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Abstract

Ever since the discovery of the high-Tc cuprate superconductors in 1986, physicists
have been endeavoring to understand the pairing mechanism of these unconventional
superconducting materials. Non-phase-sensitive and phase-sensitive experiments show
strong evidences for the d-wave pairing in cuprates, either via measurement of the pen-
etration depth in low temperature regime, and determination of the modulation pattern
of critical currents with respect to external field. In this essay, we include a discussion
about the symmetry of the unconventional pairing states in cuprates and review the early
experimental efforts in establishing their d-wave symmetry.



2 Yueqing Chang

1 Introduction

Since the discovery of the high-Tc cuprates (La2−xBaxCuO4) in 1986 by Bednorz and Müller,
physicists have been trying to understand the mechanism of superconducting in these materials.
In superconductors, fermionic electrons form Cooper pairs, which consist of electrons with
opposite momenta, and behave as effective bosons. Thus they can form superconducting state
analagous to the Bose-Einstein condensate. The collective manner exhibited by these pairing
states give rise to the Meissner effect, i.e., superconductors expel magnetic fields.

The pairing mechanism for conventional superconctors are well established so far, within
the context of the Bardeen, Cooper, and Schrieffer (BCS) theory (1957). Since the fermionic
wave functions are antisymmetric under exchange of any pair of electrons, the pairing state in
superconductor should also have such property. Thus, if the spin part of the pairing state is
spin singlet (s = 0), which is antisymmetric under exchange of electrons, then the spatial part
should have even parity. It turns out that the spin singlet pairing state with s-wave spatial
component forms the pairing wave function in conventional superconductors. The pairing is
mediated by phonons, which can be interpreted as arising from the fact that ions have much
slower response relative to the electrons. Thus, when an electron attracts the surrounding ions
and induces a geometric distortion, it will attract a second electron effectively, leading to a net
attraction between electrons.

However, this picture does not apply to cuprates. Cuprates are complicated materials that
may exhibit charge density waves, spin-density waves, nematic correlations and orbital currents
at low temperatures, all of which may play important roles in forming superconducting state [1].
In order to understand the true mechanism behind high-Tc superconducting states in cuprates,
the first step is to determine the symmetry of its pairing state.

Non-phase-sensitive experimental techniques, including measurements of the penetration
depth measurements, determination of the gap function using angl-resolved photoemission spec-
troscopy (ARPES), Raman scattering and nuclear magnetic resonance (NMR), suggest that the
gap function have nodes on Fermi surface and change its sign there. These nodes may be at the
same positions with the nodes of dx2−y2 state [2, 3]. Phase-sensitive tests, including the two-
junction interferometer (dc SQUID) experiment, and the modified single-junction modulation
experiment, lead to the conclusion that the pairing states in cuprates take dx2−y2 symmetry
[4]. In this review, we focus on these two types of experiments: the penetration depth mea-
surements and the dc SQUID experiment performed on YBa2Cu3O7−δ (YBCO). Hopefully, this
will motivate the further studies about the superconducting mechanism in cuprates.

2 Mixing of different symmetries

Here we review the discussion about the symmetry of cuprates pairing states, presented in [2].
Assume that there exists the Ginzberg-Laudau equal time order parameter for superconductor
as Ψ(r1, r2;αβ) = 〈ψα(r1, t1)ψβ(r2, t2)〉, where t1 = t2.

If the order parameter is a superposition of two functions from different irreducible rep-
resentations of the crystal symmetry group and symmetry considerations forbid ”mixing” of
these functions in the free energy, then there must inevitably be a second phase transitionat
some temperature below Tc [2].
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For a crystal with symmetry group G = U(1) ⊗ Tl ⊗ H, where U(1) is the gauge group,
Tl and H are the crystal lattice group and the crystal point group respectively, we can always
expand its order parameter using the irreducible representations of group G, Ψ(r1, r2;αβ) =∑

l

∑Dl

m=0 ψlmχlm(r1, r2;αβ), where Dl is the dimension of the l-th irreducible representation
[2]. (Notes: this order parameter may be näıvely thought of as the pairing wave function)

Thus, one can write down the Ginzberg-Landau free energy in terms of the order parameter
up to the fourth order. For the tetragonal and orthorhombic symmetry groups (which are the
symmetry groups of the CuO2 planes in YBCO), the ”mixing” quartic terms are absent. If we
only include the terms involving less than 3 distinct representations and ignore higher order
terms [2],
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At sufficiently high temperature, all α(T )s are positive, the minimum F (T ) occurs when all
ψlm vanish, i.e., the system is in normal state. As the temperature decreases to slightly below
T l0c , which corresponds αl0 first becomes negative and all the other αls remain positive, if l0
representation is multidimensional, some or all of the ψl0m will be nonzero. A more relevant case
to high-Tc superconductor is that the irreducible representation l0 is one-dimensional. We are
interested in the condition that below T l0c , some ψlm corresponds to other values of l are nonzero
(i.e., there is mixing between different symmetries). Without loss of generality, assume l0 = 1
and only one relevant irreducible representation 2 besides l0 and it is also one-dimensional, then
we can always minimize the free energy by choosing arg(ψl0m0ψlm) to be either 0 or π [2].

F (T ) = F0(T ) + α1(T )|ψ1|2 + α2(T )|ψ2|2 +
1

2
β1(T )|ψ1|4 +

1

2
β2(T )|ψ2|4 + κ(T )|ψ1|2 · |ψ2|2

α1(T ) = α1(T − Tc1), α2(T ) = α2(T − Tc2), Tc2 ≤ Tc1 , β1(T ) = b1, β2(T ) = b2, κ(T ) = κ

(2)

Stability requires β1, β2 > 0, κ > −
√
β1β2. When temperature is above Tc1 , ψ1 = ψ2 = 0

(normal phase). For T just below Tc1 , F (T ) is minimized by the choice [2],

ψ1 =
α1

β1

(Tc1 − T )1/2, ψ2 = 0 (3)

If ψ2 is ever to become nonzero, either it must jump discontinously from zero to this value
(which corresponds to a first order transition), or there must be a second second order transition
at T ∗ such that T ∗−Tc2 = λ(T ∗−Tc1), λ = κα1/α2β1. One can show that there is a discontinuity
in the specific heat at T ∗. Also, many other physical quantities (e.g., the mean-square energy
gap) will be roughly proportional to the change in the slope at T ∗ of the total order parameter,
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unless Tc2 is very close to Tc1 . Thus, one can draw the conclusion: If the order parameter is a
superposition of two functions from different irreducible representations of the crystal symmetry
group, and symmetry considerations forbit the mixing of these two functions, then there must
be a second phase transition at some temperature below Tc [2].

For some high-Tc superconductors, where there is orthorhombic anisotropy, small but nonzero
mixings between states from different irreducible representations are allowed. One can also show
that a second phase transition below T l0c is neccessary for a mixed symmetry state to exist at
low temperature [2].

3 Candidates for the pairing state

The high-temperature cuprates, either tetragonal or orthorhombic, are highly anisotropic ma-
terials that have a layered structure. The superconductivity is believed to occur in the CuO2

planes, which is in a square lattice in tetragonal case (Hg-1201 and Tl2Ba2CuO6+δ (Tl-2201),
etc.) and is in rectangular lattice in the orthorhombic case (YBCO and Bi2Sr2CaCu2O8 (Bi-
2212), etc. ) [3].

The measurement of the temperature dependence of the NMR relaxation rates provides
evidence for the spin-singlet pairing [5]. Thus, one can use Pauli exclusion to exclude odd
parity in the spatial part of the pairing state, i.e., it can only be s, d, g, etc.. Theoretical
studies establish the spin fluctuation model and verify that it can promote pairing in a dx2−y2
channel [4]. However, with so many proposed candidates, the pairing symmetry remains to be
experimentally validated.

Follows are the band gap ∆(k) of candidate pairing states, along with diagramatic repre-
sentations of their magnitudes and phases (shown in Fig. 1, left panel):

The conventional superconducting state has symmetry s, which gives rise to an isotropic
band gap. dx2−y2 pairing state leads to nodes in magnitude and discontinuities in phase along
the (110) directions [4].

[dx2−y2 ] ∆(k) = ∆0 [cos(kxa)− cos(kya)] (4)

The anisotropic s state has only attenuations in magnitude of ∆(k) along (110), but shows
no discontinuities in its phase. ∆1 denotes the minimum value of the gap, which occurs along
the diagonal directions.

[ anisotropic s] ∆(k) = ∆0 [cos(kxa)− cos(kya)]4 + ∆1 (5)

The extended s does have jumps in phase. However, the nodes in magnitude are shifted
away from diagonal directions due to the nonzero γ2 term.

[ extended s wave ] ∆(k) = ∆0

{
(1 + γ2) [cos(kxa)− cos(kya)]2 − γ2

}
(6)

The mixed pairing states s + idx2−y2 and dx2−y2 + idxy are also allowed by symmetry. Like
the anisotropic s state, they also do not show vanishing band gap but only attenuation along
the diagonal. Also, their phases are continuously varying.

[s+ id] ∆(k) = ∆0 {ε+ i(1− ε)[cos(kxa)− cos(kya)]} (7)
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[d+ id] ∆(k) = ∆0 {(1− ε)[cos(kxa)− cos(kya)] + iε[2 sin(kxa) sin(kya)]} (8)

In order to determine which one is the true pairing state in cuprates, one needs to mea-
sure the anisotropy of the order parameter ∆(k). Most experiments, including angle-resolved
photoemission, NMR spectroscopy, scanning tunneling microscopy, thermal conductivity in
a magnetic field, and measurement of the low-temperature penetration depth, are sensitive
only on the magnitudes of ∆. In section 3, we will introduce the details and results of the
low-temperature penetration depth measurement which establishes the anisotropy of the gap
magnitude based on the power law dependence at low temperature [4].

From Fig. 3 we see that the phases for s-wave states and d-wave states are distinctly differ-
ent in a sense that s-wave states exhibit uniform phase, while d-wave states show discontinuous
jumps at (110) lines. The mixed states, s + id and d + id, have continuous varying phases.
Therefore, it will be ideal if one can design experiments that can probe the phase changes in
particular directions. We will introduce the phase sensitive experiments based on supercon-
ducting quantum interference device (SQUID) which involves two-junction interference and the
single-junction modulation experiment in section 5.

4 Measurement of the low-temperature dependence of

the penetration depth in a− b plane

The electromagnetic penetration depth directly reflects the response of the condensate to elec-
tromagnetic perturbations, and thus is a measure of the superfluid density tensor. The asymp-
totically low temperature regime can directly test the changes in sign of the gap function over
the Fermi surface. Different varieties of nodal structure, which is related to the pairing state
symmetry, give rise to different power low dependence of the ∆λa,b when T → 0 [2]. With
orthorhombic crystal symmetry, the conventional s−wave pairing will give rise to a cubic de-
pendence in low temperature regime, while singlet pairings other than s-wave pairing gives rise
to linear dependence. This can be used to rule out candidates of conventional pairing states,
since linear dependence is easier to be discerned comparing with the cubic dependence [6].

4.1 Theoretical framework

The temperature dependence of the electromagnetic penetration depth λ at low temperature is
a potential probe of the pairing state symmetry in superconductors. In a perfect orthorhombic
crystal, the penetration depth tensor λ has three components in the three directions. Here we
consider the measurement of the component lying in the a− b plane [6].

The unconventional singlet state, e.g. d-state, gives rise to the following linear temperature
dependence for λa(T ), and cubic dependence for λb(T ) [6]

∆λa(T )

λa(0)
≈ A

(
T

Tc

)
+O

((
T

Tc

)2
)
,

∆λb(T )

λb(0)
≈ C

(
T

Tc

)3

+O

((
T

Tc

)4
)

(9)

where ∆λa ≡ λa(T )− λa(0).
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It is impossible to determine the pairing state from the temperature dependence away from
the low temperature regime due to the interplay of strong-coupling corrections, dirt, the precise
shape of Fermi surface and gap anisotropy etc.. One cannot conclude that pairing state is
s-wave simply by fitting the result to the BCS result, because many other pairing symmetries
lead to the similar looking temperature dependence away from the low temperature regime [6].

The quantities ∆λa(T ) and ∆λb(T ) are proportional to a and b diagonal components of the
normal fluid density tensor, ρnij, which is given by [6]

ρnij =
m

h̄

∫
d2k

(2π)3|v|
vivj

∫
dεk

β

2
sech2

(
βEk

2

)
(10)

where β =≡ 1/(kBT ), and εk is the normal state band energy, Ek =
√
ε2k + |∆k|2 is the

quasiparticle energy. If the excitation gap ∆k closes on lines on the Fermi surface, one can see
that some components of ρn vanishes linearly with T , i.e., if there are a line of nodes on plane
kz = 0, we have ρnij ∝ diag(Ix0 η, I

y
0η, I

z
2η

3), where η = kBT/∆max is the maximum of the zero
temperature energy gap over the Fermi surface. If there are four line of nodes parallel to the c
axis, for example, kx = 0 and ky = 0, we have ρnij ∝ diag (Ix0 η + Ix2 η

3, Iy0η + Iy2η
3, Iz0η). Thus,

for all possible single pairing other than the s-wave symmetry, both ∆λa(T ) and ∆λb(T ) scale
linearly with T in the low temperature regime [6].

In practice, due to the presence of crystal twinning, one measures the averaged ∆λab over
the ab plane. One may conclude that after performing the averaging, ∆λab(T ) ∝ T as T → 0.
Thus, if a linear dependence is not observed, the pairing states with line nodes in orthorhombic
or tetragonal crystals can be ruled out. The only states permitted would be s-wave or those
with point nodes [6].

4.2 Results and analysis

The data from [7] is reanalyzed in ref [6]. In reference [7], Fiory et al. measure the surface
impedance of two epitaxial thin films of thickness 500 and 200 Å. λab is calculated using

L = 4π
c2
λ2ab
d

, where L is the inductive component. The results are fitted to BCS theory and

λab = 1500 Å and 2100 Å are found. This discrepancy is attributed to the Josephson coupling
between the grains in the thicker film [6].

It is pointed out that fomula used to extract λab is not valid in the d = 2000 Å regime. The
complete expression should be given by solving the Maxwell’s equations for electromagnetic

waves incident on a free standing slab of superconductor: L = 4π
c2
λab coth

(
d
λab

)
.

The measured λab versus temperature is replotted on an expanded scale, shown in Fig.
1. The left panel shows an upward curvature at even the lowest temperatures. The linear

dependence ∆λab(T )
λab(0)

= A
(
T
Tc

)
+ O

((
T
Tc

)2
)

is assumed when fitting the coefficient A. A lies

between 0 and 0.13 for the thinner film and between 0 and 0.21 forr the thicker film [7].

The right panel shows the same data, replotted as λab versus T 2 in the lower temperature
region. The clear linear dependence suggests that the data is better described by the model
∆λab(T )
λab(0)

= B
(
T
Tc

)2

+O

((
T
Tc

)3
)

instead of the BCS prediction. The coefficient B is estimated to
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Figure 1: Reprinted from [6]. Left panel: Data extrated from [7], replotted as ∆λab vs. T in
the low temperature regime. Right panel: The same data, but replotted as ∆λab vs. T 2.

Figure 2: Reprinted from [8]. Left panel: ab−plane averaged penetration depth ∆λab vs. T on
a larger temperature scale. Right panel: ∆λab vs. T , zoomed in to the low temperature limit.

be 0.63 for thinner film, and 1.6 for the thicker film. The sample dependence of B is attributed
to nonmagnetic impurity scattering, which is sample dependent [6].

Therefore, the reinterpretation of the data in low-temperature regime as ∆λab ∝ T 2 is
inconsistent with the exponential temperature dependence, but consistentwith unconventional
singlet state subject to impurity scattering.

The follow-up work includes accurate and controlled measurements on very clean YBCO
single crystals, which indicate a strong linear temperature dependence of the penetration depth
in low temperature regime. Those results clearly rule out the much weaker dependence expected
for a nodeless superconductor [8].

From the experimental measurements of low-temperature asymptotic behavior of the ab-
plane penetration depth, we see the strong linear dependence is clearly different from that in
any conventional s−wave pairing. This is within the context of the orthorhombic (or near
tetragonal) symmetry, where conventional singlet pairing will give rise to linear dependence for
both λa and λb at low temperatures.
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Figure 3: Reprinted from [4]. Left panel: Predictions of the pairing states in YBCO, and corre-
sponding spatial distributions of their magnitudes and relative phases. Right panel: Experimen-
tal setup of the corner SQUID. Modulation of the critical current and circulating supercurrent
vs. applied magnetic flux if the pairing state is s-wave or d−wave symmetry.

5 Phase-sensitive tests about pairing states

5.1 Two-junction interferometer (dc SQUID)

The two-junction interferometer (dc SQUID) experiment determines the symmetry of pairing
state inside YBCO crystal based on observing the modulation of response versus the applied
magnetic flux and thus determining the phase shift between pairs tunneling in two perpendicular
directions. The experiment is designed based on the following ideas [4]:

• The dc Josephson effect describes the dc current flowing between two superconductors
due to the phase difference between them, without any applied voltage. The supercurrent
in a Josephson junction depends on the phase difference φ according to I = Ic sinφ,
where Ic is the critical current dependent on the gap function. The experiment utilizes
the interference between the supercurrents inside two Josephson junctions attached to
different faces of one crystal to determine the gauge-invariant phase difference across the
junctions on different faces of the crystal [4].

• Two superconductors and two junctions form a connected loop around which the phase
coherence of the superconducting state is maintained. This is to make sure that the
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condensate wave function is single valued so that it is sensitive to intrinsic phase shifts
within the superconductors arising from the symmetry of the pairing interactions [4].

5.1.1 Theoretical framework

The experiment setup includes two configurations of SQUIDs based on Josephson junctions
attached to YBCO crystal: the coner SQUID (shown in figure 3), which is used to determine
the relative phase between orthogonal direction, and the edge SQUID (not shown here), which
is used as a control sample. In the coner SQUID interferometer, with junction critical currents
Ica and Icb, and an applied bias current I: I = Ica sinφa + Icb sinφb. Phases φa and φb satisfy
the constraint [4]

φa − φb + 2π

(
Φ

Φ0

)
+ δab = 0 (11)

where Φ = Φext + LJ is the magnetic flux inside the loop including the contribution from
circulating current J and self-inductance L. δab is the intrinsic phase shift inside the YBCO
between the Cooper pairs tunneling in the a and b directions. If the pairing state is of s or
d+ id symmetry, δab = 0. δab = π for dx2−y2 pairing state, and (1− ε)π for s+ id mixture with
ε the fraction of s-wave component. For a symmetric dc SQUID, Ica = Icb = I0, thus

Ic(Φext) = 2I0

∣∣∣∣cos

[
π

Φext

Φ
+ δab

]∣∣∣∣ (12)

Now consider the corner SQUID configuration. If the pairing state inside YBCO has s-wave
symmetry with isotropic phase, the phase of the order parameter is the same at each junction
inside YBCO, i.e., δab = 0, then maximum of critical current occurs at zero Φext, and the
circulating current J0 = 0 at this point. If the pairing state is of anistropic dx2−y2 symmetry,
the intrinsic phase shift δab = π will shift the maximum of Ic. At zero external flux, two junction
currents are exactly out of phase, thus the critical current Ic is minimum. Meanwhile, a finite
circulating current must flow across the loop in order to maintain the phase coherence . If the
pairing state has s+id symmetry, the phase shift is between 0 and π determined by the fraction
of s in the mixed state. Thus, one can determine the symmetry by observing the modulation
of the SQUID response Ic and Jc versus Φext [4].

5.1.2 Experimental details

In the SQUID experiment, many complicating issues, including twining, asymmetry, residual
magnetic fields, trapped flux and corners need to be addressed. Both theoretical and experi-
mental evidence show that order parameter maintains its orientation across twin boundaries.
The asymmetry of the sample will also affect the result since Ica = (1 − α)I0 may not equal
Icb = (1 +α)I0, where α is the asymmetry parameter. This imbalance in currents may give rise
to a net magnetic flux in the loop, thus suppressing and shifting the flux modulation pattern.
Also, if the inductance of the arms of SQUID is asymmetric, it will be necessary to determine
the critical current numerically in this configuration [4].

Apart from the geometry of the sample, other serious concerns include residual magnetic
fields and the trapping of magnetic flux near the SQUID, both of which create a shift in the
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Figure 4: Reprinted from [9]. Panel (a): Minima in the SQUID modulation curves extrapolated
to zero bias current for seven different samples. Zero intercept is expected for s−wave pairing,
while dx2−y2 gives rise to intercept near Φ0/2. Panel (b): Comparism of the corner SQUID and
the edge SQUID on the same crystal cooled down for several times.

flux modulation pattern. They can be taken into account by reducing the ambient magnetic
field and cooling the SQUIDs many times to determine the lowest-energy state which has no
trapped flux [4].

Another concern is that there may be a singularity in the supercurrent flow or a difference in
the probability of trapping at the corner. Experiments show that the current at even perfectly
sharp corner is smooth, and flux trapped at the corner shows no difference from that at the
edge. Thus, the corner plays no significant role, and the edge configured SQUID can be used
as a control sample where the two currents are in phase [4].

5.1.3 Results and discussions

In the SQUID experiment conducted at UIUC, only YBCO crystals with smooth, flat, natural
growth faces and a sharp corner are selected. This makes sure that the tunneling is directional
and allows the probing of the order parameter anisotropy. 100-200 nm of Au is coated on to
the a-c and b-c faces, and a 800 nm Pb film is deposited to define the loop and form electrical
leads. The YBCO-Au-Pb junctions are superconductor-normal metal-superconductor (SNS)
junctions [4].

The resistivity vs different applied magnetic flux is measured, showing the expected periodic
dependence. In order to extract the instrinsic phase shift δab, one can either use a nearly
symmetric sample, or extrapolate the phase of the R vs Φ to the zero-current limit. In figure 4,
the bias current vs the value of the applied flux when critical current is at maximum is plotted
for many different samples. This procedure is valied in the regime near the critical current.
The slopes of these fitted lines show the amounts of asymmetry in the samples [4].

Figure 4 panel (a) shows that, despite the varying amounts of asymmetry, the intercepts are
0.5Φ0 ± 0.1Φ0. Panel (b) shows a comparism between the results yielded by edge SQUID and
corner SQUID. The intercepts given by edge SQUIDs are centered near 0, which corresponds
to zero phase difference between two tunneling pairs. The 0.5Φ0 intercept corresponds to a π
phase shift in a and b directions, thus suggests dx2−y2 pairing symmetry in YBCO. Thus, the
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samples studied in the SQUID experiment exhibit a significant phase shift π consistent with
the dx2−y2 pairing [4].

5.2 Single-junction modulation experiments

The two-junction modulation experiment applies the idea of two sources interference to measure
their phase difference. However, one needs to take into account the phase shift due to the
asymmetry of samples, and residue magnetic flux, etc.. One can alternatively make use of
this interference idea to set up a single-junction modulation experiment, which only involves
fabrication of one junction [4].

For a rectangular junction with area A, width w, magnetic barrier thickness t and uniform
critical current density J0, the critical current resembles the single-slit diffraction form [4]:

Ic(φ) = J0A

∣∣∣∣sin(πΦ/Φ0)

(πΦ/Φ0)

∣∣∣∣ , where the total magnetic flux Φ = Bwt (13)

Now consider a junction straddling the corner of a YBCO sample. If the pairing symmetry is
s-wave like, the phases of pairs tunneling in perpendicular directions are the same since s-wave
has uniform phase. Therefore, the relation between critical current with respect to the total
magnetic flux Φ should be the same with the single junction one — resembling the Fraunhofer
diffraction form. However, if the pairing in YBCO is of d-wave symmetry, the order parameters
in a and b directions differ by their signs, modifying the Fraunhofer pattern. In a symmetric
corner junction where a and b faces have equal geometry, the critical current modulation is
given by [4]

Ic(Φ) = J0A

∣∣∣∣sin2(πΦ/2Φ0)

(πΦ/2Φ0)

∣∣∣∣ (14)

which vanishes at zero applied field. The key feature to distinguish s and d-wave pairing is
whether there is a dip or a peak in critical current at zero applied field.

Fig. 6 shows the results got from the single-junction modulation experiment. In panel (b),
we can see a dip at zero applied flux, providing clear evidence for the d-wave pairing in the
sample. The non-zero critical current at zero applied flux is due to the presence of trapped
agnetic vortices, which breaks the polarity symmetry of the diffraction pattern. We can also
see the shift of the pattern, which is probably due to the slight asymmetry of junctions on a
and b faces [4].

To summarize, we review the two types of experiments performed on YBCO: the measure-
ment of the temperature dependence of the averaged penetration depth in low-T regime, and
phase-sensitive dc SQUID interferometer experiments.

Apart from the experiments introduced above, there are other non-phase-sensitive obser-
vations including measurement of specific heat (a line of nodes give rise to T 2 dependence),
thermal conductivity (for d−wave gap, quasiparticle transport should be independent of the
scattering rate at the limit T → 0, thus thermal conductivity should be linear in T at low tem-
perature), etc.. Experimental techiniques including angle-resolved photoemission spectroscopy
(ARPES) is also used to determine the gap nodal structure directly, although hampered by
its sensitivity to surface conditions. Raman scattering, which has the advantage of selecting
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Figure 5: (Reprint from [10]) Modulation patterns measured on (a) an edge junction and (b) a
corner junction. The dip at zero field flux is a strong evidence for d−wave pairing.

different symmetry channels from the electronic scattering spectra,is also used to determine the
gap structure in cuprates [2].

6 Outlook

From the experimental observations of the pairing state using the non-phase-sensitive and the
phase-sensitive techniques, the d-wave pairing for cuprates is well established. However, the
detailed pairing mechanism remains unknown.

Philip Anderson proposes the resonating valence bound (RVB) state for cuprates, i.e.,
cuprates exhibit a novel phase of matter where the spin form a liquid of singlets, based on
tha fact that cuprates are quasi-two-dimensional, the copper ions have spin 1/2, and the parent
phase is Mott insulator. The RVB state is predicted to melt the expected antiferromagnetic
lattice into the spin-liquid phase. Uppon carrier doping, these singlets become charged, result-
ing in the superconducting state. Subsequent work found that the free energy is minimized for
a d-wave state [1].

On the other hand, one should notice the large exchange interaction J in cuprates (on
the order of 1400 K) can be an attractive source for pairing, since it is relevant for the more
traditional spin fluctuation-based mechanism. The debate about which mechanism, the RVB
or spin fluctuations, should give rise to the electron pairing in cuprates, is still unresolved [1].

Moreover, at low temperatures, the charge-density waves, spin-density waves nematic corre-
lations, orbital currents come into play, debates about whether they help to form pairing states
or not are also unresolved [1].
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