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Abstract

In certain two-dimensional systems, due to the interactions between electrons or
atoms, a neither fermionic nor bosonic kind of quasi-particles can emerge. They are
called anyons. In this essay, I will review the Abelian and non-Abelian statistics of
anyons, and explain the quantum Hall effect which offers possible systems for anyons
to exist. Experimental techniques to detect anyons and some evidence will also be
mentioned. The identification of non-Abelian anyonic states will be a crucial step in
topological quantum computation.
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1 Introduction to the history and current status:

Anyons were theoretically predicted by J. M. Leinaas and J. Myrheim in 1977[1] and in-
dependently studied by F. Wilczek in 1982 [2] who gave these particles the name. As a
new kind of quasi-particle excitations which go beyond the fermion-boson dichotomy, the
theoretical construct of anyons is exciting enough. Later on, it was realized that by making
use of the exchange statistics of non-Abelian anyons, topological quantum computation is
possible. To live up to its name, the topological computation transforms the state of the sys-
tem in a way that the result only depends on the topological class of the trajectories of those
anyons. Small errors of the trajectories don’t affect the the topological class, which makes
the topological quantum computation fault-tolorent. In 2005, Sarma, S. D., Freedman, M.
and Nayak, C.[3] proposed a design which can produce a topologically protected qubit on
which a logical NOT operation is able to be performed.

Anyons are not just theoretical constructs. They are manifested in fractional quantum Hall
effect, which is the first and so far the only system where the existence of Abelian anyons
is convincing and this effect is described by Lauglin model. In 1983 [4], Laughlin provided
a trial ground state wavefunction of a two-dimensional electron gas placed in the magnetic
field to explain the ν = 1/3 fractional quantum Hall effect observed in experiment. Laugh-
lin’s wavefunction also successfully predicts the existence of other ν = 1/n states and that
the corresponding quasi-particles should have fractional electric charge e/n. Then it was
realized by Halperin [5] and Arovas, Schrieffer and Wilczek [6] in 1984 that the fractional
charge of the quasi-particles in the fractional quantum Hall effect also implies these exci-
tations must obey fractional statistics, which makes the fractional quantum Hall effect a
potential experimental system to find, and even manipulate anyons.

In a key development in the detection of anyons, in 2005, Vladimir J. Goldman, Fernando
E. Camino, and Wei Zhou [7] reported that they directly observed the fractional statistics
of Abelian anyons by using a fractional quantum Hall interferometer, where quasiparticles
of the ν = 1/3 fractional quantum Hall state encircle an island of the ν = 2/5 state and
thus a statistical phase is accumulated, which can be observed from the shift of interference
fringes. But some other researchers pointed out that their results could be the product of
phenomena not involving anyons. It should also be noted that there is no direct experimental
evidence for the non-Abelian nature of the quasiparticles.
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2 Anyonic statistics:

One basic principle of quantum mechanics is that the wavefunctions should satisfy certain
symmetry properties under the exchange of identical particles. We will introduce now what
symmetries can it be in 3+1-dimensional and 2+1-dimensional spacetime respectively.

In three-dimensional space, any loop one particle takes to move around another can be topo-
logically deformed into a point without cutting through another particle, so it is equivalent
to none of the particles moves at all [8]. Also, wrapping one particle all the way around the
other is equivalent to the case that the particles are interchanged twice. So under a single
interchange, the only two possibilities are for the wavefunction to change by a ± sign, cor-
responding to bosons and fermions. Things are different in two-dimensional space because
winding a particle around another is not equivalent to none of the particles move at all,
since the path can’t be deformed into a point without cutting through another particle. So
when interchange the particles twice both in the clockwise/ counterclockwise direction, the
system will not necessarily come back to the original state, say a factor of e2iθ may appear.
And the clockwise and counter-clockwise paths are also topologically different because we
can’t continuously deform the clockwise path into counter-clockwise path without having
the particles collide somewhere.

Thus, in two dimensions, interchange two particles will result in an arbitrary phase:

ψ(r1, r2) → eiθψ(r1, r2)

Particles with any other values of θ between 0 and π are called anyons. But we should note
that one class of anyons can only own a single value of θ. The overall phase of a quantum
state matters, because even though multiplying a wavefunction by a phase doesn’t affect the
measured properties of this single wave, it can affect how this wave interferes with other
waves.

3 Braid group and classification of anyons:

The braid groupBN contains elements each is a topologically equivalent class of trajectories
in 2+1d that takes the particles of the system from their initial positions R1, R2, ..., RN to
final positionsR1, R2, ..., RN [8]. Imagine there is a thread connecting the initial spatial and
time position of each particle with itself in the final position, then a way to bring all these
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particles of the system to the final states is like braiding a group of threads. BN describes
all the possible ways to braid a given row of thread together.

We use the operators σi/σi−1 to represent a counter-clockwise/clockwise exchange of parti-
cle i and i+1. The simplest case is that σi is one dimensional, so the wavefunction simply
acquires eiθ when we exchange two particles. If we first exchange the particles A and B,
then exchange B and C, the state of the system will acquire a factor of ei(θ1+θ2) in total.
Suppose instead B and C are exchanged first, obviously the wavefunction is multiplied by
the same factor ei(θ2+θ1) as before. Apparently the order in which the particles are swapped
doesn’t make a difference. The particles are thus called Abelian anyons.

If there are g degenerate states (represented by orthonormal states ψ1, ..., ψg) that all de-
scribe the particles being in positions R1, R2, ..., RN , an interchange of two quasiparticles
does not necessarily merely multiply the groundstate wavefunction by a phase factor, shift-
ing the system to a different ground state is also reasonable. This means we need higher
dimensional representation of σi, which should be a g× g unitary matrix ρ(σi). The result
of multiplying two matrices depends on the order in which they are multiplied. If ρ(σ1) and
ρ(σ2) commute, these particles still obey Abelian braiding statistics. But in most cases two
matrices don’t commute, then the order in which the particles are switched is important.
These particles are called non-Abelian anyons.

Figure 1: Non-Abelian braid operators [8]. Left top: basic exchange operators. Left down:
the non-communitive property of non-Abelian anyons. Right: two different series of oper-
ations lead to the same final configurations.

Non-Abelian anyons:

The statistics of non-Abelian anyons is extremely interesting, which also implies their po-
tential utility in topological quantum computation. While at the same time, the requirements
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for non-Abelian statistics to take place is harsher than Abelian one.

We consider a 3d fluid consisting a large number of identical particles. The collective be-
havior of these particles creates vortices that are localized atRj . The wavefunctions for the
ground states are |ψα(Rj)⟩. Different α stands for different members belonging to the set
of the degenerate ground states.

Four defining characteristics of the non-Abelian states are summed up in this paper [9].
First is that there must be an energy gap between the ground states and the excited states.
This guarantees that the system stays at the ground states under adiabatic changes. Sec-
ond, the system must have a set of degenerate ground states, and the degeneracy should be
exponentially large in the number of the vortices. Third is that the degeneracy should be ro-
bust. Fourth, when interchange two vortices, the system should transform from one ground
state to another, and the transformation should only depend on the topology of the trajec-
tory instead of the geometry. The degeneracy of the ground states and the different initial
and final states guarantee the non-commutative property of the operation (interchange two
quasiparticles) and thus the non-Abelian statistics.

4 Integer and fractional qauntum Hall effect:

Two-dimensional electronic systems will show Hall effect when subject to a perpendicular
magnetic field. The Hall conductance is σxy = ν e2

h
. The filling factor ν = nΦ0

B
, where n

is the density of electrons.. At low temperature and strong magnetic field, quantum Hall
effects will be formed, which is characterized by ν can take on either integer or factional
values.

The integer quantum Hall effect, for which ν is an integer, can be understood from Landau
quantization. In 2 dimensions, when non-interacting charged particles subjected to a mag-
netic field, their orbits are quantized. The energy levels of these orbits, the Landau levels,
are the energy levels of quantum oscillators: En = ℏωc(n + 1

2
), where ωc = eB

m
. The

degeneracy of each Landau level is N = BA
Φ0

. Thus when the fermi level lies between the
νth and ν + 1th Landau levels, the electron density of the system is n = ν ∗ N/A = ν B

Φ0
.

From this we can get ν = nΦ0

B
, which is exactly the νth plateau of the Hall conductance

observed in experiment. So the integer quantum Hall effect is the result of the existence
of Landau levels in a non-interacting charged particle system subjected to perpendicular
magaetic field.
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Figure 2: The connection between the integer quantum Hall effect and Landau levels

As a contrast, the fractional quantum Hall effect relies on the electron-electron interac-
tion. However, people found that this can be mapped to a system composed of composite
fermions [10], between which the interactions are negligible to a good approximation. Then
these charged composite fermions can be treated the same way as the non-interacting elec-
trons in the integer quantum Hall effect. In another word, the factional quantum Hall effect
is the integer quantum Hall effect of composite fermions. Composite fermions are formed
when electrons try to minimize the interaction by capturing quantized votices, which leads
to the fact that the composite fermions feel a much smaller magnetic field than electrons:

B∗ = B − 2pnΦ0

where 2p is the number of vortices bound to an electron to form a composite fermion. Thus
the filling factor for the composite fermions is ν∗ = n Φ0

|B∗| . So,

nΦ0

ν∗
=
nΦ0

ν
− 2pnΦ0

⇒ ν =
ν∗

2pν∗ ± 1

Now we can see since the composite fermion filling factor ν∗ is an integer, the electron
filling factor ν is factional. And for the charge e∗ on the quasiparticle excitations of this
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state, we have:
e∗ = ± e

2pν∗ + 1

Other than the composite fermion theory, Laughlin wavefunction also successfully explains
the fractional quantum Hall effect.

5 Exerimental evidence of the existence of Anyons:

As I mentioned in Part 1, it was realized by Halperin [5] and Arovas, Schrieffer andWilczek
[6] that the fractional charge of the quasi-particles in the fractional quantum Hall effect is
closely related to the fractional statistics, whichmakes FQHE themost promising system for
the realization of anyons. Since Abelian anyons are defined by the phase that they acquire
when they travel all the way around another, it is reasonable to design an experiment where
the phase difference could be detected, which naturaly leads to interferometry.

Figure 3: Fabry-Perot interferometer

Figure 3 [9] is the structure of a Fabry-Perot interferometer, which is a powerful technique
for detecting anyonic properties. The two black lines stand for the two possible trajectories
of the current. The current transports along the edge of the Hall bar and travel to the other
side under the tunneling effect at two constrictions, which serve as beam spliters. The
red circles are localized quasiparticles trapped in the loop. If we assume the tunneling
amplitude at 1st and 2nd constrictions are t1 and t2 respectively [11], then the conductance
of the interferometer is

G ∝ |t1|2 + |t2|2 + 2Re{t∗1t2 ∗ eiϕ}

where ϕ is the sum of the phase due to both the Aharonov-Bohm effect (see below) and the
exchange of quasiparticles. What we expect is that we can observe the phase changes (∆ϕ)
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discretely in the experiment, which should by 2θ due to the quasiparticle enter or exit the
interferometer.

Aharonov–Bohm effect [12]: In a system with non-interacting
electrons subjected to a strong magnetic field. The relative
phase between two interference paths will be 2π Φ

Φ0
, where

Φ is the magnetic flux enclosed by the interference loop.

Recent studies have shown encouraging, even thought not definite, results. In [11], the
researchers measured the diagonal resistance RD as a the voltage bias on the plunger gate
VP is swept at a steady rate. The voltage is to change the encircled area and will result
in oscillations of RD. Figure 4 shows the result at ν = 7/3 quantum Hall state. The
black line is the best fit of data below −20mV . The blue curve is the black one shifted by
2π/3. And the light blue curve is further shift the phase by 2π/3. This is associated with an
anyon randomly entering or exiting the interferometer and demonstrate the Abelian anyonic
braiding statistics of the e/3 anyons for the 7/3 fractional quantum Hall state.

Figure 4: The interference measurement at ν = 7/3 quantum Hall state

The first quantum Hall state suspected of being non-Abelian is the ν = 5/2 state. Even
though several experiments have been proposed to probe non-Abelian states, there is no di-
rect experimental evidence for the non-Abelian nature of the quasiparticles. For the ν = 5/2
Moore–Read state, no interference takes place when a non-Abelian e/4 quasiparticle inter-
feres around an interference loop which encircles an odd number of similar quasiparticles
[9]. On the contrast, interference would take place when that number is even. In this case
one of two interference patterns will be seen, between which the phase is π, and the choice
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is determined by the ground state that the localized quasiparticles are in. Recent studies
show that as the voltage on the side gate changes, the interferometer’s resistance oscillates,
and the periodicity of the oscillations switches between two values [9].

Figure 5: The switching of periodicities from the ν = 5/2 Fabry–Pérot interferometer [13]

6 Quantum computation with Non-Abelian Anyons:

To build a topological quantum computer, one needs Non-Abelian anyons.

Place Anyon pairs along a line and then move the adjacent anyons around one another in a
designed order, which produces a braiding of all the world lines of anyons [14]. The calcu-
lation of a topological quantum computer can be represented as a set of braids in spacetime.
The result is a matrix combined from the matrices corresponding to each manipulation.

Can the topological quantum computer perform any quantum computations the traditional
quantum computer can do? The answer is yes. Any quantum circuit can be simulated to an
arbitrary degree of accuracy using a combination of a so-called controlled NOT (or CNOT)
gate and single qubit rotations. It was showed by a team in 2005 how to construct CNOT
gate to an accuracy of two parts in 103 by braiding six anyons [14].
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Figure 6: Building the CNOT gate [14]

Making practical quantum computers requires a lower error rate. Since anyons are just like
fermions, they cannot occupy the same state, the world lines of two anyons cannot inter-
sect or merge. This ensures that the topological property of the braided threads can’t be
changed by small perturbations, thus may provide an error-resistent approach to quantum
computing. And different from the traditional quantum computation, the topological quan-
tum computation is approximate, but actually it can reach any given accuracy. We only
need to increase the number of number of twists to get a finer accuracy. It is fortunate
that the required number of twists increases very slowly as the accuracy increases, so high
accuracy is not just theoretically possible.

7 Conclusion:

Anyons are important as well as fascinating in more than one aspects, but the first is it
breaks the previous rule that the wavefunction are either symmetric or antisymmetric under
the exchange of identical particles, thus leading us to another part of quantum mechanics.
I have reviewed in this paper how the notion of quasiparticle excitations helps with the
understanding of fractional quantum Hall effect, and how the factional quantum Hall effect
in the other way around offers us a possible theoretical and experimental platform to look for
anyons. I didn’t cover the part about how the candidate systems accomodating anyons are
proposed, which is a regret. But I did review the detection techniques and some encouraging
results. As we can see, the physics about anyons haven’t been fully understood and awaiting
for future research.
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