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Abstract

The presence of active particles in fluid often results in complex col-
lective patterns and dynamics. In this essay, we focus on a particular
non-equilibrium phase that resembles turbulence in classical fluid dy-
namics. We review both the experimental setups and the candidates of
modeling this phenomenon. Power laws in the energy spectrum have
been found in both experiments and simulations, but controversy ex-
ists.
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1 Introduction

Turbulence is often considered the most important unsolved problem in clas-
sical physics. Its ubiquitous presence in almost all fluid systems and the
mathematical difficulties involved have driven many decades of intensive re-
search but understandings are still insufficient.[1] The study of fluid motion,
nevertheless, can be further complicated when the fluid is turned into active
matter. Active matter refers to systems composed of many active agents,
each of which is capable of moving on its own. Bacterial suspension, for ex-
ample, is an active fluid with rich collective behaviours. Remarkably, recent
studies have uncovered a turbulent phase of bacterial suspension, which is
analogous to classical turbulence in many ways. In this essay, we provide
a review of both experimental and theoretical results related to this “active
turbulence.”

2 A review of classical turbulence

Before introducing active turbulence, it is beneficial to briefly review the key
concepts in classical turbulence. We will only focus on the phenomena that
have analogous counterparts in active turbulence.

2.1 The Navier-Stokes equation

It is believed that all the wonderful physics of turbulence can be captured
by the Navier-Stokes equation:

∂tv + v · ∇v = −∇p+ ν∇2v (1)

∇ · v = 0 (2)

where the ν term describes viscous effect, ∇p describes the force due to pres-
sure, the nonlinear term describes convection and eq.2 is the usual continuity
equation under the assumption of incompressible fluid.

2.2 Reynolds number

An important control parameter for experiments is the Reynolds number:

R =
LV

ν
(3)
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where L and V are the characteristic length scale and flow velocity of the
system, and ν is the kinematic viscosity. Turbulent effect becomes significant
when R ∼ 1000.

(a) Karman vortex street behind a cir-
cular cylinder at R = 105.

(b) Lattice gas simulation of a two-
dimensional Karman vortex street be-
hind a flat plate.

Figure 1: Some visualization of eddies.[1]

2.3 Eddies and cascades

Eddies are often used interchangeably with vortices, and both do not have
very precise definitions. Roughly speaking, an eddy refers to a swirling fluid
motion with a characteristic length, velocity and time scale. The visualiza-
tions of eddies in fig.1 provide some intuitive understandings.

In the turbulent flow, many eddies of different scales exist and energy is
transported between them. As first observed by Richardson, big eddies break
up into small eddies, and small eddies break up into even smaller ones. In
this way, kinetic energy is transported from the large scales of the motion
all the way down to the smallest scale of motion, where viscosity affect the
dynamics and dissipates the energy. This process can be quantified as we
will shortly see.

2.4 Quantitative results

Two functions are usually used to describe the statistics of experimental data
in turbulence, namely the structure functions and the energy spectrum. Let
us define several quantities. The longitudinal velocity increment is defined

2



as

δv‖(r, l) = (v(r + l)− v(r)) · l
l

(4)

and the n-th structural function is

Sn(l) = 〈[δv‖(r, l)]n〉 (5)

where the average is taken over space.
The energy spectrum is formally defined as

1

2
〈v2〉 =

∫ ∞
0

E(k)dk (6)

and the energy spectrum can be written as

Ed(k) =
kd−1

Cd

∫
ddRe−ik·R〈v(r) · v(r + R)〉 (7)

where d is dimension, C2 = 2π and C3 = 4π.
Komogorov’s famous 1941 theory predicts that E(k) ∼ k−5/3[1], and this

power law is widely accepted by experimental tests. For example,fig.2a is a
typical experimental demonstration of this power law. The range that the
power law holds is called the “inertial range.” The interpretation of this
kind of spectra is that the energy is injected at the large length scale, the
left end of the inertial range, and then propagated through the cascade to
smaller scales, until eventually dissipated at the right end of the inertial
range. However, dimension plays an important role in turbulence. In two
dimension, there might be an inverse cascade with a different power law[2],
like in 2b.

3 Active turbulence

3.1 Experimental methods

We now turn to the phenomena of active turbulence.

Droplets of bacteria suspension The existence of a turbulent phase in
bacterial suspensions was perhaps earliest reported by Dombrowski et al.,
who pointed out that the bacterial vortices seen in fig.3 are similar to a
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(a) Experimental data of 3D tur-
bulence that obey a clean five-third
law[1].

(b) Experimental data of 2D turbu-
lence with two cascades.[2]

Figure 2: Energy cascades in classical turbulence.

(a) Turbulent motion of bacteria.
The scale bar is 35µm.

(b) The velocity field of bacterial flow. The
arrow denotes speed of 35µm/s.

Figure 3: Turbulent motion in a bacterial droplet[3].
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von Karman vortex street[3]. The velocity field was obtained by particle-
imaging-velocimetry (PIV, Dantec), which means the bacteria also serve as
the marker in the fluid. However, the sessile or pendant suspension drops
they used were not controlled in concentration, and whether bacteria motion
can accurately reflect fluid motion remains in question.

Bacteria suspension in chambers In the droplets experiments, chemo-
taxis plays an important role in bacterial dynamics. To reduce this ef-
fect and further simplify the study, experiments have been done in closed
chambers[4][5]. Two kind of geometries were used: a quasi-2D and a 3D mi-
crofluid chamber. The vertical height of the quasi-2D chamber is less than or
equal to the body length of B. subtilis. It is noteworthy that such a geometry
is different from a 2D free standing film. In 3D fluid, the far-field flow created
by a B. subtilis decays as 1/r2. However, when the swimmer is swimming
parallel to a nearby solid surface, the parallel flow component decays as 1/r4.
And the flow decays exponentially when the swimmer is confined between
two parallel solid surfaces. Therefore, in the quasi-2D chamber, the hydrody-
namic interactions (i.e. interactions via flows) are less important than other
geometries and the model can be simplified. Lastly, the bacterial suspension
used in the experiment was prepared at high filling fraction (≥ 50%).

Swarming sperm In addition to swimming bacteria, swarming sperms
were also found to exhibit self-sustained turbulent motion. Ram semen was
used for its naturally high concentration(≥ 50%). Similar to the bacterial
suspension case, the samples were confined in near two dimensional cham-
bers with vertical heights around hundreds micrometers. Fig.4 demonstrates
the turbulent motion of swarming sperms. We see that all three cases men-
tioned thus far produce qualitatively similar patterns, and they all differ from
classical turbulence because the Reynolds numbers are much lower.

PIV vs. PTV As mentioned earlier, the flow of the solvent medium might
be different from the flow of the active swimmers. In particle image velocity
(PIV) algorithm, each frame is devided into small windows and the most
probable displacement is estimated by comparing two successive frames[6].
In this sense, the active swimmers, who contribute to the pattern of each
window, are themselves markers of the flow. On the other hand, particle
tracking velocity (PTV) employs fluorescent microparticles that move with
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(a) Phase-contrast microscope images.
(b) The vorticity field.

Figure 4: Turbulent motion of fresh semen placed between two glass plates
separated by 100µm. The scales bars are 200µm[6].

the medium to estimate the flow of the medium[6]. The hypothesis that
PIV can accurately describe the fluid motion was tested in both the bacte-
rial suspension experiment and the swarming sperm experiment[5][6]. The
researchers concluded that the velocity field measured from PIV is very close
to the true values measured by PTV.

3.2 Models of active turbulence

Another way to study active turbulence is through simulation, which requires
an effective model that captures the physics. We will focus on two models
proposed by Wensink et al., which were proved effective in describing the
collective motion of active agents[4].

Microscopic model The microscopic model is a minimalistic two-dimensional
model that was proposed to simply the interactions inside a bacterial suspen-
sion. In this self-propulsion rod model (SPR model), bacteria are modeled
as rigid rods moving under a constant self-propulsion, and they interact with
each other through a Yukawa potential (∼ exp(r/λ)/r, where r is distance
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Figure 5: The phase diagram of the 2D SPR model.[4] D for dilute, S for
swarming, B for bionematic, J for jamming, L for laning and T for turbulent.

and λ is the screening length) to ensure the screening effect in dense suspen-
sions.

With this microscopic model, the aspect ratio and the filling fraction
of agents can be easily changed and thus a phase diagram in those two
parameters can be obtained. The resulting phase diagram is shown in fig.5.
We can see that the turbulent phase requires a high filling fraction. The
range of the aspect ratio that admits turbulence, on the other hand, covers
typical bacteria like E. coli and B. subtilis.

Continuum model The continuum model was an extension to the Navier-
Stokes equation with extra terms inspired by Toner-Tu equation and Swift-
Hohenberg equation.[4] Since the active fluid in turbulent phase has a high
filling fraction, the density fluctuation is often negligible, in contrast to other
scenarios such as flocking. As a result, incompressibility was assumed, ∇·v =
0. Then, the proposed model is

(∂t + λ0v · ∇)v = −∇p+ λ1∇v2 − (α + β|v|2)v + Γ0∇2v − Γ2(∇2)2v (8)
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In addition to the usual Navier-Stokes terms, the first and third order terms
in v correspond to a force caused by a Landau-type quartic potential U =
α/2|v|2 + β/4|v|4, and the fourth order derivative term plays a similar role
as quartic potential in Fourier space[4].

Validation of the models To see that the both the SPR model and the
continuum model qualitatively match the real dynamics, the researchers com-
pared the simulations with the previously mentioned quasi-2D experiment.
The vorticity field, defined as

ω(x, y) = ∂xvy(x, y)− ∂yvx(x, y) (9)

can provide a clear visualization of the complicated vortices. As we can see,
fig.6 B,C and D have qualitatively same patterns, thus justifying the validity
of the model. Further quantitative justifications will be presented in the next
section.

Other variants Some other variants of eq.1 are also used in the study of
active turbulence. For example, in [7], the authors introduced a sixth order
derivative term through a phenomenological stress tensor

σ = (Γ0 − Γ2∇2 + Γ4∇4)[∇v + (∇v)T] (10)

and
(∂t + v · ∇)v = −∇p+∇ · σ (11)

Another example is a model termed “active nematdynamics” in [8], where
the velocity field is coupled with a alignment tensor.

3.3 Quantitative results

We now present various quantitative results from experiments as well as
direct simulation of the models introduced.

Structure functions The structure functions of bacterial suspensions were
calculated in both experimental and numerical data. (Fig.7) This compari-
son further demonstrate the validity of 2D SPR model and continuum model.
Notice that dimensional effect is significant in all structure functions of order
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Figure 6: A comparison between experiments and simulations of two models
for bacterial suspension.[4]

larger than one. Both minimal models produce structure functions reason-
ably close to those of experiments. However, the microscopic model appears
to be less accurate than the phenomenological continuum model, possibly
because of the oversimplification of the interactions.

Energy spectra and power laws A diverse yet confusing collection of
power laws were found in the experiments and simulations. The results
are summarized in fig.8. Each paper claimed to find a different form of
energy cascade and some of them are contradictory to others, even in the
same dimensions. For example, while the active nematdynamics simulation
(8c) shows that the exponent does not depend on model parameters, the
continuum model simulation (8d) shows that the exponent does depend on
the parameters. In fact, it was found in [9] that the exponent of the power
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Figure 7: Different order of structure functions[4]. The definition for longi-
tudinal ones can be found in 5. Similar for transverse ones. Green curves are
the continuum model, blue dash lines are the SPR model, black circles are
the quasi-2D experiments and red squares are the 3D experiments.

law depends nearly linearly on the self-propulsion strength α.
Also, although both 8a and 8d use the same 2D continuum model, 8d

identifies the second power law in 8a as exponential decay. More precisely,
in the paper[9], a semianalytical result was found

Ek = Ẽ0k
δexp(− Γ0

λ0ωc
k2) (12)

Since both curves bend downward at large k, the above result is still not
accurate enough.

4 Conclusion

Although the existing models of active turbulence succeeded in reproducing
turbulent patterns at low Reynolds numbers as well as some statistics of the
data, the field seems to reach no consensus yet. Each of the additional non-
linearity and high derivatives make the already hard Navier-Stokes equation
even more intimidating to approach analytically. The various power laws, un-
like classical turbulence, depends not only on dimension but also on specific
parameters of the active swimmer. More experiments are needed to clarify
whether the claimed power laws regimes are as robust as those in classical
turbulence. Nevertheless, it is intriguing that the dynamics is changed com-
pletely with a few more extra terms. The Landau type arguments and the
emergence of complex phenomena from simple models connect with the con-
tent of the course, and the author is excited to learn more about biological
emergence after these readings.
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(a) Energy spectrum of bacterial sus-
pension in quasi-2D and 3D cham-
bers. The circles are quasi-2D, and red
squares 3D. The green curve is the 2D
continuum model and blue dash curve
is the 2D microscopic model.[4]

(b) Energy spectrum of swarming
sperm in quasi-2D chamber[6]. The
regime [kc, ka] is claimed to follow a
k−3 power law.

(c) The energy spectrum of simulations
of the active nematdynamics model[8].
Different curves correspond to different
activity values, which can be roughly
understood as the magnitudes of the
self-propulsion force.

(d) The energy spectrum of simula-
tions of the 2D continuum model[9].
Different curves correspond to different
different intensities of energy injection.
α appears in the right hand side of eq.8
and τ is a time scale defined with other
parameters.

Figure 8: Comparison between power laws.
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