT line, the SK solution becomes unstable and gives way to the replica symmetry
broken solution. This region of the parameter space corresponds to the spin glass phase. One
can say that the replica symmetry gets broken to make the eigenvalues positive, stabilizing
solutions. The AT line itself signals the spin glass transition.

Unfortunately, there are many ways how replica symmetry can be broken, and there is no
established way for determining qab. In practice one makes a guess of qab with some variational
parameters and checks it a posteriori. Such an ansatz for SK model was formulated by Parisi
[11]. To arrive at Parisi solution, we start from the SK form of the n× n matrix qab. Then
we split this matrix into blocks of size m ×m along the diagonal (Fig. 6) and change the
values of the off-diagonal elements in these blocks to a new constant. Now we repeat this
step for the new blocks (N − 1) more times. We arrive at a sequence of block sizes and
corresponding q-values:

n ≡ m0 ≥ m1 ≥ m2 ≥ ... ≥ mN ≥ 1 q ≡ q0, q1, q2, ..., qN (28)

Figure 6: Schematic representation of replica symmetry breaking [12].

This sequence is constructed for some positive integers n and N . We now analytically
continue this sequence to n→ 0 and N →∞. This flips the signs in the inequality for block
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sizes:
0 ≤ m0 ≤ m1 ≤ m2 ≤ ... ≤ mN ≤ 1 (29)

and makes m a continuous variable:

mi → m[x], m[x] ∈ [0, 1]. (30)

The information about the replica symmetry breaking is then encoded in the function q[x]
on a unit interval. This function is called the Parisi order parameter and the free energy
may be expressed in terms of this function [13]:

f = − ∆J2

4kBT

(
1− 2q[1] +

∫ 1

0

dx q2[x]
)
− kBT√

2π

∫ ∞
∞

dz G
[
0, H +

√
q[0]z

]
e−z

2/2 (31)

where G[x, y] is given by the differential equation:

∂G

∂x
= −∆J2

2

∂q

∂x

(
∂2G

∂y2
+ x

(
∂G

∂y

)2 )
(32)

with boundary condition G[1, y] = Log[2Cosh[βy]]. The Parisi ansatz for replica symme-
try breaking results in an expression for the free energy, which as advertised, needs to be
evaluated variationally by varying q[x]. Furthermore, as was shown by C. De Dominicis et
al. [14], the Hessian matrix for Parisi solution has only non-negative eigenvalues and thus
it is stable. This resolves the central issue that prompted the introduction of the replica
symmetry breaking in the first pace.

6 Physical Meaning of Replica Symmetry Breaking and

Concluding Remarks

To summarize our discussion of the mean field theory of the spin glass transition, we intro-
duced the SK model and suggested a solution using the replica method. We consequently
discussed the applicability of the SK solution and stressed the necessity of replica symmetry
breaking. The latter corrected the failings of the SK solution, but it has the downside of
being seemingly very abstract. On the face of it, it is not at all clear how one should inter-
pret the breaking of the permutation symmetry between replicas. Somewhat surprisingly,
this mathematical trick has a definite physical interpretation. It has to do with the rugged
energy landscape that we introduced before. Above the AT line, the only minimum of the
energy landscape of the SK model is the replica symmetric saddle point. However, as we
cross the AT line, many saddle points appear, some of which are minima. In thermodynamic
limit the energy barriers between these minima diverge forming valleys or “pure states”. The
system gets trapped in these valleys, breaking ergodicity. This is precisely the effect that
necessitates breaking the replica symmetry.
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In this essay, we focused on how quenched disorder and frustration, which define spin
glasses, give rise to a multitude of complex behaviors. To describe these behaviors, we used
mean field theory. In the context of spin glasses, mean field theory displays rich behavior,
which required introduction of replicas and the breaking thereof. However, this essay barely
scratches the surface of mean field theory of glasses and did not consider the theory of spin
glasses beyond mean field.

Furthermore, although the field was established in the attempt to describe the magnetic
behavior of diluted magnetic alloys, it has found many applications beyond its original scope.
Many connections to complexity theory were found, which include protein folding, neuronal
networks, and many other. It is therefore a fascinating example of why deep scientific
mysteries are worth pursuing irrespective of their immediate applicability or glamour.
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