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Abstract

Several mathematical models, mostly based on graph theory, have been developed
over the past decades to predict and explain the behavior within complex intercon-
nected dynamical systems. Here we present an introduction to the current theoretical
models on epidemic spreading mechanisms in complex networks. We show using sev-
eral mathematical models how the topology of the network determines the behavior of
the epidemic. An analysis of the strengths and weaknesses of each model presented is
also included. The study of the patterns emerging from epidemic spreading in complex
networks can not only help prevent and contain the spread of computer viruses or
biological epidemics, but may also help understand similar phenomena in other areas
such as in social media.
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1 Introduction

Figure 1: Order parameter and
critical (transition) point indi-
cating the onset of a sustained
outbreak within a population [1]

Some of the most challenging yet rich problems in physics
are those concerned with understanding and modeling the
behavior of many body systems. However, these systems
are not confined to physical objects such as atoms, elec-
trons or other particles and their constituents. Biologi-
cal, social and technological systems are formed of a large
number of particles (often quite different from each other)
that interact between each other in complex ways. From
these interactions along with the large populations form-
ing these systems, emerge rich behaviors often with com-
plicated underlying dynamics. An example of this and the
main focus of this paper is the dynamics of epidemics and
the emergence of outbreaks in complex networks. This
topic has been widely studied for a long time particularly
for its applicability on biological systems. However, epi-
demic phenomena is not limited to biological diseases, any
networked system can experience it. For example social
networks experience the spreading of rumors, while computer viruses or an internet meme
can spread through technological networks.

Models for epidemic spreading have caught the attention of the statistical physics com-
munity due to the similarity with the models for non equilibrium problems in statistical
physics [1]. The concept of epidemic threashold, or the point at which an outbreak occurs
within a population resembles that of a phase transition. A control parameter λ is varied
and the transition is characterized by an order parameter ρ, which has a non zero value in
one phase (or state) and zero in another. Just as in statistical physics, the transition takes
place at a particular value of the control parameter, the transition point λc.

2 Introduction to Networks and Graph Theory

Figure 2: An example of a
graph [2]

All of the systems mentioned in the introduction form net-
works. A network is a collection of items that interact with
each other. Mathematically, networks are known as graphs
and they are the subject of study of graph theory.[1]

2.1 Terminology in Graph Theory

Each element or item in the graph or network is called a vertex
or node and the connections representing the interactions or
relationships between them are known as edges, links or ties.[2]
These are the most basic elements of a graph[2], but layers of
complexity can be added by introducing rules and constraints

to the interactions or by making the nodes distinguishable. By adding layers of complexity
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to a graph one introduces new topological metrics, as in the case of weighed graphs where
one can measure the strength of the node, si =

∑
j wi,j. The degree of a node is the number

of edges connected to it.[1, 2] In a undirected network, it can be represented by ki =
∑

j ai,j.
In undirected networks, the degree distribution P (k) is the probability that a randomly
selected node has a degree k or for networks of finite size, this represents the fraction of
nodes with degree k. Using this degree distribution one can then define the moments of
the degree distribution as 〈kn〉 =

∑
k P (k)kn. It is possible to have correlation between the

different degrees of the nodes in the network. In this case, the correlation is denoted by
P (k′|k) which is the probability that an edge going from a node with degree k is connected
to one with degree k′.[1] If the network is uncorrelated then P (k′|k) is independent of the
original vertex with degree k.[1]

2.2 Real Networks and Models

Figure 3: Degree (or connectivity) distribu-
tion function for various real networks [5]

The large size and complexity between the
interactions taking place within real net-
works have made their study extremely chal-
lenging. This has made the topology of most
networks for the most part not known. It
was not until recently that scientists in a
large variety of fields could began to test
the mathematical and computational mod-
els they had created and developed over
more than half a century based on short
term observations on network dynamics.
The recent availability and collection of data
in large scales pertaining to the behavior of
different physical, biological and social sys-
tems in recent years has allowed for the test-

ing and refinement of these models.[2, 1, 3] Data collection on real networks has revealed non
trivial topological information arising from their complex internal structure. [3] This is im-
portant since the topology of a graph directly influences its connectivity.[3] Here we present
a brief description of three models that have been traditionally used to describe complex net-
works: Classical Random Graph theory(or Erdös-Rényi Model), the Small World Network
theory (through the Watt-Strogartz model) and Scale Free Network theory (via the Barabási
-Albert Model). The first two are shortly described but we will be focusing closely on the
BA model as most real networks such as power grids and the internet have been shown to
be best described by this scale free network theory as shown in figure 3.

2.2.1 The Random-Graph Theory (Erdös-Rényi Model)

Random graph theory, originally developed by Erdös and Rényi, is the oldest and the most
exhaustively researched network models used to describe complex networks.[3]. Known also
as classical random graph theory, in its simplest form, one builds a graph Gp(N) from a set
of N unlinked nodes, where each one of the total M = N(N − 1)/2 possible edges can be
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drawn with a probability p.[1] Note that by doing this the total number of edges, m, is now
a random variable with an expectation value 〈m〉 = pM .[5]Using this model we can then
define the ensemble Gp(N) of all graphs where a graph having m edges will appear with a
probability pm(1− p)M−m.[2] In classic random graph theory, the number of ways in which
k edges can be drawn from any given node follows a binomial distribution,

P (k = ki) = Ck
N−1p

k(1− p)N−1−k (1)

where pk and (1− p)N−1−k represent the probability of k edges and the absence of addi-
tional edges. The binomial coefficient represents all equivalent ways of selecting the k end
points for these edges. Any two distinct nodes, i and j, P (ki = k) and P (kj = k) can be
regarded as independent random variables[5]. This implies that the degree distribution of
this network must be then related to the probability that these random variables take on
a given value and therefore to the number of nodes with degree k. The average number of
nodes with degree k is then

λk = NP (ki = k) = N

(
N − 1

k

)
pk(1− p)N−1−k (2)

in the limit of large N [2]. In this same limit then the distribution of the number of nodes

with degree k approaches a Poisson distribution P (k) ≈ e−λk
λkk
k!

. The degree distribution
then follows a Poisson distribution with mean value λk where this function is not constant[5].
However since the standard deviation of the distribution is σk =

√
λk, one can claim that

the number of nodes with degree k does not diverge much from λk = 〈k〉 and then to a good

approximation, in the large N limit P (k) ≈ e−〈k〉 〈k〉
k

k!
. The structure of the random graph

varies with the value of p[2]. The clustering coefficient for this model is 〈c〉 = p. This model
is only useful for describing networks that are purely stochastic. Even though for 〈k〉 > 1,
the networks generated by classical random graphs are small in diameter much like real
world networks. However this is where the similarities end as other important topological
properties such as high clustering cannot be explained thorough this model [1].

2.2.2 Small World Networks and the Watts-Strogatz Model

Figure 4: Increasing randomness as
a function of pWS in the WS model.
[5]

The main goal of this model was to create a system
that would transition from a highly ordered graph into
a random network. Commonly known as the small
world network [3], it is also the first attempt to obtain
a network with a small diameter and large clustering
coefficient[1], an improvement over the ER model. It
consists of a one dimensional lattice of N nodes with
periodic boundary conditions and where each node
is bonded symmetrically to its neighbors(the start-
ing highly ordered configuration)up to an order n[1]
(nearest neighbor for n = 1, next nearest for n = 2
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and so on and where the number 2n is known as the
coordination number of a node [3]).Then, each bond is rewired with a probability pWS to a
randomly chosen node, with the only constraint that no two nodes can have more than one
bond and that no node can bond to itself [3]. Effectively the rewiring adds long range short-
cuts to the the network which reduces the average shortest path length preserving clustering
[1]. For the extreme limits where pWS = 0 the network is higly clustered and the average
distance between any two nodes grows linearly with N[3], while for pWS = 1, the system
becomes a random graph, clustering is mostly gone and the average distance grows loga-
rithmically with network size(see figure 4).[3] It was noted by WS that within the interval
0 < pWS < 0.01 the model exhibits the small world properties of high clustering and small
diameter. Even though, one of the common short comings of the ER and WS models is that
the probability of finding a highly connected node (large k) decreases exponentially with k,
and hubs with large connectivity are practically non existent in these networks, a common
characteristic in real networks.[4, 5] Nonetheless, this particular model is well suited for the
study of social networks.[1]

2.2.3 Scale Free Networks and the Barabasi-Albert model

Figure 5: (a)Degree distribution P (k) of the
BA modle with N = m0+t = 300000 and m =
m0 for the values of 1(circles), 3 (squares),
5 (diamonds) and 7 (triangles). Dashed line
represents γ = 2.9, and the inset shows the
rescaled distribution P (k)/2m2 for the same
values of m with γ = 3. (b) Degree distribu-
tion for m = m0 = 5 with system sizes N of
100000(circles), 150000 (squares) and 200000
(diamonds). Inset shows time evolution of two
nodes for t1 = 5 and t2 = 95 where the dashed
line has a slope of 0.5 [3]

One of the common topological properties in
real networks is a degree distribution that is
free of scale, i.e. a power law distribution
over several orders of magnitude as it can
be seen from figure 3.[1, 2, 5, 3, ?]The last
models have taken the approach of explain-
ing the final form that networks take, try-
ing to construct graphs with the appropriate
topology . However, Barabasi and Albert re-
alized that in order to develop a model that
would be scale free one would have to focus
on the dynamics of the network.[5, 4] They
formulated two rules governing the evolution
of the network from which the final topol-
ogy of the network could be calculated.[5][4]
They realized that both models considered a
fixed number of nodes N that are either ran-
domly connected or reconnected but with-
out N changing, which is unrealistic, since
most real networks are open and tend to
grow in size.[4, 2, 1, 5] Secondly, the two pre-
vious network models assume that all con-
nections (or rewiring) between the nodes are
random and independent of the degree of the

node.[3, 4, 5] Real networks, on the other hand, seem to exhibit preferential attachment [5],
where new nodes have a higher probability of forming a link with existing nodes of higher
degree. [3, 5, 4] Surprisinly, the introduction of only these two elements into the network
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creates a power law degree distribution.[3, 5]. The Barabási and Albert (BA) model consists
of the implementation of these two ingredients via the following algorithm:

1. Growth is incorporated by assuming that the network begins with a small number of
nodes, m0 and an additional node is added every time interval a new node is added
with m ≤ m0 edges.

2. Preferential attachment is introduced by assuming that every time a new node is
introduced it will attach to an existing node with a probability(Π) proportional to its
degree ki, that is[3, 5]

Π(ki) =
ki∑
j kj

(3)

Then the total number of nodes in the network after t steps have passed is N = t + m0

with mt edges. Computer simulations have shown that this algorithm produces networks
that are indeed scale invariant with a scaling exponent γ = 2.9 ± 0.1, as shown in figure
5[3, 5].

In order to calculate analytically the time dependence of the connectivity, a mean field
approach must be used. Assuming k is a continuous variable, the expression for preferential
attachment can be seen as a rate of change for ki, as the degree of any node will increase every
time a new node enters the system and attaches to i, with a probability Π(ki). Therefore,

∂ki
∂t

= mΠ(ki) = m
ki∑N−1
j kj

= m
ki

2mt−m
=
ki
2t

(4)

In this case, N = m0 + t−1 and the change in connectivity at each time step is m due to
the introduction of each node. Since every edge increases the connectivity of two nodes, after
t time steps,

∑N−1
j kj = 2mt. Which can be solved using the additional constraint that every

node ki added at any time ti begins with a connectivity ki(ti) = m, so that ki = m
(
t
ti

)1/2

.

Indicating that the degree of all the nodes evolve following the same power law. This also
suggests that older nodes, with smaller ti, in the network have larger connectivities than those
introduced later on as we would expect, a phenomenon that many real networks experience
[3, 4]. This allows us to relate the probabilities between finding a node with degree k in the
network and the time steps taken by [3]

P [ki(t) < k] = P

[
ti >

m2

k2
t

]
(5)

and from the assumption that nodes are added to the network at equal time intervals,
the probability density of ti is P (ti) = 1/(m0 + t), and using the definition,

P

[
ti >

m2

k2
t

]
= 1− P

[
ti ≤

m2

k2
t

]
= 1− P (ti)

m2

k2
t = 1− m2t

k2(t+m0)
(6)
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The probability density for the degree distribution is

P (k) =
∂P [ki(t) < k]

∂k
=

2m2t

k3(m0 + t)
(7)

where in the limit as t→∞,

P (k)→ 2m2

k3
(8)

indicating that γ = 3 consistent with the numerical simulations.

3 The Epidemiological Process

Epidemiological models aim to predict and describe the dynamics of the contagion process
within a population. Several have been developed and extensively studied to describe this
process, each with added refinements to better reflect or constraint the spreading behavior.
The most simple models usually assume that the total population of the network under
study is held constant, ignoring all properties associated with the individuals composing the
network (i.e. demographics).[1] Refinement in these models usually consists of the addition of
phases or stages in which a particular member of the network (a node) can be in at any given
time. The simplest models assume only two stages, healthy and infected. Amongst these are
the Suceptible-Infected-Susceptible (SIS) model and the Suceptible-Infected-Removed (SIR)
model.[2, 1] SIS for example has only two states, where an individual can either be infected
with the disease or healthy and susceptible to become infected. The SIR model introduces
an additional stage where the individual can be removed from the infection process once the
node either recovers from being infected, developing an immunity to the disease or dying.[1]

3.1 Classical Epidemiology

Figure 6: Examples of
the different epidemiologi-
cal models in use along with
the transition rates between
stages. [1]

As mentioned above, SIS and SIR are the most common mod-
els used to study the evolution of epidemics. In the SIR model,
the amount of infected individuals, in the long time limit al-
ways tends to zero. However for SIS, depending on the initial
conditions of the epidemic, an endemic or stationary state,
characterized by a constant fraction of individuals may exist in
this same limit.[1] Classically and in both models, the evolu-
tion of the epidemic is dictated by the infection and recovery
processes[1]. In these models the transitions I → R and I → S
are mostly time dependent and independent of the interactions
with other individuals in the population. On the contrary, the
transition S → I only occurs when a susceptible individual
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comes into contact with an infectious one. Classical epidemi-
ology takes the differences between these mechanisms into ac-
count along with simplifications that make epidemic modeling
solvable.

Epidemiologist define the average time spend by an individ-
ual in the infected stage as 1/µ where µ can also be interpreted
as the recovery probability within some time interval. In the continuous approximation, and
assuming a Poisson process, the probability that an individual remains in the infectious
stage is PI(τ) = µe−µτ with τ = 1/µ. Meanwhile, the transition S → I requires a more
careful description. It is assumed that individuals within a particular population interact
mostly randomly (homogeneous mixing approximation). In addition, the larger the num-
ber of infected individuals in contact with a susceptible one, the higher the probability of
infection. This allows for the definition of the force of infection, or the probability (risk)

that a susceptible individual will become infected at any time interval, α = β̄N
I

N
, where β̄

is specific to a disease and a populations contact pattern and N I/N = ρI is the fraction of
infected individuals. Occasionally β̄ can be written as β̄ = βk where k is the average number
of contacts with other individuals. In a mean field description, this is analogous to a mass
action law, commonly used in epidemiology.[1] The force of infection is only dependent on
the density of infected individuals, where

〈
dρ

dt

〉
= fρα (9)

that is, the average change of the density of individuals in a particular stage is equal to
the force times the density of individuals in that stage. From the above, we could approach
epidemic modeling as a reaction diffusion process where individuals are placed in different
stages of the model at any given time and they can transition between them according
to a specific set of rules. This is shown in figure 6,where in the continuous limit, each
transition between stage is represented by a rate.[1] The allowed transitions in the SIS can
be summarized by

S + I −→ 2I (10)

I −→ S (11)

where the first equation has an infection rate β and the second a recovery rate µ. Mean-
while, for the SIR model,

S + I −→ 2I (12)

I −→ R (13)

Often stages are added to these simple models in order to reflect real world behaviors.
In the case of biological diseases, for example, one can add an additional susceptible stage
to SIR as a way of incorporating temporal immunity to a particular pathogen, where a new
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variable η is introduced, indicating the rate at which immunity is lost. Other examples
include the SEIR model where the additional stage includes exposed individuals E which
may be infected but not yet able to infect others.[1]

Classic understanding of epidemics is based on the use of difference equations that de-
scribe the movement of individuals between stages in the continuous time limit.The homoge-
neous mixing approximation (HMA) is employed, where the assumptions that individuals in-
teract randomly between each other and are well mixed are made. Well mixing of individuals
allows us to average over their particular demographics and treat everyone indistinguishably
from each other as long as they belong within a particular stage of the model. Under this
approximation, the epidemic state is encoded in the number or density of individuals at a
particular stage α, ρα = Nα/N .For both SIS and SIR[1],

dρI

dt
= (βρS − µ)ρI

dρS

dt
= (−βρS + χ)ρI (14)

where χ is either µ or zero for SIS and SIR respectively. These systems of equations are
subject to the normalization condition

∑
α ρ

α = 1. These equations can all be solved if they
are linearized in the limit when ρI ≈ 0, valid at the early stages of an epidemic, where

ρS = 1− ρI ≈ 1
dρI

dt
= (βρS − µ)ρI ≈ (β − µ)ρI (15)

where the solution ρI(t) = ρ(0)e(β−µ)t represents the behavior at the beginning of conta-
gion. The number of infected individuals will only grow exponentially if β − µ > 0 or

R0 =
β

µ
> 1 (16)

where R0 is known as the basic reproduction number [1], describing the average number of
secondary infections caused by a primary case. Only if R0 > 1 outbreaks occur. For R0 < 1,
in the thermodynamic limit of infinite population, the infection vanishes in the case of SIR
or all individuals become healthy again in SIS. So far the models have been deterministic and
the stochastic nature of disease spreading has not been taken into account. Here, R0 > 1 is
necessary and sufficient for an epidemic outbreak to occur, but in stochastic systems it is only
necessary.[1]Models that take this stoichastic nature into account are considered next,but the
focus will be models with Poisson like processes. It is worth mentioning that more complex
behaviors have been explored by using other non-poissonian distributions[1]. Furthermore,
the classical deterministic model assumes random and homogeneous mixing, but in real
networks, the interactions between individuals vary. Every node in the network has a different
number of edges. For example, more social individuals will have greater contact with others
and have a higher chance of becoming infected. R0 in classical epidemiological theory does
not seem to be illustrate this dependence on the network heterogeneity. These heterogeneous
connectivity patters are a consequence of the network topology and in turn affect epidemic
behavior.
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4 The SIR Model

The SIR model is well suited to describe a large number of epidemic phenomena, from the
spread of computer viruses, disease spreding with adquired immunity after infection, rumors
in social circles etc.[1] This model will be then one of the main focus of the following sections.
In addition, we will define the densities with the following variables

S(t) = ρS(t) I(t) = ρI(t) R(t) = ρR(t) (17)

The order parameter (or prevalence) in the SIR model is defined as the number of re-
moved individuals at the end of the epidemic, that is R∞ = limt→∞R(t)[1]. The differential
equations that describe this model are

dS

dt
= −λk̄I(t)S(t)

dI

dt
= −µI(t) + λk̄I(t)S(t)

dR

dt
= µI(t) (18)

where λ is the microscopic infection rate S → I and k̄ is the rate of contacts for all
individuals assumed to be constant. Using the initial conditions R(0) = 0, I(0) ≈ 0 and
S(0) ≈ 1, and combining the differential equations for the time derivative of R and S,

Ṡ = −λk̄Sİ ⇒ S(t) = e−λk̄R(t)

Using this result and the normalization condition,

Ṙ(t) = I(t) = (1−R(t)− S(t)) = 1−R(t)− e−λk̄R(t) (19)

lim
t→∞

˙R(t) = 0 = lim
t→∞

(1−R(t)− e−λk̄R(t))⇒ R∞ = 1− e−λk̄R∞ (20)

where we let the order parameter converge to a constant in the long time limit. This last
expression is denoted as the self consistent equation for the order parameter [6]. R∞ = 0 is
always a solution (which we already knew), but we are more interested in non zero solutions.
Since 0 ≤ R∞ ≤ 1 and noting that for large values of R∞ the right hand side of the self
consistent equation tends to 1, a non zero crossing point will exists is the slope of this
function exceeds the slope of the left hand side at zero, as this is just a linear function that
always increases. This constraint can be expressed as

d

dR∞

[
1− e−λk̄R(t)

]
R∞=0

> 1⇒ λ >
1

k̄
(21)

This is equivalent to the condition λ > λc for λc = 1/k̄
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4.1 The SIR Model in Complex Networks

To introduce contact heterogeneity in the network, while using the SIR model, we will
assume that the network has a general degree distribution P (k), that is the network is
uncorrelated.[6] A more complex but accurate description would use the degree correlation
P (k′|k). In this picture, the densities are now also functions of the degree of the node and
described by the variables Sk(t), Ik(t) and Rk(t), with normalization Sk(t) + Ik(t) +Rk(t) =
1[1]. And since the probability that a node is connected to another node of degree l has a
probability lP (l), we introduce the factor

Θ(t) =

∑
k kP (k)Ik(t)∑

j jP (j)
=

∑
k kP (k)Ik(t)

〈k〉
(22)

which takes into account the probability that an edge in the network is connected to an
infected site.[1, 6] Then the densities must obey the differential equations

Ṡk = −λkSk(t)Θ(t) İk = −Ik(t) + λkIk(t)Sk(t)Θ(t)
dR

dt
= Ik(t) (23)

Using the initial conditions Rk(0) = 0, Ik(0) = I0 and Sk(0) = 1− Ik(0) and in the limit
I0 << 1, then Ik(0) ≈ 0 and Sk(0) ≈ 1, and by integrating the equation for the susceptible
density,

Sk(t) = e−λkφ(t) (24)

φ(t) =

∫ t

0

dt′Θ(t′) =

∫ t

0

dt′
∑

k kP (k)Ik(t)

〈k〉
=

1

〈k〉
∑
k

kP (k)

∫ t

0

dt′
dRk(t

′)

dt′
(25)

=
1

〈k〉
∑
k

kP (k)Rk(t) (26)

The function φ cannot be solved analitically in general[1]. However we can obtain useful
information by examining its time evolution and behavior in the long time limit[1][6]. The
order parameter in the long time limit is

R∞ =
∑
k

P (k)(1− e−λkφ∞) (27)

derived just as equation 19. Meanwhile for the time derivative of φ is

˙φ(t) =
1

〈k〉
∑
k

kP (k)Ṙk(t) =
1

〈k〉
∑
k

kP (k)Ik(t) =
1

〈k〉
∑
k

kP (k)(1−R(t)− e−λkφ(t)) (28)

=
1

〈k〉
(
∑
k

kP (k)−
∑
k

kP (k)R(t)−
∑
k

kP (k)e−λkφ(t)) (29)

= 1− φ(t)− 1

〈k〉
∑
k

kP (k)e−λkφ(t) (30)
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Under the assumption that in the long time limit φ(t) converges to a constant, and
limt→∞ φ(t) = φ∞, then

φ∞ = 1− 1

〈k〉
∑
k

kP (k)e−λkφ∞ (31)

This is the self consistency equation for φ∞ where the value of zero is always a solution.
In analogy with equation 21. A non zero solution is met by [6]

d

dφ∞

[
1− 1

〈k〉
∑
k

kP (k)e−λkφ∞

]
R∞=0

> 1 ⇒ 1

〈k〉
∑
k

kP (k)(λk) = λ
〈k2〉
〈k〉

(32)

which allows us to define the epidemic threshold at λc = 〈k〉
〈k2〉 .

4.1.1 SIR model in Watts-Strogatz Model

For a WS network with p = 1, each node has at least m neighbors, the connectivity dis-
tribution, for k ≥ m is given by P (k) = mk−m

(k−m)!
e−m.[6] For networks whose moments are all

convergent, equations 27 and 28 can both be solved in the limit where φ(t) is small. In the
case of equation 27,

R∞ = −
∑
k,n=1

P (k)
(−λkφ∞)n

n!
= −

∑
k,n=0

P (k)
(−λkφ∞)(n+1)

(n+ 1)!
≈ λφ∞

∑
k

kP (k) (33)

≈ λφ∞〈k〉 (34)

while for equation 28,

˙φ(t) = −φ(t)− 1

〈k〉
∑
k,n=1

kP (k)
(−λkφ∞)n

n!
= −φ(t)− 1

〈k〉
∑
k,n=0

kn+2P (k)
(−λφ∞)n+1

(n+ 1)!
(35)

= φ(t)

(
−1− λ〈kn+2〉

〈k〉
∑
n=0

(−λφ∞)n

(n+ 1)!

)
≈ φ(t)

(
−1 +

λ〈k2〉
〈k〉

− λ2〈k3〉
〈k〉

)
(36)

This can be integrated to give [6]

φ(t) =
2(λ− λc)〈k〉

〈k3〉λ2 + Ae−(λ−λc)t/λc
(37)

for A being an integration constant and λc = 〈k〉/〈k2〉. And using the degree distribution
for WS networks [6],

λc =
2

1 + 4m
(38)
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4.1.2 SIR in Power Law Distributed Networks

From the degree distribution for BA networks, equation 8, the first and second moments are

〈k〉 = 2m2

∫ ∞
m

kk−3 = 2m 〈k2〉 = 2m2

∫ ∞
m

k2k−3 = 2m2 lim
kmax→∞

ln(kmax/m)→∞ (39)

Then the epidemic threshold tends to zero always. In the long time limit,

R∞ = 1− 2m2

∫ ∞
m

k−3e−λkφ∞ ≈ 2λmφ∞ (40)

where the integral can be expressed in terms of the incomplete gamma function and
expanded for small φ∞.[6] In addition, one can solve the expression for the time derivative of
φ for small φ(t) by using incomplete gamma functions to find that in the long time limit and

where γ is the Euler Mascheroni constant, φ∞ ≈ e1−γ

λm
e−

1
λm . Using this result, the epidemic

prevalence

R∞ ∝ e1/λm (41)

where we see that R∞ is never zero for λ 6= 0.

5 Results and Final Remarks

The last two sections lead us to conclude that, under the same model, the topology of the
network has a strong influence on the behavior of the spread of contagion. Particularly in
the determination of the the critical value at which an outbreak will occur. The analytic
results were tested through numerical simulations by Moreno et al.[6]. The results of their
simulations are shown in figure 7, where the theoretical predictions seem to agree with the
simulations. In the case of small world networks, where connectivity fluctuations are small
and finite, the epidemic threshold is also finite. However in the case of scale free networks
where the fluctuations in connectivity tend to diverge, the epidemic threshold vanishes,
making them prone to constant outbreaks, at least in the thermodynamic limit. Large
fluctuations on the connectivity of a network can enhance epidemic spreading on a network.
This is reasonable as we would expect that for a scale free highly heterogeneous network, an
infection beginning at any node will tend to cause an outbreak since low connectivity points
are likely connected to high connectivity ones providing a pathway for it to occur. These
results were the product of the addition of layers of complexity to the classical theory of
epidemiology. If other refinements are included, such as the use of the correlation function
P (k′|k) or by studying systems of finite size, we may find a richer topological dependence of
the order parameter and critical point. These considerations, if solvable, may lead to a more
accurate description of epidemic dynamics, and ultimately to a practical strategy to contain
them or even control them.
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(a) Order parameter R∞ as a function of (λ−λc)
in WS network with N = 106. The value λc =
0.184(5) and β = 0.9(1) where obtained from the
numerical calculations for the line fit of the form
R∞ ∝ (λ− λc)β

(b) Order parameter R∞ as a function of 1/λ in
BA network with N = 106. The semilogarithmic
plot of the numerical results vs the line fit vali-
dates the analytic result.

Figure 7: Results of the comparison between the numerical simulations and the analytic
solution performed on the SIR model[6]
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