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Abstract In this essay, we will discuss various models of real world net-
works, including random graph theory (Erdos-Renyi), percolation theory,
small-world networks (Watts-Strogatz), and scale-free networks.



Chapter 1

Random Graph Theory

1.1 Introduction

The first model of complex networks was given by mathematicians Paul
Erdos and Alfred Renyi, who introduced probablistic methods to study
graph theory. Although random graph models do not faithfully represent
some key properties of real world networks, random graph theory, due to
its mathematical rigor, still serves as a benchmark for theoretical study of
complex networks. Many concepts first studied in random graph theory (de-
gree distribution, clustering coefficient, characteristic path length, etc.) are
now indispensible in studying complex networks. In this chapter, we will
introduce the basics of random graph theory. Note that although proofs
will not given for the lack of space, results in this chapter can all be proven
rigorously.

1.2 Definition

We will start with some basic definitions. Mathematically, a graph is
defined by the following set of data: a (finite) set of vertices V and a (finite)
set of edges E, each edge connecting exactly two of the vertices. Certainly
we can study infinite graph, but for our purpose of modeling real world
netwokrs, it is hardly appropriate to use infinite graph. Note that in this
essay we will focus on undirected graphs. There are important examples
(e.g. world wide web) that are more naturally described by directed graph,
but the properties that we will study in this essay can all be faithfully
represented by undirected graphs. A complete graph with n vertices is a
graph where any pair of vertices is connected. A subgraph is a subset of
another graph. For a given graph G, we will denote the number of vertices
as v(G) and the number of edges as e(G).
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Now equipped with the appropriate language, we can define a random
graph. There are in fact three equivalent ways to describe a random graph.
For our purpose, we shall focus on the following definition. Let S(n) be
the set of all subgraphs of the complete graph with n vertices. A random
graph G is a random variable which takes value in S(n) with probability

Prob(G = G0) = pe(G0)(1 − p)
n(n−1)

2
−e(G0) ∀G0 ∈ S(n). In other words,

a random graph with n vertices is a subgraph of the complete graph with
n vertices, where each edge exists with probability p. Note we need two
parameters to describe a random graph: number of vertices n and edge
probability p.

1.3 Observables of Random Graph

Although a highly abstract model of real world network, a random graph
still contains vast amount of information. In a more physical language, there
are numerous observables we can compute from a random graph. Roughly
speaking, the observables are of two classes: local observables and global
observables. Local observables reveal structure in a neighborhood of a given
vertex, while global ones reveal topological structure of a graph.

1.3.1 Local Observables

An easy characterization of local structure is degree distribution. Degree
of a vertex is defined as the number of edges connected to that vertex. Let
Xk be the number of vertices with degree k (this is a random variable),
then the degree distribution of a random graph is defined as the probability
distribution of Xk. When the number of vertex approaches infinity, the
asymptotic form of the degree distribution approaches Poisson distribution

P (Xk = r) = exp−λk
λrk
r! , where the mean λk = NCkN−1p

k(1− p)N−1−k. The
exponential tail of this Poisson distribution indicates that in any random
graph, the number of vertex with degree k does not deviate too much from
the mean value. Unfortunately, this is not the general behavior of a real
world network. Instead of an exponential tail, many networks (e.g. world
wide web) have degree distribution that decays as power law. Such networks
are now called scale-free networks, and we will talk about them later in the
essay.

Another useful local observable is clustering coefficient. Given the im-
mediate neighbors of a vertex, clustering coefficient describes how closely
related these vertices are. More precisely, consider vertex v, let kv be the
degree of v and let Ev be the number of edges that exist between these kv
vertices, then clustering coefficient of vertex v is Cv = 2Ev

kv(kv−1) . Since Cv
is a random variable depending on v, we will define clustering coefficient C



CHAPTER 1. RANDOM GRAPH THEORY 4

of the random graph as the mean of Cv. For a random graph with edge
probability p, C = p as the number of vertices approaches infinity. If we
compare a real network to a random graph with the same number of vertices
and same average number of edges per vertex, the clustering coefficient of
the real network is usually higher than that of the random graph. Such high
clustering coefficient is typical of a regular lattice, and indicates that real
networks have well defined local neighborhoods.

1.3.2 Global Observables

Global observables are those quantities that do not change under local
morphisms of a graph. One global observable is the characteristic path
length of a random graph, which describes the average distance between two
vertices. Given two vertices v and w from a random graph, suppose they are
connected, then the distance between v and w is defines as the number of
edges in the shortest path between v to w. (If v and w are disconnected, then
the distance is defined to be infinite.) And the characteristic path length is
defined as the mean distance averaged over all pairs of connected vertices.
A theorem proved by Lu and Chung shows that, as the number of vertices
approaches infinity, the characteristic path length almost surely approaches
log(n)
log(np) , where n is the number of vertices and p is the edge probability.

Numerical calculation shows that this quantity is usually small (of order
unity) for a random graph, which shows that globally a random graph is
closely related since it does not take long to go from one vertex to another.

A more fundamental topological property of a random graph is its connect-
edness. If a graph is connected, then there are no isolated vertex. Whether
isolated vertex exists or not depends on the two parameters n (number of
vertices) and p (edge probability). If p=1, we have a complete graph and no
isolated vertex exists. If p=0, all vertices are isolated. Therefore, for a fixed
n, there must be a threshold value of p above which isolated vertices disap-
pear. This is our first example of a phase transition in a random graph. More
precisely, we can prove that for a fixed n, this threshold is given by log(n)

n .

Furthermore, we can show that this threshold is sharp so that ∀p < log(n)
n ,

isolated vertices almost surely exist, and ∀p > log(n)
n , isolated vertices almost

surely disappear.

In fact, many properties of random graphs undergo phase transition. One
prominent example is the sudden emergence of a giant component. If we
study the connected components of large networks (be it random graphs or
real networks), there is often one component that’s much larger than the
other components. For example, in the protein-protein interaction network
in E. Coli, there is only one connected component containing 1851 vertices
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while all the other connected components contain fewer than 16 vertices. In
the context of random graph, a giant component is defined to be a connected
component where the number of vertices contained is proportional to n (the
total number of vertices). We can think of the giant component as a compo-
nent that spans across the entire graph. This is certainly a stronger notion
of connectedness than the disappearance of isolated vertex. It is proven that
∀p = d

n , where d > 1, a giant connected componnet almost surely exits. This
is a seminal result in random graph theory, and it captures a key property
of real world networks.



Chapter 2

Percolation Theory

2.1 Introduction

Percolation theory was first introduced as a way to model the flow of
fluid through porous medium of small chanels which may or may not let
the fluid pass. It is the simplest not exactly solvable model with a phase
transition. As such, percolation theory provides valuable insights into more
complicated physical systems. Outside of physics, percolation theory is im-
portant in studying biological systems, geophysics, and network science. In
the context of network science, percolation theory provides an alternative
to random graph theory. We will introduce the basics of percolation theory
in this chapter and see how it helps us understand complex networks from
a different perspective.

There are several versions of percolation theory; for our purpose, we will
focus on bond percolation. Consider a d-dimensional regular lattice where
the edge exists with probability p. The main problem bond percolation
theory addressese is the emergence of path that percolate the lattice. There
is a critical percolation threshold pc such that ∀p > pc an infinite percolating
cluster almost surely exists. This cluster spans across the entire lattice, and
as the lattice size approaches infinity, the size of this cluster diverges (hence
the name infinite cluster).

A key observable in percolation theory is the percolation probability Ps,
which is the probability that the cluster at the origin has size s. (The size of
a cluster is the number of vertices it contains. And due to regularity of the
lattice, there’s no loss of generality by focusing on the cluster at the origin.)
For p < pc (subcritical phase), only small clusters exist. To measure the
size of these clusters, we consider the rate of decay of Ps as s approaches
infinity. In general, it can be shown that the asymptotic form of Ps is given
by exp

− r
ξ , where r is the radius of the cluster and ξ should be treated as
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correlation length, which will diverge as p approaches pc from below. This
exponential decay indicates that the mean radius of the finite cluster is given
by ξ, which diverges as the order parameter p approaches the critical value.

For p > pc, the correlation length ξ is no longer useful. Instead, we
consider the probability P that the origin is contained in the infinite cluster.
Near the critical point, the scaling form of P with respect to p− pc contains
information about the phase transition (critical exponent).

2.2 Percolation on Cayley Tree

In this section, we will consider percolation on Cayley tree. This is an
exactly solvable problem, and is closely related to infinite dimensional per-
colation which we will talk about in the next section.

A Cayley tree is a tree (a graph without cycles) where each vertex has z
neighbors, except vertices at the surface. The unique property of a Cayley
tree is that its number of vertices at the surface (surface area) is proportional
to the total number of vertices (volume). In a usual regular lattice (e.g.

honeycomb, hypercubic, etc.), surface area is proportional to volume1−
1
d ,

where d is the dimensionality. Only when d goes to infinity is the surface
area proportional to volume. In this sense, Cayley tree represents an infinite
dimensional object.

If we consider percolation on Cayley tree with coordination number z and
percolation probability p, then it can be shown that percolation threshold
pc = 1

z−1 . For p close to but larger than pc, the percolation probability P
that the origin is contained in the infinite cluster obeys the following scaling
law: P ∝ (p− pc). For p close to but smaller than pc, the correlation length

ξ obeys the following scaling law: ξ ∝ (pc − p)−
1
2 .

2.3 Infinite Dimensional Percolation

Now consider percolation on a d-dimensional regular lattice, where d is
larger than the upper critical dimension. In this case, phase transition is
faithfully descirbed by mean field results, which state: As p → pc, the
percolation probability P ∝ |p−pc| and the correlation length ξ ∝ |p−pc|−

1
2 .

Certainly, these results hold when d goes to infinity. Thus, we see that
Cayley graph does faithfully reproduce infinite dimensional results.

It’s interesting to ask what the upper critical dimension is. Although it
is widely believed to be 6, a rigorous result proved by Hara and Slade can
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only pin down dc to be 19. Nevertheless, for our purpose which is to study
the limit where d goes to infinity, the actual value of dc does not concern us.

2.4 Percolation and Random Graph

To see why we care about infinite dimensional percolation, let’s consider
how we can embed a random graph with n vertices into a regular lattice.
Since any pair of vertices can be connected in a random graph, the coordi-
nation number will have to be N −1 to make the embedding work. Once we
have the embedding, we can interpret the edge probability of the random
graph as the percolation probability of the regular lattice. Now, since in
random graph theory we are concerned with asymptotic behavior when n
goes to infinity, it is equivalent to studying infinite dimensional percolation.

As concrete evidence of this equivalence, let’s compare percolation thresh-
old to the critical probability where giant cluster first appears in a random
graph. Since infinite dimensional percolation can be described by perco-
lation on a Cayley tree, percolation threshold pc = 1

z−1 . Now to embed
a random graph with n vertices into a Cayley tree, we need z = n − 1.
Thus pc = 1

n−2 ≈
1
n , when n goes to infinity. Yet, 1

n is exactly the criti-
cal probability when giant cluster first appears in a random graph with n
vertices.

In fact, the correspondence between infinite dimensional percolation and
random graph shows that phase transition in both contexts belongs to the
same universality class. This is confirmed by numerical simulations of ran-
dom graphs (Christensen et al., 1998). Despite the equivalence, it is often
useful to study a complex network from both perspectives (random graph
and percolation). While random graph theory more naturally addresses
question like the disappearance of isolated vertex, percolation theory pro-
vides a more natural way to study phase transition and cluster distribution.



Chapter 3

Small-world Network

3.1 Introduction

The previous two chapters introduced two classical ways to study complex
networks. While percolation theory assumes the existence of an underlying
regular lattice, random graph theory does not make this assumption and
is equivalent to infinite dimensional percolation. However, many real world
networks cannot be faithfully represented by either approach. As discussed
in chapter 1, a random graph describes a network with a small clustering
coefficient (equals to the edge probability p) and a small characteristic path
length (roughly goes as log n, where n is the number of vertices). On the
other hand, percolation on regular lattice describes a network with a large
clustering coefficient (as coordination number z →∞, clustering coefficient

approaches 3
4) and a large characteristic path length (roughly goes as n

1
d ,

where d is the dimensionality and n is the size of the lattice). Yet, numer-
ical studies show that real world networks usually have a large clustering
coefficient and a small characteristic path length. This character is called
small-world property. To model such small-world networks, we need a way
to interpolate between regular lattice and random graph.

3.2 Watts-Strogatz Model

Watt and Strogatz made the following key observation. Since real net-
works usually have large clustering coefficients, the local behavior of a real
network should be similar to that of a regular lattice. Now to decrease char-
acteristic path length of a regular lattice, we need to connect vertices far
apart with short cuts. Notice that, as a model of real network, the number of
edges and the number of vertices are model inputs. Thus we cannot simply
add edges to connect vertices far apart. The best we can do is to eliminate
some edges connecting neighboring vertices and rewire it to connect vertices
far apart. Watt and Strogatz realized that we only need a small number
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of such rewired edges to reproduce a small characteristic path length while
retaining a large clustering coefficient. One rewired edge between A and B
decreases distance between points in the neighborhood of A and points in
the neighborhood of B. Thus each rewired edge has a very pronounced effect
in cutting characteristic path length.

With this observation, we now present the original Watts-Strogatz con-
struction. There are numerous modifications, but to illustrate the main
idea we will focus on this original construction. Start with a regular ring
lattice with n vertices. Assume the coordination number is z, meaning each
vertex is connceted to its immediate z neighbors (z/2 on either side). Now
introduce disorder into the lattice by rewiring each edge with probability
p. Rewiring means moving one end of an edge to a new randomly selected
vertex. Self-connections and duplicate edges will be excluded. The rewiring
probability p gives a one-parameter interpolation between regular lattice
and random graph. For p=0, we have a regular lattice; for p=1, we have
a random graph. And for small p, we should expect to have a model of
small-world network.

3.3 Properties of Small-world Network

We first study how characteristic path length l(n, z, p) scales as rewiring
probability p. (n, z, p are the three parameters in Watts-Strogatz model, so
we should expect l to depend on all three parameters.) It is clear that as p
goes from 0 to 1, there is a qualitative change of behavior in l. This suggests
that a renormalization group analysis should help reveal the scaling form of
l. Indeed, a study by Newman et al. shows the following scaling form:
l(n, z, p) ≈ n

z f(pznd), where d is the dimensional of the original regular
lattice and f is a universal function that obeys: f(x) =const, for x << 1;

f(x) = log(x)
x , for x >> 1. Thus, to have a characteristic path length similar

to a random graph (which scales as log(n)
n ), we only need rewiring probability

p to be larger than the critical value 1
znd

. This value is very small when the
number of vertices n goes to infinity.

Similarly we can ask for the scaling form of clustering coefficient C(n, z, p).
Previously we defined clustering coefficient as C =< 2Ev

kv(kv−1) >, where
Ev is the number of edges between the neighbors of a vertex, kv is the
degree of vertex v and the bracket means taking the average. Following
the convention in literature, here we adopt a slightly different notion of
clustering coefficient, denoted C ′. C ′ = <Ev>

<
kv(kv−1)

2
>

. Now it is shown that

the scaling form of C ′(n, z, p) at small p is C ′(n, z, p) ≈ C ′(0)(1−p)3, where
C ′(0) is the clustering coefficient of a regular lattice. Thus for small p, we see
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that the clustering coefficient is roughly that of a regular lattice. Therefore,
for small rewiring probability p, Watts-Strogatz model successfully produces
a small characteristic path length and a large clustering coefficient.

We can also study the degree distribution of Watts-Strogatz model. At
p=0, we have a regular lattice. Thus the degree distribution is a delta
function with a peak at the coordination number z. As p increases, disorder
broadens the delta distribution but retains a central peak at z. It is shown
by Barrat and Weigt that the full functional form of the degree distribution
is a modified Poisson distribution with an exponential tail. This is similar
to random graph model.



Chapter 4

Scale-free Network

As we’ve seen above, both random graph and Watts-Strogatz model has
a degree distribution with an exponential tail. However, there are real net-
works whose degree distributions have a power-law dependence. Such net-
works are called scale-free. Most prominent example of scale-free network
is the world wide web. The construction of a scale-free network is sig-
nificantly different from constructing a random graph or a Watts-Strogatz
model. Thus, to keep the paper brief, we shall not go into the details of
constructing a scale-free network.

One key assumption of random graph and Watts-Strogatz model is that
the number of vertices is fixed. In reality, this may not be the most nat-
ural way to describe a network. For example, the world wide web grows
exponentially as new webpages (vertices) are added. In addition, many
networks exhibit preferential attachment: the probability of connecting a
vertex depends on the degree of that vertex. For example, a new webpage is
more likely to connect to a popular webpage with a large number of existing
connections (a large degree).

These two features - growth and preferential attachment - are captured
by scale-free models. Start with a small number of vertices, at each timestep
scale-free model adds a new vertex with a given number of edges that con-
nect to existing vertices in the network (growth). The probability that a
new vertex will connect to an existing vertex v depends on the degree kv
(preferential attachment). From this construction, we can compute the de-
gree distribution of the network. It turns out the result is a power-law
distribution.
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