The Emergence of an Arrow of Time from Microscopic Principles

Brandon Buncher

Abstract

The arrow of time, or an asymmetry in the allowed direction of travel through time,
is a fundamental property that differentiates space from time; however, its mechanism
of existence is poorly understood. This work will detail explanations for the arrow
of time arising from quantum/statistical mechanics and thermodynamics, identifying
their pitfalls and describing experimental tests.
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1 Introduction

The arrow of time is a time-reversal asymmetry exhibited by physical phenomena at both
the classical and quantum level. Though the laws of physics are assumed to be equivalent
under the reversal of time (save for some rare weak nuclear force interactions [1]), there
exist physical observables that universally distinguish between early and late times [2]. A
physical example arises from classical physics: suppose one records a game of pool on a
frictionless table, beginning with the break, and assume that the balls exhibit perfectly
elastic collisions. When played forwards, the video displays the break, followed by a chaotic
sequence of collisions between the pool balls [3]. When viewed in reverse, the balls begin
scattered, exhibit a number of collisions, and finally coalesce into the triangle exhibited prior
to the break. Hypothetically, this scenario is perfectly valid both forwards and backwards,
as elastic collisions are time-reversal invariant. However, the conclusion of the reversed
video provides a distinct marker: while it is physically possible for an apparently randomly-
distributed collection of particles to create a perfectly motionless triangle at some point in
time, it is exceedingly unlikely. Thus, a statistical arrow of time appears to emerge from a
set of laws that is entirely time-reversal invariant [3].

The observable most commonly used to distinguish between early and late times is en-
tropy [4]. As entropy will increase over time at large scales, entropy defines an arrow of time
on classical scales. In the pool analogy described previously, the early-time behavior (in
which the pool balls are motionless and in a triangle) corresponds with a low-entropy state,
while the late-time behavior (in which the pool balls are moving randomly) corresponds with
a high-entropy state [3]. Calculating the entropy of the two states rigorously quantifies the
statistical unlikelihood of the events described in the reversed video.

However, at the quantum level, it becomes more difficult to use entropy as an indicator
of the passage of time due to quantum and thermal fluctuations [2]. These inhomogeneities
substantially affect the entropy in small regions, sometimes leading to the appearance of local
decreases in entropy over time. Treating the local set of states as a system, this violates the
second law of thermodynamics, demonstrating that entropy may not provide an adequate
metric of time progression at the microscopic level [2]. Regardless of the effects of quantum
and thermal fluctuations, however, it is not surprising that an arrow of time may arise at a
macroscopic level: as quantum and thermal fluctuations are uncorrelated with one another
and affect the overall energy distribution very little on large scales, they may “wash out.”
Hence, in macroscopic systems, the dominant behavior of the system is consistent with the
second law of thermodynamics, allowing the emergence of a time-reversal asymmetry [4].

However, as the laws of physics are time-reversal invariant, it is remarkable that the
dominant behavior at large scales is not time-reversal invariant [2]. This paradox, known
as Loschchmidt’s paradox, draws into question the physical mechanism of the second law
of thermodynamics, and hence, the definition for the arrow of time [2]. A resolution of
Loschmidt’s paradox would have deep consequences on our understanding of spontaneous
symmetry breaking and the emergence of broken symmetries.

Due to the presence of quantum/thermal fluctuations, Loschmidt’s paradox, and several
other inconsistencies, the fundamental theory describing the emergence of the arrow of time
from microscopic scales is incomplete. In this work, I will discuss different phenomena that
lead to the emergence of an arrow of time, along with their ability to explain time at a



microscopic level. In addition, I will present experimental results related to the emergence
of an arrow of time and discuss their compatibility with theoretical descriptions. An under-
standing of the emergence of an arrow of time would have profound consequences on our
understanding of the fundamental nature of time. A fundamental differentiator between
general relativity and quantum mechanics/quantum field theory lies in their description of
time, so this revelation may provide insight into merging these disparate theories.

Note that, though there exists a substantial body of work that attributes the emergence
of time-reversal asymmetry to currently unknown time-asymmetric processes in quantum
mechanics and/or classical mechanics; however, these are not explored in this work.

2 Emergence from Entropy: The Boltzmann H-Theorem
Unless otherwise noted, all information in ths section was found in [2].

As entropy increases with time, entropy provides a marker for ordering events. This
relationship is quantified through the Boltzmann H-Theorem.

Consider the quantity
H(t) = / f(r,v,t)In f(r, v, t)drdv,
0

where F is the energy of a particle and f is the energy distribution function at a time ¢.
Using the Boltzmann equation,
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and assuming that the particles exhibit uncorrelated positions and velocities, it may be
shown that %I < 0 for all f. Note that while the position and velocity assumptions have been
historically controversial, they are supported by experimental results such as [5]. As H may
be identified with the negative of the Shannon entropy, i.e. S(t) = —H (t), this indicates that
entropy increases over time for all distribution functions f. Thus, for an arbitrary system
of particles, the entropy will increase over time, providing a method for assigning temporal
order in the absence of a clock by associating later times with higher entropy.

Q?

However, problems arise from the use of Boltzmann’s H-theory. As argued by Loschmidt,
Boltzmann’s construction was created entirely from classical mechanics, which is time rever-
sal invariant. Thus, questions are raised as to how an irreversible process may arise from
timer reversal invariant laws. In addition, the theorem does not take into account quantum
and thermal fluctuations, which may have great effect for small numbers of particles.

3 Emergence from Newtonian Mechanics
Unless otherwise noted, all information in this section was fonud in [6]

A simpler identification of an arrow of time, albeit in a more restrictive case, may be
found using purely Newtonian mechanics. Consider the combination of two states of an ideal
gas with probability density functions p; and p;. Assuming that the velocities and positions
of the particles are uncorrelated with one another, the equation of state obeyed by particles
in a state s is

9p(s)
ot

= gains — losses,



where “gains” and “losses” refer to the proportion of particles attaining or leaving state
s, respectively. Here,

gains o p(—s) (1)
losses o p(s).

If there are more particles in state s (that is, if p(s) is large), there will be a greater number
of particles that can transition to state —s; hence, the second equation holds. Similarly, if
there are more particles not in state s (that is, if p(—s) is large), there will be a greater
number of particles that can transition to state s; hence, the first equation holds. However,
note that this is not entirely general: for example, in systems that exhibit a “snowball effect,”
where an accumulation in the density of one state leads to increased gains, this construction
does not apply. Alternatively, a more complicated equation may related “gains” and “losses”
with p. However, assuming that an increase in the concentration of one state will lead to
some sort of increase in losses from that state, similar results will arise, as the system will
still approach a stable equilibrium.

Define p; = p(s1) and py = p(s2), where s; and sy are two separate states of an ideal gas.
Making the assumptions in (1), the equation of state is

0
% = K(pz2 — p1)
0
;; = K(Pl - p2)7

where K is a constant of proportionality. Solving these equations yields
p1(t) = Cre ™™ cosh (Kt) + Coe ' sinh (Kt)
pa(t) = Cre X' sinh (Kt) + Coe " cosh (Kt)

These solutions both converge to an equilibrium density function p., = pi(t > 0) =
p2(t > 0) = C; + Cy, which is defined by boundary conditions.

One may identify the flow of time with the degree of separation between the densities
(where a larger separation corresponds with a system that is further in the past). In this
way, an arrow of time emerges in this system without initially utilizing entropy or other
thermodynamic observables. Through a more complicated equation of state, this system
may be generalized to describe systems with a larger number of different states. In addition,
it will approximate some systems that are not ideal.

However, it may be shown that this construction is equivalent to the emergence from
entropic principles. Define the Shannon entropy as S = — ZZQ p; In p;; then

dsS P1
K —p)in (2L
dt (o1 = p2)In (ﬂ2>

Assuming that K > 0 and p; > po, % > 0. Hence, the entropy will increase monotoni-
cally over time. This indicates that the construction will suffer the same flaws as Boltzmann’s
H-theorem (the construction does not take into account quantum/thermal fluctuations and
fails to explain Loschmidt’s paradox). However, it does explain why entropy increases over
time, providing an alternate viewpoint for the source of an arrow of time.



It would be of interest to repeat this analysis using an equation of state that does not
assume that the rate of change of p(s) is proportional to the difference between gains and
losses.

4 Measurement of Entropy
Unless otherwise noted, all information in this section came from [4]

The previous methods for assigning an arrow of time at the quantum level require the
measurement of the entropy or local density of individual particles. As quantum and thermal
fluctuations are large at microscopic scales, it is important to take them into account when
measuring these quantities. In this work, the authors perform measurements of the entropy
of individual particles in non-equilibrium systems. It has previously been demonstrated
[7] that the Kullback-Leibler divergence acts as a measure of entropy for non-equilibrium
systems; this divergence is defined as [§]

Dr(PIQ) = Y Pl (5 )

The Kullback-Leibler divergence, which is always non-negative, effectively measures the
difference in amount of information between the probability distributions P and Q. It
may also be thought of as being the information “distance” between the states p and g;
however, note that it may not be formally interpreted as a distance because the expression
for Dy (P||@) is not symmetric under exchange of P and ). The entropy difference between
states pI” and p? , is defined as

(S) =tr [pf (np; —npl,)]. (2)

The authors aim to experimentally
verify this result by evaluating both
sides of Eqn. (2) independently. As
the right-hand side of Eqn. (2) is the
Kullback-Leibler divergence between a
state and its time-reversed counterpart,
a successful measurement will exper- system s
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transverse magnetic field and longitudi- tropy of individual particles. After performing a fast quench
using the magnetic field, the entropies of the particles in the

nal field-gradient pulses were applied to chloroform bath were measured [4].

the qubit; a diagram of this setup may

be seen in Figure 1. The pulses had a frequency kgT/h = 1.56 + 0.07 kHz, correspond-
ing to a temperature of T = 75 4+ 3 nK, which was the *C nucleus temperature. The
system was driven from equilibrium using a fast quench of its Hamiltonian ]:ItF . A quan-
tum quench occurs when the Hamiltonian is changed suddenly, while “fast” indicates that



the alteration to the Hamiltonian was time-limited. In this case, the fast quench altered
the unperturbed Hamiltonian by performing the transformation H —» H+ Hf , where
HF = 2mhv(t) [01, cos p(t) + ay sin ¢(t )} Here, o are the Pauli spin operators, ¢ = 7, and
v(t) = g (1 — f) + v, £, the linear modulation over the radio-frequency field during a time
7. The fast quench lasted for a time 7 = 10~* s. In addition, vy = 1.0 kHz and v, = 1.8
kHz. The fast quench will cause the spins of the nuclei to rotate, which requires work and
alters the system’s entropy.

To determine the work and entropy production of the ¥*C nucleus due to the fast quench-
ing of the system, the authors examined a 'H atom in the chloroform bath. As 'H couples
o 13C, a natural interferometer was created, allowing the statistical analysis of processes of
time duration less than the characteristic time of the spin lattice, which was found to be
much greater than 10~* s. This provides justification for choosing 7 = 107* s

Performing these steps will provide information on the work and entropy production of
the time-forward Hamiltonian. To measure the time-reversed properties, the same steps
were performed using a time-reversed Hamiltonian H F .. beginning from the final state of
the time-forward process and ending at the initial state.

To measure the right-hand side of Eqn. (2), the spin state of the *C nucleus was tracked
as a function of time ¢ during the fast quench using Quantum-State Tomography (QST)
techniques. This will allow the reconstruction of the work performed by and entropy of
the 3C nucleus as a function of time. These measurements were performed for the time-
forward and time-reversed Hamiltonians. To measure the left-hand side of Eqn. (2), the
Tasaki-Crooks fluctuation relation [9] was used:

PYW) _ sw-ar)

PR-w) S
where P and PP are the probability distributions of the forward and backward states,
respectively, W is the work done by the system, and AF' characterizes the magnitude of
quantum and thermal fluctuations. The Tasaki-Cooks fluctuation relation is a generalization
of the second law of thermodynamics that takes into account quantum fluctuations; on
average, it implies that (S) = f((W) — AF) > 0. The probability distribution P(S) for
the irreversible work performed was measured using Nuclear Magnetic Resonance (NMR)
spectroscopy, extracting 3, W, and AF, allowing the reconstruction of (S). A plot of the

resulting probability distribution is displayed in Figure 1.

The mean entropy as measured by the process is displayed as a red line in Figure 2(a).
Here, it can be seen to be non-negative, demonstrating that the second law of thermodynam-
ics holds for quantum systems on average (while individual measurements may have exhibited
a negative change in entropy over time, the average change was net positive, indicating that
the negative results are likely due to the probabilistic nature of the measurements).

The mean entropies of the forward and backward states are displayed in Figure 2. The
two sides of Eqn. (2), represented by the dashed lines (left-hand side) and dotted lines
(right-hand side), are in agreement within the bounds of experimental error, indicating that
Eqn. (2) is supported. This directly verifies the existence of a thermodynamic arrow of time
at the quantum level by indicating that, even in microscopic systems, entropy increases in
time on average. Therefore, for quantum systems that are driven and uncorrelated /weakly-
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Figure 2: Plots of the data collected in [4]. (a) shows the probability density function of the system for the
net entropy change; note that the number of samples taken was not reported. The red dashed line indicates
the average entropy change, which is non-negative, indicating that the second law of thermodynamics was
upheld on average. (b) shows the average entropy production (dashed lines) and Kullback-Leibler divergences
(dots) between the forward and backward time states; the colors represent different quench durations. The
blue, green, and red markers represent 7 = 100 us, 7 = 500 us, and 7 = 700 us, respectively. Most Kullback-
Leibler divergence data points were within the error bounds of the average entropy production, strongly
indicating the existence of an arrow of time.

correlated, an entropic arrow of time does emerge at the microscopic level. However, note
that this is not general: in many everyday systems, particles exhibit non-negligible correla-
tions, so this does not construct a generally applicable arrow of time.

5 Emergence from Resource Theory
Unless otherwise stated, all information from this section was obtained from [1].

An alternative formulation of the arrow of time that sidesteps many of the issues of
classical approaches may be derived from information theory. The entropic arrow of time
at the macroscopic level arises due to the second law of thermodynamics, which states that
entropy increases with time. Because entropy increases due to irreversible processes, an
alternative viewpoint states that the arrow of time may be constructed by noting the start
and endpoints of irreversible processes. As measurements demonstrating irreversibility of
an interaction are easier to perform at the quantum level than those of entropy differences
of individual particles, this may provide a mechanism to quantify a universal arrow of time
at microscopic scales. In this paper, the authors demonstrate the emergence of an arrow of
time from resource theoretical techniques.

In resource theory, some states and operators are designated as “free.” Free operators

acting on a free state, a process called a “free transformation,” may only map that state into
another free state, and does so by performing no work. In this way, free transformations
act as analogues to (or, in some cases, are identical to) reversible processes. Using free
transformation, a thermodynamic order may be constructed: if a state p may transform to a
state o using only free transformations, then p occurs before ¢ in thermodynamic order. In
addition, it may be proven that an equilibrium state A may only transform to an equilibrium
state B if B has a lower free energy than A. As states typically evolve toward a state with
lower free energy over time, it is natural to use these two aspects to assign a thermodynamic
arrow of time that corresponds with the thermodynamic order: a state p occurs temporally
before a state o if p may be transformed into o using only free transformations.



However, problems arise when neither p nor ¢ may be transformed into the other using
free transformations, yet this transition is predicted by other theories or observed experi-
mentally. This situation occurs most commonly with incoherent states. It has been proven
that, for incoherent states p and o, a free transformation exists from p to o if the Renyi
a-divergences between p and thermal equilibrium is less than the Renyi a-divergences be-
tween o and thermal equilibrium for all a. The Renyi a-divergences between states p and

¢, Do (P||Q), are defined as [10]
—~ P(i)"
Du(PIIQ) = —In (Z ﬁ) 7

where P(i) (Q(i)) represents the discrete probabil-
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generalization of the Kullback-Leibler divergence because
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arrow of time

Present P
Dk (P||Q) = lim,—1 D, (P||Q) [10]. Observing the simi-
larities between the expression for the Renyi a-divergences
and for the Kullback-Leibler divergence, the Renyi a-
divergences may be interpreted as alternative methods of Past 5
weighting the Kullback-Leibler divergence. Figure 3: An example of a thermal

. . . cone diagram for a state p. T, (p) rep-
Using a lattice, the authors demonstrated the existence | .o future thermal cone. while

of partial ordering of thermodynamic states. It was as- J_(p) is the past thermal cone. Note
sumed that the free transformations consisted of Gibbs- the similarity to light cones from spe-
preserving operations, or operations that leave the ther- cial relativity [1].
mal equilibrium state unchanged. More formally, a map € is a Gibbs-preserving operation
if, for a Gibbs state v, £(y) = . Similarly, a matrix operator A is Gibbs-preserving if
Ay =~.

The thermal ordering of a set of states is defined by its thermal cone, named in analogy
to a light cone in special relativity. A state o is said to be in the future thermal cone T, of a
state p if p may be evolved into o using only Gibbs-preserving maps. Similarly, if a state o
may be evolved into p using only Gibbs-preserving maps, o is in the past thermal cone T_ of
p. A thermal cone diagram is displayed in Figure 3. In analogy to the light cone in special
relativity, events outside the thermal cone cannot be reached using only Gibbs-preserving
operations.

Consider two events, p and o. Let the state T_(p, o) consist of the set of all light cones
that contain both p and o in the past. Similarly, let T, (p, o) consist of all light cones that
contain both p and ¢ in the future. Physical, T_(p, o) is the set of all possible past states
consistent with the current forms of p and o, while T, (p, o) is the set of all possible futures
consistent with the current forms of p and o. For any T_(p, o), there is a unique 7_ such
that for every event 7 in the past light cone T_(p, o), 7 precedes 7_. Thus, 7_, the “join” of
p and o, represents the final state in the overlap between the past thermal light cones of p
and o that may evolve into either p or o; that is, it is their last shared past state. Similarly,
there is a unique 7, in T, (p, o) such that for every 7 in T, (p,0), 7 precedes 7. 7, the
“meet” of p and o, represents the earliest future state that may be evolved into by both p



and 7. A visualization of the join and meet of a set may be seen in Figure 4.

Using these definitions, a thermodynamic

lattice may be defined. For a set of

v{ w ’\’._f___ @@? > thermodynamically-ordered states Sg, if for each

/ AN\ | /' pair of states (p, o) there exists a join and a meet,

/, }‘::w; \ /pm\g Sy is a thermodynamic lattice, where p,o € Sy.
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i/ \/ This may be interpreted as follows: suppose an
é_f_ T PA initial state o evolves into a final state 3, both of
post which are on the thermodynamic lattice S;. For

Figure 4: A visualization of a join (a) and a . . .
meet (b). The join is the last place of intersection any other state v in the lattice, there is a ther-

in the past thermal cones of two states, while the modynamic “path” between o and 3 (a sequence
meet is the first place of intersection between the of thermodynamically-ordered Gibbs-preserving

future light cones of two states [1]. transformations that begins at « and ends at (3)
that “passes through” ~. Note, however, that for a partially ordered state, it may not be
possible for each state to evolve into any other. For example, it may be possible to construct
thermodynamic paths « — v — f and a — § — [, but it is not possible to construct
both of the paths a —- v — § — fora — § — v — (.

In this paper, the authors created conditions for the existence of partially-ordered ther-
modynamic lattices. In addition, they elucidated the relationship between the arrow of time
and partially-ordered thermodynamic lattices. For any system, a partially-ordered thermo-
dynamic lattice may be created at infinite temperature. For two-state systems, a thermo-
dynamic lattice may also be created at finite temperatures; however, for systems with more
than two states, the symmetry allowing the creation of the lattice is broken.

A thermal lattice provides substantial amounts of information on the arrow of time: the
existence of a thermal lattice describing a system implies that for any pair of states in that
system, there exists a unique state in the past consistent with those states and any other
state in the past. Similarly, it asserts the existence of a unique state in the future that is
consistent with both of those states and any other future states. Thus, a thermal lattice
defines a thermodynamic clock that maps exactly to the arrow of time by allowing one to
rigorously determine the thermodynamic order of each state in the system. Unless there
are partially ordered processes, the thermodynmaic order will correspond exactly with the
temporal order. The fact that a thermodynamic lattice cannot be created in three dimensions
at finite temperature implies that it is not possible to create an exact arrow of time from
a thermodynamic lattice, as there will always be some ambiguity in the thermodynamic
order of states. Note that this only precludes the emergence of an exact arrow of time from
thermodynamic lattices; other thermal constructions may be able to accomplish this goal.

Like the models discussed previously, this construction fails to account for quantum and
thermal fluctuations. These local disturbances can destroy the thermodynamic lattice by
altering the thermodynamic order through performing spontaneous non-Gibbs-preserving
transformations. In addition, the existence of partially-ordered processes implies that even
if a lattice may be constructed, it may not be possible to temporally order the states.

However, even though an arrow of time that lacks any ambiguity cannot be created from
a thermodynamic lattice, this does not preclude its emergence at large scales. Macroscopic
systems contain an enormous number of states, so inaccuracies on the temporal ordering



of individual processes will not affect the large-scale arrow of time substantially. In this
way, an effective arrow of time emerges for macroscopic systems. In addition, as the tem-
perature of the system increases, the thermodynamic order approaches that of a thermal
lattice, so for the high temperatures and large phase spaces observed in everyday life, this
construction does appear to explain the emergence of an arrow of time. In addition, if the
number of partially-ordered processes is small, then overall, the thermodynamic order will
correspond with temporal ordering, again allowing the emergence of a statistical arrow of
time at macroscopic scales.

6 Reversing the Arrow of Time with Quantum Correlation
Except where otherwise noted, all information in this section was found in [11].

Thus far, all models detailing the emergence of an arrow of time from thermodynamics fail
to assign temporal succession due to the possibility of quantum and thermal fluctuations. As
all of these methods map entropy to temporal succession, a quantum or thermal fluctuation
may cause local, time-limited disruptions in entropy. This may lead to a local decrease in
entropy over time. While this does not violate the second law of thermodynamics (as the
second law only applies to large-scale observations), fluctuations would create problems when
assigning an arrow of time to quantum processes, as they would create the appearance of
temporary time reversal. However, other effects may lead to the appearance of time reversal
at the quantum level, raising questions about the fundamental nature of time in microscopic
systems.

In this paper, the authors demonstrate that the arrow of time may be reversed at the
quantum level using initially correlated systems, resulting in heat flowing from cold to hot.
The authors began with two quantum correlated qubits, each of spin 1/2, created using 'H
and C nuclei drawn from a CHCI3 liquid that has been diluted in Acetone-d6. The qubits
initially have different temperatures, having been created in two different environments using
NMR techniques. The system is placed in a constant magnetic field and manipulated using
radio-frequency fields in order to study processes that take substantially less time than the
decoherence time.

Using the modulated magnetic field, an initial state is created of the form
P = PA @ P + Xas,

where state A is the hydrogen nucleus, state B is the carbon nucleus, x4 = «|01) (10| 4+
a* |10) (01| is a correlation term, and p; = # |0) represents the ground state of the

Hamiltonian H , while |1) represents the excited state. When o = 0, the systems are initially
uncorrelated; however, when a > 0, the systems exhibit an initial correlation.

Allowing heat to be pass from the hot qubit to the cold qubit will not require any work;
thus, the change in heat may be found by measuring the change in internal energy of the
two particles AFE;. This interaction will follow

Qa N OB
kT kgTg

> I(A: B),

where I(A : B) is the change in mutual information between the particles. I(A : B) is
defined by
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where S; is the von Neumann entropy of the state i and Ssp is the entropy due to their
correlation. For an initially uncorrelated system with T4 > T'g, the initial shared information
is 0; thus, the shared information can only increase. This implies that Q4 + Qp = 0, so

Q(1 1),
kg \Tp Ta) —
indicating that heat flows from the hot qubit (A) to the cold qubit (B), as would be
expected from classical thermodynamics. However, if the qubits are initially correlated, it

may be that
@o (L _ 1),
]{ZB TB TA -

because the mutual information may decrease during contact. This would imply that
heat could flow from the cold qubit (B) to the hot qubit (A), decreasing the entropy of the
system and indicating that the flow of time has spontaneously reversed.

To test these scenar-
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ric discord is the minimum
Bures distance between the
particles, where the Bures distance measures the difference in amount of statistical informa-
tion carried by the two particles. The geometric quantum discord may be measured directly
using QST techniques.

First, the situation in which o = 0 was tested. In this state, the normalized geometric
discord was statistically indistinguishable from 0, indicating that there was no statistically
significant initial correlation. The authors measured the internal energy, mutual information,
and geometric quantum discord for each qubit (plots are displayed in Figure 6), finding that
heat flowed from the hot qubit (A) to the cool qubit (B). In this case, the second law of
thermodynamics was obeyed, as entropy increased over time. This provided a control for
when o > 0.

10



Next, a non-zero o was tested. Measurements of the geometric discord of the system
yielded a non-negative, non-zero value for the initial state, corresponding with a > 0. Per-
forming the same measurements as before, it was observed that heat flowed from the cold
qubit (B) to the hot qubit (A); these results may be seen in Figure 6. As the arrow of time
corresponds with increasing entropy, this implies that the arrow of time was reversed at a
quantum level. This demonstrates that the arrow of time cannot be produced entropically at
the microscopic level, drawing into question the effectiveness of mapping the increase in en-
tropy to the march of time for quantum correlated systems. This does not directly contradict
the results of the previous paper: these results solely apply to intially correlated systems,
while the previous paper only examined driven, uncorrelated quantum systems. However, as
there does appear to be at least one quantum phenomenon in which an increase in entropy
cannot be mapped to the flow of time, this indicates that a thermodynamic arrow of time
cannot be generally applied to quantum systems [11].

However, note that this does appear to produce an arrow of time at large scales. As may
be seen in Figure 6, the reversal in the direction of time was only temporary; after enough
time, the net flow of was from hot to cold in both correlated and uncorrelated quantum
systems. As the scales of import when considering the second law of thermodynamics are
much longer than the duration of time reversal (~ 1 ms), the effects of time reversal due to
quantum correlation are expected “wash out” in classical settings.
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Figure 6: The data for [11]. A and B shows the time evolution of the energies of qubit A and B, respectively.
For uncorrelated system, heat travelled from the hot qubit to the cold qubit; however, for the correlated
system, energy initially flowed from cold to hot as the correlation between the states broke down. This
description corresponds well with C and D, which show the mutual information and relative quantum discord
of the two qubits: heat flowed from cold to hot while the mutual information and quantum discord were
low, then reversed when these quantities increased. E and F show various contributions to the entropy in
the system.

7 Conclusion

Interaction time (ms) Interaction time (ms)

Though it has been hypothesized that the arrow of time arises from classical thermodynamics
(namely, entropy) [2] [4], classical mechanics [6], and resource theory [1], various barriers,
including those discussed in [11], prevent its generalization to the microscopic level. Quantum
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and thermal fluctuations cause time to appear to flow backward in quantum systems for
short periods of time [2], and though these effects may be accounted for [4], additional
effects, such as quantum correlation[11], may fundamentally preclude its applicability for
microscopic systems. As these constructions demonstrate that time only emerges at large
scales as a result of spontaneous symmetry breaking at the microscopic level, this draws
into question the fundamentality of time. Also, if our basic understanding of time cannot
be applied to quantum systems, there must be an alternative construction that allows this
extension because the Schrodinger equation is time-dependent.

Additional research should be performed to construct a mechanism that produces time at
both the quantum level and classical level. Seeing that a thermodynamic approach may not
account for certain quantum effects, the emergence of an arrow of time from other theories is
an active area of research; for example, some authors have demonstrated the existence of a
time-reversal asymmetry arising from cosmological principles [12]. In addition, experiments
can be used to test the limits of a thermodynamic arrow of time. As discussed previously,
quantum correlated systems allow the reversal of time at microscopic levels, so it would be
of benefit to determine whether other quantum effects lead to similar situations. Answering
these questions may provide the information needed to explain the existence of time at
the macroscopic and microscopic scales, potentially yielding great insight into a theory of
quantum gravity and the fundamental properties of the universe itself.
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