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Abstract: Synchronization is a common yet interesting emergent phenomenon observed in 

various parts of nature, such as condensed matter systems and biological coupled oscillators. 

How does a synchronization arise in a given system? This essay introduces a mathematical 

explanation to the emergence of synchronization and describes emergence of partially and 

completely synchronized phases in a series of current biased Josephson junctions. 
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Introduction 

 

 Collective synchronization is a phenomenon which individuals in the system 

spontaneously drive themselves into a common phase or frequency. The phenomenon of 

synchronization is very common in nature, from charge-density waves, phase locking of 

josephson junctions in series [1], cardiac pacemakers of heart cells, to fireflies blinking in sync 

[2][3], animals forming a small group (bird flocks and school of fish). One might think that it 

is so mysterious how individuals in these small systems communicate with each other to keep 

the harmony, for example how each firefly talk to the others in order to know when to blink. In 

fact, they do not; They are acting individually for their own sake, with only a weak interaction 

between them present. Simple synchronization can even be demonstrated with multiple 

metronomes on a moving platform where individual metronomes can interact through [4]. First 

out of phase with each other, they will drive themselves into a synchrony. This essay will 

introduce a mathematical model called Kuramoto model that can analytically explain the 

emergence of synchronization and related observations in many systems. Furthermore, 

synchronization in flashing of fireflies and Josephson junctions in series are studied as 

examples, with emphasis on different synchronized phases of Josephson junctions. 

 

 

Kuramoto Model 

 

 Motivated by collective synchronization, Weiner and Winfree had tried to 

mathematically approach this universal behavior [5], but it was a Japanese physicist Yoshiki 

Kuramoto who came up with the famous Kuramoto model which is very useful in explaining 

the emergence of synchronization in many systems including the ones mentioned above. The 

detailed description of the model is described in [6]. The most general form for the coupled 

limit-cycle oscillators is: 

 �̇�𝑖 =  𝜔𝑖 + ∑ Γ𝑖𝑗(

𝑁

𝑗=1

𝜃𝑗 − 𝜃𝑖),           𝑖 = 1, … , 𝑁, (1) 

where 𝜃𝑖, 𝜔𝑖 are the phase and natural frequency of ith oscillator, Γ is the interaction function 

that can be calculated from limit-cycle model. Kuramoto set the interaction function to be 

sinusoidal with assumptions that the distribution of the frequencies is unimodal and symmetric 

about its center (like Gaussian): 



2 

 

 

where 𝐾 is a positive coupling strength, and 𝜔𝑖 is now a deviation from the mean frequency 

Ω [6]. Next, take complex order parameter that describe the overall wavefunction 

 𝑟𝑒𝑖𝜓 =
1

𝑁
∑ 𝑒𝑖𝜃𝑗

𝑁

𝑗=1

 (3) 

where r is phase coherence and ψ is average phase. For example, r = 1 means all the oscillators 

in the system are acting as one coherent oscillator, where r = 0 means they are not coupled at 

all. Kuramoto realized that multiplying e−i𝜃𝑖 to both sides gives 

 𝑟𝑒𝑖(𝜓−𝜃𝑖) =
1

𝑁
∑ 𝑒𝑖(𝜃𝑗−𝜃𝑖)

𝑁

𝑗=1

 (4) 

 

and take the imaginary part, 

 𝑟 sin(𝜓 − 𝜃𝑖) =
1

𝑁
∑ sin(𝜃𝑗 − 𝜃𝑖)

𝑁

𝑗=1

 (5) 

 

so we can write the Kuramoto equation as: 

 �̇�𝑖 =  𝜔𝑖 + 𝐾𝑟 sin(𝜓 − 𝜃𝑖) (6) 

Through this approach, Kuramoto simplified the equation so that individual oscillators are 

 �̇�𝑖 =  𝜔𝑖 +
𝐾

𝑁
∑ sin(𝜃𝑗 − 𝜃𝑖)

𝑁

𝑗=1

,           𝑖 = 1, … , 𝑁, (2) 

t = 0 t = t1 t = t2 

Fig 1. Synchronous flashing of fireflies. Captured from Youtube video. [3] 
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seemingly uncoupled and only interact via mean field frequency ψ and coherence strength r. 

 

 

Fireflies – Emergence of Synchronization 

 

 Using Kuramoto model as in form of Eqn (6), we can apply it to understand to a certain 

degree the synchronization in fireflies’ flashing, which can be observed in some parts of 

Southeast Asia [2]. However, the same model can be used to describe similarly synchronized 

systems, step by step derivation shown in [7]. Assume each firefly flash when 𝜃 = 0. Writing 

ϕ = ψ − 𝜃 and noticing ψ̇ = Ω, 

 �̇� = Ω − �̇� = (Ω − 𝜔) − 𝐴 sin(𝜙) (7) 

Notice here there are no indices, because the oscillators are uncoupled. Further 

nondimensionalizing the equation by defining 

 𝜏 = 𝐾𝑟𝑡, 𝜇 = (Ω − 𝜔)/𝐾𝑟 (8) 

we get 

 
d𝜙

d𝜏
= 𝜇 − sin(𝜙) (9) 

From this, we can think of three cases: 𝜇 = 0, 0 < 𝜇 < 1, 𝜇 > 1. 

The phase diagrams for the three cases are shown in Fig. 1. When μ = 0 (Ω = 𝜔), 

the stable fixed point is located at 𝜙 ∗= 0. For all states with 𝜙 < 0 has 𝜙′ > 0 and states 

with 𝜙 > 0 has 𝜙′ < 0, which means that in long term, all states are attracted towards the 

stable fixed point 𝜙 ∗= 0 . All oscillators will be oscillating at their natural frequency 𝜔 . 

When 0 < 𝜇 < 1, the stable point 𝜙 ∗ is shifted away from 0, but again, the oscillators will 

eventually be phase locked to this 𝜙 ∗. However, for 𝜇 > 1, there is no zero point crossing as 

seen in the diagram, and thus no fixed point at all. An oscillator would therefore would not 

stabilize at one particular frequency, but drift away from Ω. From this simple analysis, we can 

see that for |𝜇| < 1, i.e. for  𝜔 − 𝐾𝑟 < Ω < 𝜔 + 𝐾𝑟, fireflies will flash in unison, and this 

range of frequency is called the range of entrainment [7]. 
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Fig. 2) Phase diagram for three cases for different values of 𝜇 [7] 

 

 We looked at how synchronization in flashing of fireflies emerge by utilizing 

Kuramoto model. The same analysis can be done for similar systems, where individual 

oscillators are entrained to the stimuli from the surroundings and synchronize. This is very 

much simplified version of the work done by Ermentrout in 1991 [8] 

 

 

Josephson Junction 

 

 Josephson effect, discovered by British physicist Brian David Josephson, is a 

phenomenon where a supercurrent flows without any voltage applied across a superconducting 

tunnel junction, known as a Josephson junction. For the discovery of this effect, Josephson was 

awarded Nobel prize in physics in 1973. The basic idea of the effect is that superconducting 

Cooper pairs tunnel through the junction. The effect is very widely applied in many different 

fields, inside and outside physics. The two governing equations for a Josephson junction are 

 
𝑉(𝑡) =

ℏ

2𝑒
�̇� 

𝐼(𝑡) = 𝐼𝑐 sin 𝜙 

(10) 

Here, V is the voltage, I is the supercurrent, 𝐼𝑐  is the critical current, and 𝜙  is the phase 

difference across the junction [7]. More realistically, a electric circuit with a Josephson junction 

will have resistance R, inductance L, and capacitance C within it. We will disregard L for now. 

Then we can draw a circuit as Fig. 4. Kirchoff’s law along with the above equations give us 
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Fig. 4) A Josephson Junction 

 
ℏ𝐶

2𝑒
�̈� +

ℏ

2𝑒𝑅
�̇� + 𝐼𝑐 sin 𝜙 = 𝐼 (11) 

A direct analogy to a mechanical pendulum driven with a constant torque [7]: 

 𝑚𝐿2�̈� + 𝑏�̇� + 𝑚𝑔𝑙 sin 𝜃 = Γ (12) 

 

 

Series Array of Josephson Junctions 

 

The behavior of series of Josephson junctions is very interesting and not fully 

understood. Some of the interesting physics of the system regarding Floquet multipliers [9] and 

neutral stability [10] in splay-phase states, and synchronization phase transitions [1] has been 

studied by series of papers written by Strogatz and others. In particular, we will look closely at 

the system phase transition into different synchronization states in the disordered Josephson 

series arrays studied by Wiesenfeld, Colet, and Strogatz. As before, we can derive our 

governing equations from Kirchoff’s law for current and voltage. 

Superconductor, 𝜙1 Junction Superconductor, 𝜙2 

Fig. 3) Realistic Josephson junction circuit. Josephson junction is denoted by ‘X’ sign [7] 
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ℏ

2e𝑟𝑗
�̇� + 𝐼𝑗 sin 𝜙𝑗 + �̇� = 𝐼𝐵,       𝐿�̈� + 𝑅�̇� +

1

𝐶
𝑄 =

ℏ

2𝑒
∑ �̇�𝑘

𝑁

𝑘=1

,       𝑗 = 1, … , 𝑁 

 

(13) 

 

where 𝐼𝐵  is bias current, 𝐼𝑗  and 𝑟𝑗  are junction critical current and resistance of the jth 

junction, Q is the charge on the capacitor, and the other parameters are same as before. [1] 

Define now natural angle 𝜃 as 
𝑑𝜃𝑗

𝜔𝑗
=

𝑑𝜙𝑗

(2𝑒𝑟𝑗/ℏ)(𝐼𝐵−𝐼𝑗 sin 𝜙𝑗)
  where 𝜃 is natural in the sense �̇� 

is constant in the limit of weak coupling. Using trigonometric relation 𝐼𝐵 − 𝐼𝑗 𝑠𝑖𝑛 𝜙𝑗 = (𝐼𝐵
2 −

𝐼𝑗
2)/(𝐼𝐵 − 𝐼𝑗 𝑐𝑜𝑠 𝜃𝑗), the equation (13) becomes 

 𝜃�̇� = ω𝑗 −
ω𝑗�̇�

𝐼𝐵
2 − 𝐼𝑗

2 (𝐼𝐵 − 𝐼𝑗 cos 𝜃𝑗) (14) 

It is shown in a paper by Weisenfeld and Swift [11] that the RHS of the above equation can be 

time averaged to first order to produce 

 𝜃�̇� = ω𝑗 −
𝐾

𝑁
∑ sin(𝜃𝑗 − 𝜃𝑘 + 𝛼)

𝑁

𝑗=1

 (15) 

where 

Fig. 5) Circuit schematic of series array of Josephson junctions [9] 
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𝐾 =
𝑁𝑟𝜔(2𝑒𝑟𝐼𝐵/ℏ − 𝜔)

[(𝐿𝜔2 − 𝐶−1)2 + 𝜔2(𝑅 + 𝑁𝑟)2]1/2
 

          cos 𝛼 =
𝐿𝜔2 − 𝐶−1

[(𝐿𝜔2 − 𝐶−1)2 + 𝜔2(𝑅 + 𝑁𝑟)2]1/2
 

 

(16) 

 

Notice that Eqn (15) is the familiar Kuramoto model introduced earlier, and we successfully 

mapped the system onto Kuramoto model. The technique using the imaginary part of the 

complex order parameter 𝜎𝑒𝑖𝜓 is used here again, with step by step derivation by Sakaguchi 

and Kuramoto. [12] The paper also shows the frequency Ω and the order parameter magnitude 

𝜎 can be determined. The range of entrainment is 𝜔 − 𝐾𝜎 < Ω < 𝜔 + 𝐾𝜎, same as in the 

case of fireflies. Call the unimodal, symmetric frequency distribution 𝑔(𝜔) , then we can 

calculate the fraction of the oscillators that are phase locked by integrating the distribution over 

the range of entrainment: 

 𝑓 = ∫ 𝑑𝜔
Ω+𝐾𝜎

Ω−𝐾𝜎

𝑔(𝜔) (17) 

 

 With some reasonable values for typically Josephson junctions, the paper also 

compares plot from the analytic results and the one from numerically calculation using Eqns 

(13), as shown in Fig. 6. The numerical calculation assumes normalized parabolic distribution 

of critical currents of junctions to be 

 𝑃(𝐼) =
3

4Δ3
[Δ2 − (𝐼 − 𝐼)̅2] (18) 

 

with full width 2Δ and average critical current 𝐼.̅ 

 Plots in Fig. 6 and 7 suggest very interesting fact. For Δ > Δ𝐶 ≈ 0.13, f is close to 0, 

but as Δ crosses Δ𝐶, phase-locking begins to happen, and the system undergoes transition into 

partially phase-locked state. Eventually when Δ decreases below Δ𝐿 ≈ 0.02, f reaches 1 and 

the system is completely phase-locked. Points (a), (b), and (c) each represents phases of 

different degree of synchronization. The power spectra for the whole system shown in Fig. 7. 

At (c), the system is at the onset of transition from completely uncoupled to partially 

synchronized regime, so the peak at ω ≈ 2.2 starts to appear in the plot. As the system goes 

into (a), completely synchronized regime, only the peak survives and the low frequency noises 

quench. 

 Now shown that there are three distinct phases of synchronization in series arrays of 

Josephson junctions, the authors give what to look for to experimentally observe this emergent 

behavior. One of their considerations is that Δ , the degree of disorder is not the most 
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experimentally practical parameter to vary to observe these phases. Rather, the realistic control 

parameter would be IB, the bias current applied. Also, instead of directly measuring the number 

or the fraction of the synchronized oscillators, experimenters will be measuring the amplitude 

of the peak as shown in Fig. 7, given as: 

 𝐴Ω = 2Kσ
𝐼𝐵

2 − 𝐼2̅

�̅�2𝐼 ̅
√(𝐿Ω2 − 𝐶−1)2 + Ω2𝑅2 (19) 

which is proportional to the order parameter magnitude, 𝜎 . Thus, 𝐴Ω  is a good order 

parameter for determining the transition between the phases. As seen in Fig. 7, the onset of 

ordering (from phase (c) to (b)) is clear since the peak emerges. However, transition into the 

completely locked phase is not as clear, the only signal being quenching of low frequency 

noises near the line. To simulate the experiment, the authors plot 𝐴Ω  and along with the 

fraction of phase locked junctions versus IB, acquired from numerical simulations from Eqns 

(13) and analytic results for the fraction of phase-locked junctions from Eqn (17) and strength 

of the line in Eqn (19). 

As expected, compared with the fraction, 𝐴Ω  clearly signals the transition into 

partially synchronized regime at around  𝐼𝐵 = 4.3mA for Δ = 0.001mA. However, transition 

into fully synchronized phase is not so clear as previously predicted. Further lowering IB, the 

system loses its dynamical stability. The same is with Δ = 0.002mA, except the system is 

never fully synchronized. Overall, the plot suggests that the transition at the birth of the order 

in the system can be experimentally fully observed looking at the response of the system power 

spectra to IB, and the same for the transition to complete synchronization to some degree. 
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Fig. 6) Fraction of phase locked junctions with typical parameters for Josephson junctions. 

Circles are from the numerical calculations and solid line is analytic result, Eqn (17). Inset: 

bare frequency (thin) and dressed frequency (thick) distributions at (b) Δ =  0.06 [1]. 

Fig. 7) Power spectra for the whole array at different values of Δ, given by (ℏ/2e)(∑ �̇�𝑘 −

〈∑ �̇�𝑘〉). A peak around ω ≈ 2.2 grows as the system goes from (c) to (a) phase in Fig. 6 [1]. 



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

 

 The essay started addressing general idea of synchronization, explaining its emergence 

using Kuramoto model in a simple example of fireflies. In the end, we looked at the 

synchronization phases and transitions in series array of Josephson junctions. The authors of 

the paper analyzed the series of Josephson junctions to show three different synchronization 

states of the system utilizing Kuramoto model. Numerical simulations based on the basic 

Kirchoff’s law were shown to match with the mathematical model. Furthermore, they provide 

a way to experimental observe this event by looking at the amplitude of the line in power 

spectrum. I was able to find a few papers that claims to have experimentally observed the 

synchronization in the system but was not obvious if the experimenters used the methods 

suggested by the authors of the paper presented here. 

 People with backgrounds in physics might see the emergence of synchronization as 

just the result of coupled oscillators resonating at a given frequency. However, I found that the 

field of nonlinear dynamics and study of synchronization in specific is more interesting than I 

had suspected, in the fact that seemingly collective behaviors naturally emerge in complex 

systems of school of animals, Josephson junction arrays, and others and that there exists a 

simple model most of these systems can be mapped onto. 

Fig. 6) Dependence of 𝐴Ω (a) and f (b) on IB at Δ = 0.001mA (circle) and Δ = 0.002mA 

(asterisks) based on Kirchoff Eqns (13). Solid line represents analytic Eqn (17) and (19) [1] 
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