
The emergence of the human brain through bottom-up
and top-down procedures

Orlando Melchor-Alonso

Abstract

The emergent properties of the human brain such as learning andmemorization are
explored. First, one discusses the short comings of representing the brain using ar-
tificial neural networks. Then one proceeds to outline one of the first bottom-up
methods used to describe the emergent phenomena of the brain known as the Hop-
field network. One then discusses why top-down procedures are more successful
in describing the emergent states of the brain. Lastly, one outlines the advantages
of top-down methods and potential advances in these methods for the future.

Preprint submitted to Elsevier May 13, 2018



1. Introduction

The emergence of the human brain is one of the most perplexing occurrences
in evolutionary history. How did modulations in the gene pool give rise to the
human brain and what models exist today to describe its complexity? In the same
way that the basic building blocks of various materials are the particles that de-
scribe them, it is understood that the basic building blocks of the brain are the
neurons that promote particular chemical reactions. The current research on this
topic seems to indicate that non-interacting neurons are not suffice to exhaust all
possible phenomena associated with the brain. Interactions are necessary in order
to explain phenomena like memory and learning.

The emergent properties of the human brain have inspired computer scientists,
physicists and biologists to model modern day machinery and methodologies after
the functionality of the human brain. The question then arises can such computa-
tional tools also give insight into the mechanisms behind learning and memoriza-
tion? In this paper, one explores the effectiveness of artificial neural networks in
describing the properties of the human brain. An example of an artificial neural
network is shown in Figure 1.
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Figure 1: The basic outline of an artificial neural network. The goal of a neural networks is to
segment the input data into smaller sub-classes that can interpreted by more segments and later
classified. These segments are passed down to hidden layers until they reach the final output.
Hidden layers get their name because of their black-box nature. A major problem with neural
networks is interpreting which weights affect the output the most. Due to the vast number of
connecting edges this is often an impossible task. Therefore, one often abstracts away the problem.

The discussion will begin with an overview of the complexity of neurons that
modern methods are attempting to address as well as their inevitable shortcom-
ings. The discussion will continue by highlighting the first bottom-up approaches
taken by J.J. Hopfield who created a method of describing learning and memo-
rization using a model reminiscent of the 2D Ising chain. Next, one will discuss
the difficulties of bottom-up approaches and their implicit assumptions.

The focus will then shift to the infrastructure behind top-down approaches and
why they show more promise than previous bottom-up approaches. Lastly, one
will conclude with the progress of modern day top-down approaches and the po-
tential they hold for the future.
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2. Inevitable Shortcomings

To begin, one notes that artificial neural networks over-simplify the model for
cognition. Many models depends on abstracting away the complicated function of
the neuron. The value of the state of a neuron is often taken to be either a 1 if it is
fired or a 0 if is not fired. The firing of a neuron is assumed to only be dependent
on the activation energy required to fire a neuron. Most models represent this as
a threshold that must be surpassed from all incoming connections in order to be
fired. The plasticity of the brain, however, can affect the structure of neurons in
the brain over time. This can lead to misfiring and is often difficult to model. In
fact, few models exist today that have unfixed neuronal morphologies. [2]

Figure 2: A basic outline of the anatomy of neurons. Communication between neurons occur
through the dendrites connecting the cell bodies. If the action potential exceeds a certain threshold,
then a signal is fired between neurons.

Physical neurons also consist of multiple branches known as dendrites that
connect to other neurons. One of the greatest weaknesses of artificial neural net-
works is the computational cost required to represent every neuronal connection
in the brain. Assuming that neural networks constitute complete graphs, the space
complexity of every connection in the brain is at most O(n2). Here, n represents
the number of neurons. This number is found to be anywhere on the order of ap-
proximately 100 billion neurons per person. This fact results in neural networks
becoming easily saturated by too many connecting weight edges. Furthermore, a
neural network consists of multiple layers known as convolutional layers, pooling
layers, and dense layers. Each layer affects the run time of neural networks in its
own way. The larger the system size, the greater the impact on the time complexity
from these layers.

Lastly, all bottom-up methods greatly suffer from an incomplete picture of
neuroscience. The incomplete picture is due to incomplete data on the brain, a
lack of predictability in current models, limitations in experiments, and a lack
of understanding behind every function of the brain.[1] Any method presented
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must address these problems, hence why it is difficult to devise a comprehensive
bottom-up procedure. Now that one understands the limitations of developing a
model for the brain, one can begin to discuss modern bottom-up approaches.

3. Bottom-Up Approaches: The Hopfield Network

The Hopfield network is a method developed by J.J. Hopfield in 1982 that
encapsulates the idea of applying an artificial neural network to the brain. The
Hopfield network is essentially a glorified Ising model where the state of spins
are replaced by the states of a neuron.[3] The weights of a Hopfield network are
analogous to site dependent magnetic fields with more than nearest-neighbor in-
teractions. In the Ising model, the network update rule is to randomly flip a bit if
it decreases the energy. For the Hopfield network, this analogy can be extended
to image reconstruction because of its energy minimization principle. Since the
Ising model converges to an energy minimizing state, one can use this method to
reconstruct a state that has been perturbed k-times.

In situations where the model has to remember m-memories, it performs bet-
ter the less memories the network has to ”remember.” This is reminiscent to the
behavior in human brains. A human brain is less likely to remember a larger se-
quence of memories than it is likely to remember a smaller sequence. In addition,
the network performs best the less k-perturbations that are applied to the initial
image. In other words, the less a memory is corrupted, the more likely one is to
remember the image. One can show this result by plotting the hamming distance
between the actual result and the the reconstructed image.

One can reconstruct random memories using this method. Following the pro-
cedure outlined, one produces the results shown in Figure 3.
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Figure 3: The hamming distance as a function of the number of corrupted bits and the number of
random memories. A total of 100 20x20 images are used and the Hamming distance varies from
0 if the images reproduced are identical and 100 if they are completely dissimilar.

This diagram is in (m, k)-space where m is the number of memories to be
remembered and k is the number of corrupted bits. This plot shows that the im-
ages reproduced are in agreement with what one would expect for a human brain.
However, what one also notices is that as the number of corrupted bits increases
and the number of memories decreases one is more likely to obtain an inverted
image. This results from the fact that the descent direction tends toward two pos-
sible minima. One of the minima occurs at the original image and the other at the
inverted image. Despite this, the behavior for large k and m show that the network
randomly assigns a reconstructed image as the minimum as is expected. This is
reminiscent to the difficulty in remembering all of the images. What one discovers
from the Hopfield network is that it reproduces images but only if the number of
images is small and the number of perturbations are not too large. [4]

Although the Hopfield network does an accurate job of reproducing the behav-
ior of a human brain it is only as good as its implicit assumptions. For instance,
the model assumes that the network is not plastic and that it is not subject to any
external change. The model also assumes all connections are linear despite the
fact that many important phenomena depend on loops and parallelization of the
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neural connections. Often these problems are obscured by taking the average of
non-linear results despite their importance. One also notices that a fundamental
break down of the model occurs at large k and small m that is unexpected. The
assumption that pathways are undirected also leads to an issue as it seems to im-
ply that the network evolution is reversible. A single connection going one way
has the same weight placed on it as a signal going in reverse which seldom is the
case. Bottom-up processes for the brain are difficult to construct as it is nearly
impossible to cover all possible phenomena that can occur in the brain. In the case
of the human brain, the emergent phenomena is too difficult to decipher. Modern
approaches seem to acknowledge these difficulties. In the past few years one has
seen a shift towards top-down analysis as one must reconstruct the phenomena the
brain exhibits.

4. Bottom-Up Approaches: Modern Improvements

The modern approach to brain modeling appear to be hierarchal rule abstrac-
tion. In this lens, one attempts to explain an emergent phenomenon by explaining
it in terms of other emergent phenomena. This procedure is successful in that
the result must reproduce the emergent state. This is accomplished by producing
a mathematical correlation between low-level rules and abstract properties of an
emergent state. [5]

The difficulty of this method is that it requires a significant level of human
intuition to find correlations. It is currently difficult to automate the procedure of
rule abstraction as one must have a sufficient enough understanding of the prob-
lem to advance. However, in the samemanner that one can use supervised learning
techniques for bottom-up procedures, one can do the same for top-down analyses
as well. Many classification methods can be performed to find correlation map-
pings between multiple variables and an emergent phenomenon. This procedure
is simply a classification task that can be used to uncover meaningful properties
of brain processes.

In the case of the human brain, the abstract property is the arising emergent
states of the mind such as learning and the low-level rules are the neuron firings.
From this point it is difficult to break down these properties and find correlations
between the low-level rules so one creates mid-layers and learns the correlation
between those instead. These mid-layers could be a result of other emergent prop-
erties like language, memory, and reasoning. The hope is to approach a point
where one can successfully find the correlation between the lowest sub-layer and
its respective parent node.
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5. Conclusion

In conclusion what one observes is that old bottom-up methods are ineffective
in describing the emergent phenomena in the brain. Although one could imple-
ment these methods using complicated neural networks many of the implicit as-
sumptions in the models may be too damaging. Ultimately, one is often left with a
limited scope for which a model can apply, leaving the problem unresolved. Other
methods like rule abstraction showmore promise as they are required to reproduce
emergent phenomena. In fact, it was shown that a bottom-up process for the brain
is really just a top-down process in disguise. There still remain difficulties, how-
ever, in top-down processes namely the need for human intuition. However, there
exist supervised learning methods that can provide insight into low-level rules and
abstract properties of an emergent state. It also always possible that rule abstrac-
tion may not suffice in situations where the system is too complex. Lastly, if no
midpoint exists between low-level rules then there are no meaningful reductions
in abstract layers.
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