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Abstract: When an electron travels through a non-uniform magnetic structure, it constantly
experiences forces which attempt to orient it with the local magnetization. An emergent

electrodynamics can be used to describe the net effect of these re-orientations. This essay focuses
on Skyrmion lattices, topological quantum numbers and how topological properties of our lattice is

inherited by the emergent fields. There is a discussion on the Quantum Hall Effect to motivate
topological quantum numbers and the experiment also uses the Hall Effect as a means of data

collection.
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1 Introduction

An astonishing yet convenient aspect of physics is the abundance of analogies. For instance, an in-
ductor in series with a charged capacitor acts as a mass on a spring, or, better yet, an electromagnetic
field can be thought of as a continuous system of harmonic oscillators. With analogies we clarify the
physics of abstract phenomena with a more suitable visualization for our minds eye. These sorts of
comparisons are very important to effectively ”visualize” modern day physics problems.

Advances in material sciences has provided physicists with many forms of exotic matter, which,
in turn, reveals new phenomena. For instance, when electrons traverse non-collinear magnetic struc-
tures 1 the spin of the electron has to continuously reorient itself in an attempt to align its own
magnetic moment with the ambient field (internal + external)[1]. The dynamics of the electron can
be described nicely as a fictitious electrodynamics. This emergent electrodynamics is essentially an
intuitive mechanism, like the previous examples, and allows accumulations of Berry phases to be
thought of as a sort of Aharonov-Bohm phase.

This essay introduces some key aspects of this emergent electrodynamics as well as an introduc-
tion to topological quantum numbers, and their importance. Indeed, certain physical aspects are
inherited from the topologically quantized winding number of a so called Skyrmion, which will be
defined very shorty. The methods used to test the predictions of this model exploits the Quantum
Hall Effect (QHE). Basically after applying a critical depinning current, to the Skyrmions a emergent
field will arise which has measurable affects on the magnitude of the Hall conductance.

1.1 What are Skyrmion’s?

Over 50 years ago Tony Skyrme, a high-energy physicist, developed the mathematical theory which
we use to describe the so called Skyrmion; in his paper, “A Unified Field Theory of Mesons and
Baryons,” [Nucl. Phys. 31, 556 (1962)](Fun fact: a special thanks to A.J Leggit is found at the end
of this paper).

Using the concept of particles in Quantum Field Theory (wavelike excitations of the vacuum
state) Skyrme attributed the stability of hadrons as being a topological defect in a Quantum
Vector field[7]. As we know (or better will know), topological defects are robust; under exter-
nal perturbations, such as after a continuous deformation of a vector field, the topological integer

Figure 1: A spintex-
ture representing a
skyrmion[7]

describing our defect remains unchanged. The idea that hadrons are
topological defects is not commonly used by particle physicists, but
condensed-matter systems have provided us with skyrmion-like topolo-
gies many years after Skyrme’s paper.

Let’s start by describing what we mean by skyrmion. Here we avoid
technical definitions like: ”A skyrmion is a topologically nontrivial soliton
solution of the nonlinear sigma model”[3]. We will just understand them
to be point like ( 2 nm) regions of space possessing a reversal/anti-parallel
magnetization relative to surrounding regions (Figure 1) [7].

The core is of finite size since the magnetization needs to unwind
continuously into the background magnetization direction (see Figure 1).
These patterns may be classified by a so called ”winding number” which
is a topological invariant.

Before going into the topology of a skyrmion, let’s discuss what type
of systems skyrmions are found in; we need to know about Helimagnetic
structures. Helimagnetism is a peculiar ordering of magnetic structure
arising from a sort of competition between different exchange interac-
tion’s. More precisely, these magnetic systems experience a dominate
Heisenberg exchange interaction between neighboring spins as well as a

1When the magnetization of our sample does not align with and external magnetic field
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Dzyaloshinkii-Moriya (DM) interaction which is attributed to electrons
feeling a spin-orbit coupling [7]; the former favors parallel alignment while the latter prefers per-
pendicular alignment. As a result of the competition between these two exchange interactions,
there is a helical pattern exhibited by the magnetic moments. The helicity of the structure can
be characterized by a relative angle φ ∈ [0, π] between consecutive spins; note ferromagnetism and
anti-ferromagnetism are both special cases of Helimagnetism!

The resulting helical structure breaks spatial inversion symmetry about a plane since these twists
may either be right or left handed; that is, there is a form of chiral symmetry. This motivates the
concept of chiral magnets. Skyrmoins are observed in certain systems with this chiral symmetry.

The previously alluded to topological properties of skyrmions gives physicists an ambitious view
for applications. Since the skyrmion is topologically protected, on the nano-scale and takes very little
energy consumption (small currents) to transport, it has been hypothesized as a future means of
information storage in our computers [7]. However, because we are physicists rather than engineers,
we will be more interested in the apparent emergence of a kind of electrodynamics found in these
systems!

1.2 Skyrmion Lattice Phase

Below a critical temperature, there is a phase transition analogous to that of a material transitioning
from a paramagnetic phase to a ferromagnetic phase. We will take this as a given in this essay, but
reference [11] gives the interested reader some systems which exhibit this phase transition. Skyrmion
lattice phases (SLPs) in chiral magnets consists of topologically protected vortex lines (i.e. the
Skyrmions) with a non-zero winding number (still need to define). SLPs have been found in MnSi
and other B20 transition metals, and are stabilized parallel to an applied magnetic field[1].

1.3 Outline of what remains

A winding number has been referenced several times, but what is it? We know, as a sort of trivia
fact, it has topological significance, but what does topology have to do with physics? This essay
will attempt to motivate the use of topology as a powerful tool used to describe our world, but will
attempt to do so with more intuitive pictures. The notion of a topological number will be illustrated
through the Quantum Hall Effect (QHE) since this serves as a better starting point than the winding
numbers.

After addressing the importance of the so called Chern numbers in describing our QHE, and
showing the form of the winding number, we will then look at the dynamics of an electron travelling
through a magnet with a spin texture. What we find is there is a link between the electron’s
dynamics, which we attribute to an emergent electrodynamics, and the winding number of the SLP;
thus, our emergent electrodynamics inherits rules our winding number satisfies.

Finally, we look at some experiments, and show how our emergent fields can be accounted for.

2 Introduction to Topological Quantum Numbers

As previously stated, the QHE illustrates the use of topological quantum numbers in condensed
matter systems. We choose this as our starting point for both historical as well as pedagogical
reasons, but it also tells a nice story. So, the following sections may seem to be a digression from
the emergent electrodynamics, but is present to motivate the use of topological quantum numbers
in condensed matter systems.
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2.1 The Quantum Hall Effect

In 1878 Edwin Hall established an experiment used to discredit one of Maxwell’s statements present
in his famous ”Treatise on Electricity and Magnetism”; the exert states[2]: ”It must be carefully
remembered that the mechanical force which urges a conductor... acts, not on the electrical current,
but on the conductor which carries it” Sending a current through a thin gold layer Hall was able
to measure the deflection of the current carries themselves when placed in a magnetic field using a
galvanometer needle. This monumental discovery established a simple yet reliable method to classify
the conductor one has; you just measure the Hall voltage VH . Using these concepts and the applied
current, I, the notion of a Hall conductance was established to be:

σ =
I

VH

In 1980, nearly 100 years after Hall’s discovery, Klaus von Klitzing discovered a quanta based off
this almost century old concept. When we perform a Hall measurement at low temperatures and
with a large magnetic field, the Hall conductance of a 2D electron gas exhibits plateaus [2]; absurdly
it was found that :

σ = n
e2

h
=

n

25812.807572Ω

Here n ∈ Z. This quantization is in terms of the ratio Go = e2

h which was later deemed the
conductance quantum.

2.2 Emergence of Topological aspects

The discovery of a new quanta is very exciting, but physicists were originally apprehensive. A
moments thought reveals the peculiarity of these results: Despite microscopic imperfections, different
geometries, and different concentrations of electrons dissimilar systems exhibit the same behaviour!
This is, as condensed matter physicists say, a robust feature of these systems which initially troubled
physicists. However, as is often the case, there’s a silver-lining; these plateaus and the resulting
qualms of physicists were the gateway to discovering a very general principle for Condensed Matter
systems with far reaching implications.

The seemingly non-identical systems acting in a identical matter is as unintuitive to our visceral
senses as, say, a Topologists idea that a coffee mug is just a doughnut. The latter two examples
are linked through topological invariants, and are said to be homeomorphic to one another. As we
will see, the former examples can also be classified in terms of topological invariants which take on
integer values; we coin these topological invariants as as topological quantum numbers.

The notion of topological invariants; such as, Chern numbers and their non-abelian cousins,
Fredholm indices, are ubiquitous. Our Hall conductance will be shown to be proportional to the
first Chern number [6,5].

2.3 Bloch Electron’s in a Uniform Magnetic Field

We are going to need the concept of a magnetic unit cell (magnetic Brillouin zone), and the gener-
alized Bloch Bloch conditions (these are derived in detail in Appendix I). The essential information
is in the presence of a Magnetic field the translation operators along the crystals lattice directions
do not generally commute; indeed:

T̂~aT̂~b = exp(2πiφ)T̂~bT̂~a

When our external field is rational (i.e. of the form p/q 3 p, q ∈ Z), we can enlarge our unit cell
so that the the magnetic flux in the above equation, φ, is an integer which defines our magnetic unit
cell. Using the concept of simultaneous eigenstates, one can derive the generalized Bloch conditions;
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just follow the same spirit as you would to find the Bloch conditions. For convenience we state the
resulting wave function:

ψ
(n)
k1k2

= ei(k1x+k2y)u
(n)
k1k2

(x, y)

and the generalized bloch conditions:

u
(n)
k1k2

(x+ qa, y) = e−iπpy/bu
(n)
k1k2

(x, y)

u
(n)
k1k2

(x, y + b) = eiπpx/qau
(n)
k1k2

(x, y)

What we can deduce from these conditions is there is an overall phase change picked up by the
wave function as we travel around the magnetic unit cell boundary [Appendix I]. Indeed, if θ(x, y)
is the phase of the wavefunction at each point on the boundary we find:

p = − 1

2π

∫
d~r · ∂θ(x, y)

d~r

This term is a topological feature of our system, and represents the number of times an arrow
parameterized by θ rotates as we go around the boundary [6]. Thus, we may think of this number
as the total vorticity. Note this gives a constraint on the wave function, and it does not care what
the potential is! It is, however, dependent on the external magnetic field.

2.4 Kubo’s Linear response Formula

We will now employ a well now formula, known as the Nakano-Kubo formula, to calculate the
Hall conductance. This formula is a Quantum statistical linear response calculation; that is, how
a expectation value changes from its unperturbed value when a perturbation is turned on. It can
be derived using the interaction picture of time dependent perturbation theory by keeping the
propagator to linear order.

The details of how the Kubo formula relates to our scenario is left for Appendix II. All we
stipulate here is that the Fermi energy lies within a gap which ultimately leads us to a quantized
Hall conductance [5,6]. We find that the contribution to the conductance from the nth filled band
is given by:

σ(n)
xy =

e2

2πih̄

∫
d2k
[
∇k × Â(k1, k2)]3

where:

Â(k1, k2) =

∫
d2ru∗k1k2

∇kuk1k2 = 〈uk1k2 |∇k|uk1k2〉

Figure 2: Parallel arrows represent a periodicity;
these are folded onto one another[14]

An important point is that the integration is
performed over the magnetic Brillouin zone, but
the Magnetic Brillouin zone is topologically a
Torus (see Figure 2).

indicates this via the magnetic cells periodic
boundary conditions, and folding the cell on top
of itself. The identification of the magnetic Bril-
louin zone as a torus means the base space for
Â(k1, k2) is non-contractible allowing the possi-
bility of a non-trivial Â(k1, k2) [6]. This means
Stoke’s Theorem does not apply; thus, our con-
ductance above may be nonzero! In a basic
sense this is due to the branch cuts (which de-
pends on the number of filled energy bands) of the wave function; the phase can not be uniquely
determined throughout the entire magnetic cell [5].
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2.5 Connections to Topological invariants

There is a lucid argument found Mahito Kohmoto’s paper (reference 6) on pgs. 349-350 which

considers a calculation for the simplest of non-trivial cases for σ
(n)
xy : a single zero in the unit cell for

uk1k2
. Although easy to follow, the argument takes time, and space to set up, so we quote a few key

points. We can partition the Brillouin zone into two regions: one containing the zero and one not.
Using these regions and the fact the overall phase of a single component |uk1k2〉 acquires a phase
mismatch when we approach the boundary of these regions we an show our Â(k1, k2) inherits the
non-trivial topology of |uk1k2

〉. From this we can apply Stoke’s Theorem to both regions individually,
and this leads to a equation showing the total vorticity of the wave function in the magnetic Brillouin

zone leads to σ
(n)
xy being quantized.

The topological structure of these equations has a strong resemblance to a principle U(1) bundel
over a sphere S2[5,8]. The Â(k1, k2) above can be used to define a 1-form connection [6] which in
turn can be used to define a curvature. In terms of our k′1s and k′2s the first Chern form is given by
a integral of the curvature over the entire torus:

C1 =
i

2π

∂Âµ
∂kµ

dkµ ∧ dkµ

The entity in the integrand is, in the language of differential geometry, the curvature. a Com-
parison with our equation for the Hall conductance shows:

σ(n)
xy = −e

2

h
C1

This reads the contribution to the Hall conductance from a single filled band is an integral multiple
(since the Chern number is an integer) of the conductance quanta!

2.6 Laughlin’s Argument

The topological aspect of the Hall conductance is important, but perhaps a bit unintuitive. Here
we attempt to show how geometry and topology can be related to one another, and how geometric
descriptions can arise in unexpected ways.

In 1981 Robert Laughlin introduced the seminal concepts which lead to the theory of the Integer
Hall Effect[2]; basically he thought of the Hall effect as a sort of pump whose job is to transfer charge
from one electron reservoir to another.

Figure 3: A Hall
Pump[2]

Consider a 2D electron gas confined to a cuff threaded by some mag-
netic flux (Figure 3). Using:

σH =
j

E(r, t)
=

I

∂tΦ

and, if we take the time varying magnetic flux to change by a flux
quanta, Φo = h/e, in a time δt, then we get the following accumulation
of charge due to this pump:

∆Q = I∆t = σH∆t∂tΦ = σH
h

e

Now a basic tenet of Quantum Mechanics stipulates the difference in the
number of particles which accumulated on the edges must be an integer (basically particle numbers
are integers); because of this, we see:

σH = ∆Q
e

h
=
ne2

h
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A remark made by Laughlin [2], ”...by gauge invariance, adding Φo maps the system back to
itself.... [resulting in] the transfer of n electrons.” So, this was a cute, and comparatively short
argument for the quantization of the Hall conductance, but clearly the rigor is missing. We take
this a few steps further than Laughlin did, and recover the rigor (to some degree).

2.7 Modern Geometry and Curvature

It is clear that the time varying magnetic flux serves as the agent who drives charge, so this lead
Laughlin to think of the QHE as a sort of pump for electric charge. The important point is pumps
have cycles; a cycle of the pump corresponds to a change of the magnetic flux by a single unit of
the quantum of magnetic flux[1,2]! We can use this thought process to show that the QHE can be
thought of as a sort of curvature.

In 1917 Tulio Levi-Civita [2] developed a modern concept of curvature from the notion of par-
allel transport. The rigorous mathematical definition of parallel transport uses the notion of vector
bundles and connections which is far too formal for our purposes, so we opt for intuition instead.
Essentially, parallel transport involves displacing a vector about a surface (manifold) with the con-
straint the vector remains parallel to it’s original orientation measured in respect to the surface’s
local tangent vector.

We are interested in abstract vectors that live in a Hilbert space, so the transportation will
involve cycles in parameter space all varied adiabatically. With the notion of parallel transport we
can thus view curvature as a measure of the mismatch of the phase of a system after accomplishing
parallel transport about a closed circuit (This esoteric notion of curvature is illuminated when one
considers the Foucault pendulum; see supplements if needed).

The important point is we have a cycle associated with our Hall pump, so Laughlin’s argument
motivates the Hall effect as being seen as a sort of curvature. Our mismatch in phase depends on a
contemporary discovery to Laughlin: the Berry phase.

2.8 Berry Phases

In 1981 Michael V. Berry [9] made a discovery which was bound to happen sooner or later (and it
is somewhat surprising that it wasn’t sooner) known as a Berry phase. When a Quantum system
is evolving adiabatically, there are two accumulated phases which arise; one due to the energy of
the system, and one due to the ”geometry”. What do we mean by geometry though? As we have
already alluded to, the Hall conductance can be thought of, in a sense, as a sort of curvature. The
curvature is defined as the mismatch in phase between the initial and final system after cyclic motion
in parameter space; this is what we attribute to the geometry of the system.

Instead of pursuing this example in full rigor, let’s just cut to the chase. We can describe our
Hall pump with the following parameters Φ and θ where θ is the phase associated with a gauge
transformation of twisting the two reservoirs, the Berry phase which is accumulated from a cycle of
our Hall pump can be shown to be proportional to the area of the loop. The proportionality factor
is the adiabatic curvature[2]:

K = 2Im〈∂Φψ|∂θψ〉
We will sum up our findings in the next section by simply showing how geometry ties into

topology

2.9 Geometry and Topological Invariants

Here we borrow a theorem which links geometry with topology being the Gauss Bonnet formula[2]:∫
S

dAK = 2(1− g)
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Here K is the curvature of the surface S at the area element dA where K−1 is defined as the product
of the two local radii of curvatures (Gaussian curvature). Let’s not get too hung up on the formalities
here, but rather note for any surface, being geometric, there exists a topological invariant, g, which
identifies the number of handles an object has, when we integrate over the Gaussian curvature at
each point. The important point is g does not change under deformations! For a doughnut and a
coffee mug g = 1 in either case.

The integral Quantum Hall Effect uses a theorem a step above this: the Gauss-Bonnet-Chern
formula. This is used for systems which need more information than what is on the surface, and the
Chern number is the analog to g in the above equation.

This concludes our discussion on what role topological quantum numbers play in the QHE They
helped condensed matter physicists understand the conductance plateaus, and have found there way
into many other descriptions of matter as we will soon see.

3 Back to Skyrmions

Quite a lot has been said in the last section about topological numbers, and, again, the purpose
was to motivate topology as a useful concept in condensed matter physics. We are now interested
in the Winding number (or the Topological Charge or the Pontryagin index), but unfortunately the
mathematics is vastly greater and more complicated than that of the Hall Effect. Our discussion will
thus be bare bones; we are mainly interested in the form of the winding number. In what follows
we will be following Eduardo Fradkin [10].

Skyrmions are present in systems with nonuniform spin textures, and a model from Quantum
Field Theory known as the nonlinear sigma model may be employed to describe spin fluctuations for
an order parameter field ~m living in S2 (surface of a sphere). The name of the game is calculate and
identify the contribution to the action from various terms involved in a Hamiltonian which describes
a ferromagnet. We find, after a boat load of formalism, for the Lagrangian density (after integrating
out spin):

L (~m) =
1

2g

( 1

vs
(∂o ~m)2 − vs(∂1 ~m)2

)
+

θ

8π
εµν ~m · (∂µ ~m× ∂ν ~m)

Here vs is the spin-wave velocity and θ and g are coupling constants; we are concerned with the last
term.

Let’s not get too buried in the technical details; instead, let’s think of this as trivia (even though
it’s not trivial!). We define the winding number as:

1

8π

∫
d2~xεij ~m · (∂i ~m× ∂j ~m)

We will think of this number as the number of times the order parameter ~m has wrapped around
the sphere S2.

The important points we need for what follows is, for one, the form of this term, it is topological
(invariant under continuous deformations and thus any other order parameter fields which can be
continuously deformed into ours will have the same topological charge), and it is quantized. We now
start what we set out to accomplish from the start!

4 Emergent Electrodynamics

The purpose is to show how the emergent field the electron feels inherits the quantization of the
winding number given in the previous section.
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4.1 Physical Picture

Let’s consider an electron traveling through a SLP, then since the local magnetization at each point
varies, the electron continuously feels a force which attempts to reorient the electrons spin in the
direction n̂(~r, t) = ~M/| ~M |[1,7] where ~M is the local magnetization. If this is done adiabatically,
we may describe the topological contribution of the Hall signal in terms of the Berry phases picked
up by the electron[3]. The Berry phase can then conveniently be rewritten in terms of an effective

Aharonov-Bohm phase if we define an emergent magnetic and electric field, ~Be and ~Ee[1,3].
Thinking of the Berry phase as the solid angle acquired by the electron as it traverses the SLP

we see this depends on n̂ since the electron has been assumed to align adiabatically with the local
magnetization. As a result, the Berry phase depends on the underlying texture of the SLP which
is described in terms of our topological winding numbers! Our emergent fields may be thought
of as a measure of the solid angle of an infinitesimal loop in space ( ~Be) and space-time ( ~Ee)[1].
Furthermore, recall our definition of curvature; this seems to say these fields are a measure of some
sort of curvature in our SLP. The previous digression on curvature and modern geometry was present
to give meaning to this statement.

4.2 Simple Mathematical Derivation

Here we follow an essay [4] which provided, in my opinion, the most intuitive approach. To begin
we use a simple construct known as the Stoner model which pertains to spin- 1

2 particles moving
through a smoothly varying magnetic structure (we use the n̂ above to describe the orientation of
the local Magnetization). Our Hamiltonian takes the form:

Ĥ = − h̄2

2m
∇2I − J~σ · n̂(~r, t)

Thus, our Schrodinger equation takes the form:

ih̄∂tψ(~r, t) =
[
− h̄2

2m
∇2I − J~σ · n̂(~r, t)

]
ψ(~r, t)

We can find an emergent vector and scalar potential by simply applying a local unitary transforma-
tion which rotates the spin quantization axis parallel to n̂; this way we do not need to worry about
all three components in our Pauli Matrix.

Choosing the z-axis as our (original) quantization axis we consider rotations about the following
axis: â(~r, t) = ẑ × n̂/|ẑ × n̂|. The alignment of the quantization axis will be different for different
regions of space-time, so we define the requisite angle of rotation to be θ(~r, t). Thus, we introduce
the following expression to our Schrodinger equation above:

U(~r, t) = exp
(
− iθ(~r, t)

2
~σ · â(~r, t)

)
ψ(~r, t) = U(~r, t)φ(~r, t)

We find:

ih̄∂tφ(~r, t)− qeV eφ(~r, t) =
[ (~P − ~Ae)2

2m
− Jσz

]
φ(~r, t)

With the definitions:

V e = − ih̄
qe
U†∂tU

~Ae = − ih̄
qe
U†∇U
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These are our emergent potentials! The emergent charge here, qe, are just taken to be plus or
minus 1/2 depending on which band the electrons are in. We find from our emergent vector and
scalar potentials:

~Bei = εijk∂j ~A
e
k =

h̄

2
εijkn̂ ·

(
∂j n̂× ∂kn̂

)
~Eei = −∂iV e − ∂t ~Aei = h̄n̂ ·

(
∂tn̂× ∂in̂

)
Note the emergent magnetic field may be recognized as our winding number density. Thus, there
are ties between this emergent field and the topology of the system, and our emergent fields inherit
the quantization rules of our SLP!

4.3 Recap

The basic idea goes as follows: Magnetic Skyrmions are classified via a topological invariant; the
”winding number”. Without going into too much detail the topological winding number is respon-
sible for inducing one unit of magnetic flux per Skyrmion [1,7], so a moving Skyrmion induces a
electric field. Moreover, Faraday’s law of induction inherits the topological quantization of this wind-
ing number [3] which is then used to quantitatively measure this supposed emergent electrodynamics
via the Hall effect.

5 Experimental Details

Detecting the motions of skyrmions is a delicate subject, but since a moving skyrmion induces an
emergent electric field, and these fields are proportional to the skyrmion’s velocity, we can measure
these induced fields to deduce the velocity of a moving skyrmion [1]. The Hall effect can be employed
to make such a measurement.

Here we finish up with the apparatus, the data, and the relevant equations to the experiment
(placed here to help explain some of the data).

5.1 Methods and Equipment

The samples used in this experiment were MnSi and they were grown using optical float-zoning
under ultrahigh-vacuum compatible conditions [11]. Briefly, this technique grows bulk samples by
tuning various experimental variables; such as, the feed rod, the growth rate, the atmosphere and
gas pressure, the temperature gradient within the sample, the molten zone temperature and the
rotation rate[12].

Each of these samples were oriented according to the diffraction patterns of a Laue X-ray ex-
periment; the sample needs to be oriented in a known manner so that the internal magnetic field
is oriented in a desired direction relative to the applied electric current. The measurements of the
resistivities (Hall and longitudinal) were done via a modified six-terminal phase-sensitive detection
system (basically a way of uncovering a single lost in noise like a small Hall signal).

5.2 Hall resistance in a S.L.P.

Not to be confused with the skyrmion Hall Effect, but the effects a SLP has on the Hall Effect.
Say our previously defined spin texture is described by n(~x − ~v||t), with ~v|| defined as motion

along the current direction, then we recognize
this as spin texture in motion. A moving spin texture actually induces an electric field [3]:
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Figure 4: Hall Conductance as a function of tem-
perature for various current densities, but fixed
magnetic field[1]

~E = −
[
~v|| × ~B

]
This is analogous to the electric field induced by
a moving magnetic flux! Indeed,

the magnetic structure is what is in motion,
but now there are quantization rules which gov-
ern how much flux quanta can occur due to the
topology of the system. Aligning the sample so
that ~B = Bẑ we find an approximate form for
the Hall conductivity [3]:

∆σxy
σxx

≈ − x

2S + x

e〈bz〉τ
mc

Here m is the mass of the electron, τ is the relaxation time, and 〈bz〉 = QΦo

A (A is the area of the
SLP unit cell).

Figure 5: Extrapolated
Data [1]

The above relation is very similar the Topological Hall effect [3]:

σTOPxy

σxx
≈ −e〈bz〉τ

mc

The result of all this is the net Topological Hall voltage will be sup-
pressed by a factor of 2S

2S+x . Figures 4 and 5 illustrate this result. Note

a critical electric current density, ~jc needs to be present to overcome the
pinning force 2

of the Skyrmion lattice as shown in Figures 4 and 5 [3].
Indeed, the arrows touching the plot indicate the temperature range

where the SLP is present. Figure 5 is extrapolated data from the data in
Figure 4; note that the Hall conductance is suppressed when the current
exceeds ~jc only if the SLP is present as indicated in both figures.

A simple physical reconciliation is available; the Lorentz force on the
electrons due to the internal field takes the form:

~F = −e
[
(~vσ~kn − ~v||)× ~B

]
That is, the relative velocity of the electrons in the nth band with spin
orientation σ and momentum (~vσ~kn) and the skyrmions is reduced.

5.3 Working equations

The total force acting on an electron with momentum ~k and spin orien-
tation σ [1]:

~Fσ~k = e ~E + ~FH + qeσ(~vσ~kn − ~v||)× ~Be

The additional electric current induced by the emergent field, −~v|| ×
~Be, has to be cancelled exactly by the change of the electric Hall field

2This pinning force is a result of varying spin direction in a SLP as well as spatial fluctuations of impurities
(charge, defects, etc).
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[1] ∆E⊥ = ∆ρxyj = −∆ρyxj with ∆ρxy = ρxy(j) − ρxy(0). For a current in the x direction and a
magnetic field in the z direction we find:

∆E⊥ ≈ −
∆σyxE

σxx
= −∆j

σxx
= P

∣∣∣qe
e

∣∣∣(~v|| × ~Be)

Here P is a spin polarization which can be obtained from Kubos formula; basically it describes
cross-correlation between the emergent current and the charge current[1].

P ≈ −
Σn,~k,σ=±στσn(vy

σ~kn
)2
εf
o
nσ

Σn,~k,σ=±τσn(vx
σ~kn

)2
εf
o
nσ

We are now in a position to approximate our emergent fields.

5.4 Final Results and Analysis

The groups final results consists of predictions for an emergent electric field from the measurements
of the Hall conductance. To estimate the strength of the emergent magnetic field one can take into
account the geometry of the skyrmion lattice since ~Be is proportional to the winding number density
of the skyrmion lattice.

Figure 6: Measurement of the
transverse Electric field[1]

The MnSi sample in its SLP happens to form a hexagonal lattice
perpendicular to the stabilizing field[13]. knowledge of the geometry
of the system allows one to calculate the windingnumber density,
and hence the magnitude of ~Be. We will not go into detail here,
and just state this can be done. Referencing our working equations
we see that the measurement of the Hall field, ∆E⊥ gives us our
emergent electric field and the drift velocity up to a factor of P .

We need a means of estimating the drift velocity of the electrons
since vd = Ee/Be. The paper uses a bunch of technical arguments
found in the supplementary material, to show that the parallel com-
ponent of the drift velocity is proportional to ∆ρ and hence our Hall
field. Figure 6 shows, in scaled units (also explained in detail in the
supplementary material), that after the application of a critical cur-
rent density ~jc a change of the Hall conductance is observed which
we attribute to an emergent electric field.

Notice the predictions (linear plot) are better for currents just
above ~jc, but larger values of our current density gives a larger
deviation of experiment with theory. We can possibly attribute this to an eventual neglect of the
pinning force for sufficiently large current densities which results in a greater conductance, but that
is more speculation than anything. The important points is the predictions are good and knowledge
of the drift velocity can be gleaned from the Hall measurement, and thus the emergent electric field.
Indeed, we have Ee⊥ = vd||B

e[1].

6 Conclusions

The papers ”finale” came across as somewhat anticlimactic. The authors seemed to justify the im-
portance of all the figures explicitly till the end. Yes, there are relationships to find our emergent
electric field given Hall data in a SLP, but I would of hoped for more of a discussion. For instance,
what makes thinking of this Hall data as an emergent field advantageous to another thought process?
The speculated usefulness of an emergent electrodynamics is in predicting the motions of skyrmions,
but I do not see any explicit reasons why this is easier. Just seems like the build up to the measure-
ment could have used more discussion. The discussion on some useful aspects were presented, but
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in spirit of theory rather than experiment (e.g. the accumulation of the Berry phase can be thought
of as an Aharonov Bohm effect if we introduce our emergent fields).

Even though I wish there was more of a discussion on the experimental verification of the pre-
dictions that a fictitious emergent field provides, it is stated these fields are useful in calculating the
dynamics of skyrmions; thus, these concepts may be useful in the future as a means to manipulate
and/or detect magnetic whirls. Skyrmion’s have been hypothesized as potentially being used as
nano-scale memory units, microwave oscillators and logic elements [1]. The appeal lies in the size
of the defect (2 nm), but also the exceedingly low current densities needed to displace the magnetic
skyrmions.

In my eyes this seems a bit ambitious. The selective temperature ranges SLP exist in are far too
restrictive for the small depinning current density to compensate for, and I believe it will take years
to find a practical use. This does not mean we should not pursue research though; it’s just time is
needed.

I want to briefly comment on some assumptions of this paper. First, a non-uniform spin texture
can be thought of as arising from a different number of electrons filling a spin band (majority and
minority spin bands). We assumed the electrons also move through the structure adiabatically
which is apparently not that bad of an assumption[4], but there was no account taken for scattering
processes which may result in a spin flip of some kind. This would seem to have some sort of effect
on the magnetic structure of the SLP, so should maybe be cared for.

A quick interesting point; after 150 years of its discovery, the Hall effect still finds novel appli-
cations in classifying properties of matter. For instance the Hall effect is sensitive to motions in the
SLP, as we have seen; hence, we can use it to classify the critical depinning velocity and which SLP
may be most useful in future applications. It is neat how a simple idea can illuminate such a diverse
range of physics.

The paper overall was very interesting, and I learned a lot digging around in research papers.
The use of topological quantum numbers is new to me, and I will be learning more over the Summer
in a reading course. I am not too sure where I’d be able to take this next, but it has been speculated
swapping magnetic vortices satisfies a non-abelian algebra. Braids from algebraic topology are used
to describe this. Possibly these emergent fields can be used to clearly describe how to swap our
vortices.
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8 Appendix I

***We follow reference [6] throughout. Here we look at the topological aspects of an electron’s
wavefunction subject to a periodic potential, and an external magnetic field. Most of the concepts
will be taken from [6]. The main point of this subsection is to establish the connection between
the linear response formula (i.e. Kubo) and the Hall conductance which can then be related to
topological invariants via the Chern numbers.

Before the realization of topological defects, it was assumed the phase of the wave function could
be determined all around the magnetic Brillouin zone, but this is only true if and only if there is
no Hall current [6]. On the surface this may seem like a problem, but as is often he case in physics,
there is a silver lining. We can use this concept to describe the discretization of the Quantum Hall
effect.

It was realized that the integral values of the Hall conductance were achieved, being multiples of
e2/h, if the Fermi energy lies in a gap between Landau levels [6]. Here we show that this quantization
has a geometric origin, and establishes a very general principle. Let’s consider a system of non-
interacting electrons in 2D immersed in a uniform magnetic field, then Schrodinger’s equation takes
the form:

HΨ =
[ 1

2m
(p̂+ eÂ)2 + U(x, y)

]
Ψ = EΨ

With: U(x + a, y) = U(x, y + b) = U(x, y). We note the system is invariant about certain
translations, but the Hamiltonian may not respect these symmetries because of the magnetic vec-
tor potential (even though the field is uniform!). To circumvent this slight issue we can start by
introducing the Bravais lattice vectors:

~R = n~a+m~b 3 n,m ∈ Z

and the translation operator for a given Bravais lattice vector:

T~R = exp{(i/h̄)~R · ~p}

Then we note in the presence of a uniform magnetic field ~B using the symmetric gauge we have
~A = ~r× ~B

2 . We then define the magnetic translation operator [13]:

T̂~R = T~Rexp{(i/h̄)~R · (~p+ e
~r × ~B

2
)} = T~Rexp{(ie/2h̄)~r · ~B × ~R}

The beauty of this operator is it leaves the Hamiltonian invariant! That is:

[T̂~R, H] = 0

We may now proceed forward as if we are proving Bloch’s Theorem, but with a few important
caveats. For one the magnetic Translation operators along distinct lattice vectors do not, in general,
commute with one another, but instead:

T̂~aT̂~b = exp(2πiφ)T̂~bT̂~a

Here φ = (eB/h)ab. Thus, if φ = p/q, where p and q are relatively prime, then a certain subset
of translations commute with one another. We use this property to define a magnetic unit cell,
and ultimately the magnetic Brillouin zone by enlarging the unit cell so that an integral multiple of
magnetic flux penetrates this new cell. For example, if we take our rational number above, then:

~Rp = n(q~a) +m~b
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Then we have p units of magnetic flux penetrating this magnetic unit cell, and more impor-
tantly these translation operators commute with one another! Thus, we have a set of three mutually
compatible observables, so we can apply the same prescription that Bloch himself used. For eigen-
functions ψ of H we see:

T̂q~aψ = eik1qaψ

T̂~bψ = eik2bψ

where: k1 ∈ [0, 2π/qa] and k2 ∈ [0, 2π/b]. We should immediately realize at this point the
wavefunction takes the form (using n as the band index):

ψ
(n)
k1k2

= ei(k1x+k2y)u
(n)
k1k2

(x, y)

We can show (using equations.....) that u
(n)
k1k2

(x, y) satisfies the following properties:

u
(n)
k1k2

(x+ qa, y) = e−iπpy/bu
(n)
k1k2

(x, y)

u
(n)
k1k2

(x, y + b) = eiπpx/qau
(n)
k1k2

(x, y)

These are known as the generalized Bloch conditions, and they have VERY IMPORTANT con-
sequences. Note a translation of the wave function about the boundary of the magnetic Brillouin
zone results in an accumulation of phase. Before moving on, let’s highlight this in following way.
Let L̂ be a translation operator about some path, thought of as infinitesimal translation), then we
note:

L̂u
(n)
k1k2

= |u(n)
k1k2
|exp

[
iθk1k2

(x, y)
]

Furthermore, we note (as shown in H.W. 6):

~A′ = ~A+∇Λ⇒ ψ′ = e−
ie
h̄ Λψ

Because a gauge transform changes the phase of the wave function, we are interested in the
accumulated phase a wavefunction acquires after traversing the boundary of the magnetic Brillouin
zone. We know as a result of our magnetic field and boundary of our magnetic unit cell:

p =
−1

2π

∫
d~l · ∂θk1k2(x, y)

∂~l

A moments thought about the above result should be, initially, puzzling; the accumulated phase
does not depend on the external potential! This means the total vorticity in the magnetic unit cell
of the wave function is a topological invariant depending on the magnetic field.

9 Appendix II

Here we introduce our linear response equation. To begin let’s case the Schrodinger equation into a
more suitable form:

Ĥ(k1, k2)unk1k2
= Enunk1k2

Here:

Ĥ(k1, k2) =
1

2m

(
− ih̄∇+ h̄~k + e ~A

)
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If we are considering a physical situation with a sufficiently small electric field, then we may use the
Nakano-Kubo linear response formula [6]. Thus, the Hall conductance is given by:

σxy =
e2h̄

i
ΣEn<Ef<Em

[vy]nm[vx]mn − [vx]nm[vy]mn
(En − Em)2

Here we stick to our earlier stipulation that the Fermi energy lies in between two bands. Sparing
the knitty-gritty details we find for our matrix elements:

[vi]nm =
1

h̄
〈n|∂Ĥ

∂ki
|m〉

=
1

h̄
(Em − En)〈n|

∂umk1k2

∂ki
〉 =

1

h̄
(En − Em)〈

∂unk1k2

∂ki
|m〉

Substituting this back into our conductance formula, using the identity ΣEn<Ef<Em

[
||n〉〈n| +

|m〉〈m|
]
, and defining:

Â(k1, k2) =

∫
d2ru∗k1k2

∇kuk1k2
= 〈uk1k2

|∇k|uk1k2
〉

We can write the contribution of the nth band to the Hall conductance as:

σ(n)
xy =

e2

2πih̄

∫
d2k
[
∇k × Â(k1, k2)]3

10 Supplementary

10.1 Foucalt

Borrowing the adiabatic theorem from classical mechanics we know that the plane of the Foucault
pendulum is fixed in space, relative to the local tangent plane of Earth, which means a vector
contained in this plane is being parallel transported on a closed loop. This transportation is due
to the rotational velocity of Earth about its own axis. The well known geometric phase this vector
acquires is just the solid angle subtended by the path taken at the specific latitude the pendulum is
located; that is, Ω = 2πcos(θo) where θo is the angle from the polar axis.

This simple example illustrates the curvature of the Earth since the solid angle does depend on
the radius.
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