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Abstract

In this paper, I will talk about why the Cooper pairs in superfluid 3He is spin
triplet pairing and P-wave. I mainly argue from the aspect that how the theory
match with the experiment data on spin susceptibility.

1



0 Introduction

Helium has two (stable) isotope 3He and 4He. The superfluid of 4He was discovered in
1938 and was well understood long before it was shown in lab. However, superfluid of
3He is much more complex. Its liquid form was obtained around 1950. People started to
generalize the BCS theory to liquid 3He to understand its superfluid phase in late fifties.
As we now know the Cooper pair in superfluid phase of 3He is P-wave and spin triplet
coupling. However, it is a long journey to reach this conclusion theoretically and the
work behind it is considerable. In this paper, I want to talk about how to understand the
superfluid phase of of 3He is P-wave and spin triplet pairing in a loose but heuristic way.

1 Important experimental facts

Figure 1 shows the phase digram of Helium-3 in P-T plane with zero external field [1]. At
low pressure and between about 100mk and 3 mk, liquid 3He is described by Landau’s
theory of normal fermi liquid(N)[2]. There are two types of superfluid phase: 3He − A
and 3He − B. The N-A and N-B transition is a second order transition while the A-B
transition is a first order transition. We can see from Figure 1 that the N-B transition
curve and N-A transition curve in P-T plane seems to be the same curve (i.e.
they are continuously connected).

Figure 1: Pressure versus temperature phase diagram for Helium-3
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Figure 2 shows the spin susceptibility of 3He−B[1], in which we can see χB(T ) decreases
with temperature, and as T → 0, χB ∼ χN/3 ̸= 0. And the spin suscepbtility of
3He−A is independent of temperature and close to that of normal fermi liquid.

Figure 2: Magnetic susceptibility of ’He-B as a function of temperature at 20bar

2 The Cooper instability

Let us ask an interesting question(Cooper problem [3]): if we let two fermions near the
fermi surface interact with each other, will the lowest energy of this two particle states
less than 2ϵF ?( where ϵF is the fermi energy). Begin from Schrodinger equation for a
2-body system: [

−ℏ2

m
+ V (r)

]
ϕ(r) = E ′ϕ(r), (1)

do the Fourier transformation

ϕ(r) =
∑
k

ϕk exp(ik · r), Vkk′ =

∫
dr exp [−i(k− k′) · r]V (r), (2)

and set ϵk = (ℏ2/2m)(k2 − k2F ) and E = E ′ − ℏ2k2F/2m. Since Vkk′ only depends on
|k− k′|2 = k2 + k′2 − 2kk′ cos θ, we can expand it as

Vkk′ =
∑
l

(2l + 1)Vl(k, k
′)Pl(cos θ). (3)
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Simultaneously, we can expand ϕk as ϕk =
∑

l ψl(k)Ylm(k̂). Plug all these in the Fourier
transformed Schrodinger equation, we can get

(2ϵk − E)ψl(k) = − 1

(2π)3

∫ ∞

kF

4πk′2Vl(k, k
′)ψl(k

′)dk′. (4)

Note that k and k′ are both ≳ kF . Whether eqn(4) has a solution with negative E (i.e
pairing state have energy less than 2ϵF ) depends on the details of Vl(k, k

′). Let us use the
approximation used in [4]:

Vl(k, k
′) = Vl kF −∆k ⩽ k, k′ ⩽ kF +∆k

= 0 otherwise
(5)

then we will get

(2ϵk − E)ψl(k) = −1

2
Vl(dn/dϵ)

∫ (ℏ/m)kF∆k

0

ψl(k
′)dϵk′ . (6)

From above equation we can see for Vl < 0 and |Vl| large enough, E < 0 which means
the pairing state will be energetically advantageous. Thus the filled fermi sea is unstable,
that is why we call this Cooper instability. By solving eqn(6), we can get

1 = −1

2
Vl(dn/dϵ)

∫ ϵc

0

N(ϵk′)dϵk′

2ϵk′ − E
, (7)

where ϵc = (ℏ/m)kF∆k. At finite temperature, fermions satisfy the fermi statistics:

nk =
1

eβEk + 1
, (8)

then N(ϵk) which is the probability of forming a pairing state could be written as (1−nk)
2.

Now we want to calculate transition temperature at which E begin to become negative.
Plug E = 0 into eqn(7), we can then get the transition temperature is

kBT0 ∼ ϵcexp(2/(Vldn/dϵ). (9)

From the above equation we can see that the smallest Vl for different l will dominate the
transition, and we usually say that the system has instability l. l is angular momentum
of cooper pairs (e.g. l = 0 or s-wave in BCS superconductor). And intuitively,

Vl ∼
∫
V (r)R2

l (kF r)r
2dr, (10)

where Rl is the radial part of l-orbital wave function, so R2
l (kF r)r

2 gives the density
of fermions. From eqn(10) and eqn(9), we can get some intuitive understanding about
cooper pairs in superfluid 3He: because “ the interaction potential between two He atoms
is strong repulsive at short distances and becomes attractive only for inter-atom separation
r ∼ r0 ∼ 3Å ”[5], the V (r) should be positive (repulsive) when r is small. Given that
for l = 0, R0(kF r0) ∼ 0, the V0 should be positive and then the instability could not be
l = 0. We can then draw a conclusion that the cooper pairs in superfluid 3He
cannot be P-wave.
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3 BCS theory at finite temperature and its general-

ization to anisotropic superfluid

3.1 Original BCS theory: spin singlet pairing

I think the central part of BCS theory is to write down appropriate wave-function to
describe pairing states. In the original BCS theory, states k ↑ and −k ↓ form the cooper
pair. We now focus on 3 states: ”ground pair”(GP), ”broken pair” (BP) and ”excited
pair”(EP). We have seen that GP state has lower energy then GP, so we could understand
BP and EP are two different excited states. Bardeen et al.[4] write the wave-function as

Ψ =
∏
k

Φk (11)

where
Φk,GP = uk(T )|0, 0⟩k + vk(T )|1, 1⟩k
Φk,EP = uk(T )|0, 0⟩k − vk(T )|1, 1⟩k
|uk|2 + |vk|2 = 1

(12)

and define
vk(T ) = ∆k/

[
|∆k|2 + (Ek + ϵk)

2
]1/2

uk(T ) = (Ek + ϵk)/
[
|∆k|2 + (Ek + ϵk)

2
]1/2

Ek(T ) =
[
ϵ2k + |∆k(T )|2

]1/2 (13)

where ∆k satisfy the gap equation. Note that |0, 1⟩k means k ↑ is occupied and −k ↓ is
empty. After some math, we can get

EEP − EGP = 2Ek, EBP − EGP = Ek. (14)

Then we can write down the partition function(without external field) of this system

Z = 1 + 2e−βEk(T ) + e−2βEk(T ), (15)

it is easy to see if we add an external magnetic field H, then the partition function will
be

Z = 1 + e−β(Ek(T )− 1
2
µH) + e−β(Ek(T )+ 1

2
µH) + e−2βEk(T ). (16)

where µ = geℏ/2m is the magneton. With partition function, we can then calculate
thermodynamic quantities such as spin susceptibility:

χ(T ) =
1

4
γ2ℏ2(dn/dϵ)

[
Y (T )/

(
1 +

1

4
Z0Y (T )

)]
, (17)

where γ = 2µ/ℏ and Y (T ) is known as Yosida function. Its temperature dependence is
shown in figure 3. It is helpful to make some comments here:
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1. Remember that eqn(17) is for spin singlet pairing.

2. When T → Tc, χ(T ) → χ0

1+[γ−2ℏ−2(dn/dϵ)−1Z0χ0]
, which is what we get in normal

fermi liquid case; when T → 0, χ(T ) → χ0. χ0 = 1
4
γ2ℏ2(dn/dϵ)Y (T ) is the spin

susceptibility of free fermion gas, and Z0 here is the magnitude of coupling between
spins (molecular field [2]).

3. From figure 3, we can see that when T → 0,χ(0) = 0.

4. d
dT
χ(T ) = Y ′

(1− 3
4
Y )

2 > 0 because Y ′ > 0, i,e, the spin susceptibility of singlet paring

will decrease with temperature.

Comparing comment 3, 4 with experimental results referred in Section 1: a) χA is T-
independent and close to χN ; b) χB(T ) decreases with temperature but have χB(0) ∼
χN/3 ̸= 0. We can draw a conclusion that both 3He − A and 3He − B cannot be
singlet pairing, i.e. they must be triplet pairing. Thus, l must be odd because
of the antisymmetric property of the wave-fucntion.

Figure 3: Temperature dependence of Yosida function Y(T)

3.2 Spin triplet pairing

Most generally, the wave-function of pairing state could be written as

Ψpair = F↑↑(r)| ↑↑⟩+ F↓↓(r)| ↓↓⟩+ F↓↑(r)
1√
2
(| ↑↓ +| ↓↑⟩), (18)

where r is the relative coordinates. If we choose a special case that only fermions with
same spin projection can pair with each other, then F↑↓ = 0. This state is usually called
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“equal-spin-pairing”(ESP). We can now do similar thing as we do in singlet pairing to
calculate the spin susceptibility of ESP state, because now the spin part of wave-function
is not trivial comparing with that in singlet pairing, generally the state of the system
could be written as

Ψ̂(n) = Ψf̂(n), (19)

where n is the spin axes. Or equivalently,

Ψ̂(n) = Ψi
3∑

j=1

(σiσ2)αβdi(n), (20)

where d(n) is normalized. Because the math is complex, I will not go into it and directly
give the result: χESP = χN . Another special choice is BW state (named after Balian
and Werthamer), which is isotropic. The idea is that in l = 1, we can choose F↑↑(r) to
correspond to angular momentum Lz = −1, and F↓↓(r), F↓↑(r) correspond to Lz = −1, 0
respectively [5]. Then we will have J = 0 which means all its properties should be
isotropic. And the spin susceptibility for this state is[2]

χBW/χN = (1 +
1

4
Z0)

[
2

3
+
Y (T )

3

]
/

{
1 +

1

4
Z0

[
2

3
+
Y (T )

3

]}
. (21)

As we can see, χBW decreases with temperature and when T → 0, χBW/χN → (2/3 +
Z0/6)/(1 + Z0/6). Given that Z0 ∼ 3, χBW/χN → 1/3 at T = 0 ! Then from the aspect
of spin susceptibility, we can loosely judge that 3He − B corresponds to BW state
(so l = 1) and 3He− A corresponds to ESP state.

Up to now, we have had several conclusions:

1. l ̸= 0;

2. 3He−A and 3He−B phase must correspond to triplet pairing and then l must be
odd.

3. From the point view of spin susceptibility, 3He − B corresponds to BW state and
3He− A correspond to ESP state.

The logic link between 2 and 3 is that 2 gives some constraints on the possibilities of
3He − A and 3He − B. Then we can find two special state ESP and BW satisfying
the constraints corresponds to 3He − A and 3He − B respectively, and it is consistent
with experimental results of spin susceptibility. Note that the isotropic properties of spin
susceptibility of 3He − B phase plus conclusion 2 require that l = 1 for 3He − B phase.
Remember that in figure 1, we see that the A-N transition curve and B-N transition curve
is continuously connected which is actually one curve. This suggests that A-N transition
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and B-N transition should correspond to the same Cooper instability in normal fermi
liquid, which means they have the same dominant Vl and so same l. From this argument,
we can say l is also equal to 1 for 3He − A phase. Let us now proceed with these
conclusions to see what problems we will meet: as we know, when T ≲ Tc, the system
could be described by Ginzburg-Landau theory with free energy of the form α(t)Ψ2+βΨ4,
where t = T −Tc/Tc. By carefully calculate the free energy, we can find that for l = 1, the
BW phase has lower energy than ESP phase, which means the BW state is more stable
than ESP state. This conclusion could be generalized to any temperature below Tc[6]. If
we think 3He− B corresponds to BW state and 3He− A corresponds to ESP state and
both A-N, B-N transition are because of the same instability, then it is unreasonable for
A-phase to appear, because B-phase is more stable. To solve this problem, Anderson-
Brinkman provided a clever idea called spin fluctuations[7].

4 Spin fluctuations

The basic idea of Anderson-Brinkman is that we can add an interaction term of quasi-
particle which will depend on the details of superfluid state formed, then if some specific
state which is not stable originally has an attractive contribution form the newly added
interaction term, it is possible that this state will become stable. Now the question
becomes: what interaction that physically makes sense can we add? Let us consider such
an effect: a 3He atom at point r and time t with spin S(r, t) will generate a molecular
field

Hmol(r, t) = −γ−1ℏ−2(dn/dϵ)−1Z0S(r, t) (22)

the molecular field comes from the expansion of 2-body interaction of quasi-particles in
Landau’s fermi liquid theory, Z0 is the Landau parameter. Then this molecular field will
produces a spin polarization of the neighboring liquid. This process repeat again and
again so that it can be described by a spin-dependent effective interaction between two
particles. For triplet pairing, generally the spin susceptibility is anisotropic which should
be described by a tensor. Give Hmol(r, t) and S(r, t) = ℏδ, at point r′ and time t′

Mi(r
′, t′) = γ2ℏ2

∫
χij(r

′ − r, t′ − t)Hmol,j(r, t)

= −χij(r
′ − r, t′ − t)γℏζ0δj,

(23)

where ζ0 = (dn/dϵ)−1Z0. Then the molecular field at r′, t′ should be

Hmol,i(r
′, t′) = −χij(r

′ − r, t′ − t)(γℏ)−1ζ20δj, (24)

then the change of the total energy is

∆E = −γℏδ′
iHmol,i(r

′, t′) = −ζ20δ′
iδjχij(r

′ − r, t′ − t) (25)
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Note that χij(r
′ − r, t′ − t) ∼ θ(t′ − t), so when writing the effective interaction, we need

to replace χij(r
′ − r by 1/2(χij(r

′ − r, t′ − t) + χji(r− r′, t− t′)). Thus,

Veff (r
′ − r, t′ − t) ∼ θ(t′ − t) = −ζ20δ′

iδj
1

2
(χij(r

′ − r, t′ − t) + χji(r− r′, t− t′). (26)

Then the change of free energy could be calculated by ∆F = ⟨Veff⟩. Clearly, this will
depend on the details of the spin part of the wave-fucntion, i,e, f(n) or d(n). From
calculation, we can find that for one special and highly anisotropic ESP state with F↑↑ =
eiϕF↓↓, the correction to free energy because of spin fluctuation feedback will make it a
stable state. Then the problem encountered in the end of last section is solved! This
state is know as ABM state which is named after Anderson-Brinkman-Morel. Thus, by
introducing interactions described by eqn(26), the stable state (without external field)
of superfluid with P-wave (l = 1) pairing will be either BW state or the ABM state.
Together with discussion in previous sections, we can give the conclusion that 3He− A
and 3He−B correspond to ABM and BW states respectively.

Finally, I want to briefly talk about how firm is this widely believed conclusion. Firstly, for
3He − A, the hypothesis that it is ABM phase is highly compatible with NMR(Nuclear
Magnetic Resonance ) data. But the data on density of superfluid agree roughly with
the theory, it is believed that this is due to the effect of geometry which is not totally
understood. In this paper, I did not talk about the phase transition when exist external
fields. The theory and experiment match very well on the A transition in an external
field. Next, for 3He − B, most of the experiment data is compatible with what gives
by BW phase. However, the main problem is that only near melting curve, the data of
static susceptibility fit the hypothesis well, in lower pressure, there is discrepancy between
theory and experiment.

5 conclusion

In this paper, I mainly use the experimental result for spin susceptibility to argue that
the superfluid phase of 3He is spin triplet pairing. For why it should be l = 1, I only give
some naive and loose argument. By shallowly involving Cooper instability, anisotropic
BCS theory and the Spin fluctuations, this paper construct a simple and heuristic way to
understand the properties of Cooper pair in superfluid 3He.
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