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Abstract

Seashells exhibit diversified types of pigmentation patterns on their surfaces.
While pattern formation is a ubiquitous phenomena in many different systems,
seashells are a rare type of system that can record the formation and time evo-
lution of the spatial pattern through calcium deposition [1]. This essay mainly
reviews the activator-inhibitor model for seashell pattern formation, where spa-
tial variation arises from diffusion [2]. We derive the instability condition for
a uniform state, which initiates the pattern formation, through linear stability
analysis. Based on this model, computer simulations are performed and the
results match well with observation in nature, which are shown in several ex-
amples [3]. Furthermore, we review the application of the activator-inhibitor
model to many other systems. Though extensive literature can be found on
this topic, many features of seashell patterns and their molecular basis remain
unexplained while some others are still in debate [1][4].
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1 Introduction

Many invertebrates, such as snails and clams, have mollusc shells as their exoskele-
tons to support their body structure and protect their soft inner parts. Varieties
of shapes and surface patterns from seashells are observed. Some of them are sim-
ilar to patterns formed in other physical and biological systems. While there are
many patterned features of seashells, we will focus on the pigmentation patterns on
the shell surface. During the growing process of the animal, the shell pattern is
formed gradually through deposition of some calcium substance containing certain
pigments on the front edge. In most cases, we can approximate the growing front
by a one-dimensional dynamical system, where the underlying molecular interactions
are expressed through the choice of pigments [1]. Therefore, the evolutionary history
of this one-dimensional system is recorded as a two-dimensional pattern along the
growing direction, neglecting the curvature of the shell. Many scientists have been
working on the formation mechanism of these patterns and seeking their similari-
ties to other dynamical systems, such as Turing patterns widely observed in nature
and even in inorganic systems [5]. Hence, in this paper, the subject of our interest
is a one-dimensional reaction-diffusion system containing two species and its time
evolution.

1.1 Seashell patterns as a dynamical system

By treating the seashell growing front as a coupled reaction-diffusion system, we as-
sume that the dominant processes are production, diffusion and spontaneous decay
of species and the interaction merely between species, instead of being driven by
external forces. One reason for this assumption is the lack of selective pressure on
the seashell patterns. Some clams live underground and their patterns are thus not
visible, while some others have patterns on the inner side of their shells. The pat-
terns on some individuals among the same species, even those living under similar
conditions, vary drastically [1]. In addition, experiments find that the shell pattern
can change significantly in reaction to varying environmental conditions, without en-
dangering the species. This further confirms the animals’ survival does not have a
strong dependence on the shell patterns, and reveals the lack of a strong regulation
on patterns at a genetic or physiological level [1]. The arguments above allow us to
make an effective model of seashell patterns as a dynamical system of species related
to the expression of different pigments, without knowing the details of the underlying
biochamical mechanisms [1].

1.2 Patterns emerging from a uniform state

For a diffusive system without interactions, a spatially uniform state is stable. On the
other hand, if a nonlinear dynamical system has a stable steady point, it also has a
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uniform state at the steady point. However, in certain reaction-diffusion systems, the
diffusion process and the reactions between species create a linear instability for the
uniform state, which can be analyzed by linear stability analysis [5]. Ordered states,
some of which exhibit periodic patterns, emerge from the breaking of translational
symmetry by this linear instability.

1.3 Activator-inhibitor model

Activator

Inhibitor

Activation

Inhibition

Autocatalysis

Figure 1: Basic mechanism of
activator-inhibitor systems

In this essay, we will mainly review the work on the
activator-inhibitor model for seashell pattern forma-
tion. This model describes a reaction-diffusion sys-
tem of two species: a localized activator promoting
the production of both species, and a rapidly dif-
fusing inhibitor decelerating the growth of the ac-
tivator [5], illustrated by figure 1. Because of the
self-enhancement, the local density of the activator
tends to increase futher when elevated by a small
local perturbation. This will also promote the pro-
duction of the inhibitor, which diffuses away quickly,
while the activator can accumulate if its motility is
much less. Intuitively, a local maximum of activa-
tor density will form, surrounded by an evenly in-

creasing density of the inhibitor within a characteristic length of its diffusion. The
inhibition prevents another local maximum of the activator from forming within the
close neighbourhood of the first maximum; but when it is far enough, another local
maximum can form following the same mechanism. Therefore, a spatially periodic
pattern can form [1]. Other types of patterns, such as temporal patterns generated by
oscillations of population can be explained by our more familiar predator-prey model.
The quantitative analysis and variations of the activator-inhibitor model are shown
in the next section.

2 Methods and results

In this section, we explain the mathematical contruction of the activator-inhibitor
model, and show how such a system allows patterns to emerge.

2.1 Mathematical model of activator-inhibitor system

The activator-inhibitor model describes a reaction-diffusion system with two species
that allows spatial patterns to form. The activator calalyzes the production of itself
and the inhibitor, but only in a short distance. The inhibitor suppresses the produc-
tion of the activator and influences in a longer range through a much faster diffusion
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than that of the activator [1]. The two species are represented by two coupled fields
that specify the density of species at each point. Here, we write the activator and
inhibitor fields as a(x, t) and h(x, t), respectively, so the evolution of the system will
be two coupled PDEs. Depending on the specific system, several mathematical forms
of the activator-inhibitor model have been proposed since Turing first constructed the
prototypical model for chemical system in 1952 [5]. Here, we introduce the Gierer-
Meinhardt model to model seashell patterns, proposed by Alfred Gierer and Hans
Meinhardt in 1972 and developed since then [2]:

∂a

∂t
= ρa

a2

h
− µaa+Da

∂2a

∂x2
+ δa

∂h

∂t
= ρha

2 − µhh+Dh
∂2h

∂x2
+ δh

(1)

In the first equation of 1, ρaa
2/h is the growth term of the activator, where ρa is

the growth rate, a2 accounts for the self-catalytic effect giving the higher power than
exponential growth, and 1/h represents the inhibition. The term −µaa is a natural
decay of population and the third term is the diffusion of the activator. The last term
δa is a small constant external source of the activator, which initiates the generation
of new activator peaks at empty space. The second equation for the inhibitor has
similar interpretation, but the growth process is only catalyzed by the local activator
without inhibition. This model also requires the difference of diffusivity, Dh >> Da,
and fast adaption of the inhibitor to change of activator density, which is sometimes
realized by imposing µh > µa. Note that the diffusion here is an approximation of
other motile behaviours of agents in many situations.
The activator-substrate model is a variation of the activator-inhibitor model described
by equation 1. In this case, growth of the activator consumes a substrate represented
by a field s(x, t), and therefore is limited by the amount of substrate available locally,
instead of a direct antagonistic influence from the inhibitor. The substrate cannot
reproduce by itself, but relies on a external source to create and inject it into the
system. Mathematically, this mechanism is formulated by the following PDEs [2]:

∂a

∂t
= ρsa2 − µaa+Da

∂2a

∂x2
+ δa

∂s

∂t
= −ρsa2 − νs+Ds

∂2s

∂x2
+ δ

(2)

where we again require the substrate to diffuse faster than the activator, Ds >> Da.
The last term δ = δ(x) is usually a spatial distribution of a steady external source,
instead of a spatially uniform constant.
The models above assume an arbitrary capacity of the system for all species, which
is an ideal case, so another modification is imposing a saturation condition on the
activator. This is accomplished by substituting a2 in the growth term with a2

1+κa2
+ρ0

[2]. One physical example of the saturation limit is the number of enzymes available
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in cells for the catalytic effect from the activator [1].
The original Gierer-Meinhardt model was proposed for general biological pattern
formation, main ideas introduced above. For patterns on some seashells, empirical
observation of patterns suggests that some global regulation on the total amount of
the activator might act on the system through some hormone-like substance c(x, t)
[3]. Including the saturation effect, these systems can be described by:

∂a

∂t
=

ρa
h+ h0

(
a2

1 + κa2
+ δa

)
− µaa+Da

∂2a

∂x2

∂h

∂t
= ρh

a2

1 + κa2
− µhh

c
+Dh

∂2h

∂x2
+ δh

∂c

∂t
=
ρc
L

∫ L

0

adx− µcc

(3)

where h0 is a base inhibition effect, and the global control of the activator is indirectly
imposed through the decay term of the inhibitor.

2.2 Linear stability analysis

A spatial pattern can form only when all uniform steady states are unstable. Here, we
first introduce linear stability analysis, show possible instability in a general diffusion-
reaction system [6] and at last apply it to the activator-inhibitor model of our interest.
Suppose we have a one-dimensional dynamical system described by a field u(x, t),
whose time evolution locally follows the ODE,

∂u

∂t
= f(u). (4)

If there is no interaction between neighbouring sites through diffusion, then for a
given position point x, the evolution of u(x, t) depends only on the initial condition
u(x, 0). The system might reach a steady point along the evolutionary trajectory
if there exists u0 such that ∂u

∂t
|u=u0 = f(u0) = 0. However, a steady point is only

stable to small perturbation if f ′(u0) < 0. This is equivalent to linearizing the system
around the steady point u0,

∂u

∂t
= f ′(u0)(u− u0) +O((u− u0)2), (5)

and by solving the linear ODE we can see that the solution blows up as time increases
if f ′(u0) > 0, and stablizes at u0 if f ′(u0) < 0.
Genenalizing to a coupled system with n species, we have u = (u0, u1, ..., un) and

∂u

∂t
= F(u) ≈ J(u− u0), u→ u0, (6)

5



where the Jacobian J ≡ ∂F
∂u
|u=u0 and F(u0) = 0. The condition for u0 to be a stable

state is that all the eigenvalues of J are negative. In a system with two-species like
the activator-inhibitor model, by solving the eigenvalue problem directly, this can also
be interpreted as the conditions

tr(J) < 0, det(J) > 0. (7)

If a system has a single steady point u0 satisfying the statbility condition above, ev-
ery point of the system will eventually stabilize to this point and thus form a stable
uniform state.
Now let’s introduce a diffusion process and analyze a two-species system as an ex-
ample. For a chemical reaction, the diffusion term has a straightforward origin, but
in many other contexts, it is an approximation of the motility of the species or other
long-range interactions.
Suppose we have two species u(x, t) and v(x, t) following

∂tu = D1∂
2
xu+ f(u, v)

∂tv = D2∂
2
xv + g(u, v)

(8)

and suppose there exists a stable steady point (u0, v0) if there is no diffusion, i.e.,

J ≡
[
a b
c d

]
=

[
∂uf ∂vf
∂ug ∂vg

]
(u0,v0)

(9)

satisfies conditions 7.
In order to show that the diffusion terms can possibly knock the system out of the
uniform stable state, we linearize the Laplacian around u0, which is equivalent to
solving

∂2xw + λw = 0 (10)

where w = (u− u0, v − v0), and D =

[
D1 0
0 D2

]
. By separation of variables, we can

obtain λ > 0 from the time-dependent factor. Hence we can solve λ = k2, where
k = nπ

L
, L being the system size. This gives

∂tw = (−k2D + J)w (11)

Note that tr(−k2D+J) < 0 is automatically satisfied, so we need to set det(−k2D+
J) < 0 to break the stability condition 7,

det(−k2D + J) = D1D2k
4 − (D1d+D2a)k2 + ad− bc < 0 (12)

Then a necessary condition for inequality 12 to have a solution is

D1

D2

d2 +
D2

D1

a2 + (4bc− 2ad) > 0 (13)
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which is possible to hold when the ratio of two diffusion constants is far enough

away from one. The first momentum mode to become unstable is k =
√

D1d+D2a
2D1D2

if

D1d+D2a > 0. These k-modes are oscillators in space, and are one of the causes for
the system to form spatial patterns [6].
Now we apply linear stability analysis to the basic activator-inhibitor model following
equation 1 and use u for the activator and v for the inhibitor. First to find the steady
uniform state, we set f(u, v) = g(u, v) = 0, and find v = ρhu

2+δh
µh

and

µaρhu
3 − (µhρa + δaρh)u

2 + µaδhu− δaδh = 0 (14)

Notice that equation 14 has at least a positive solurion because the left hand side is
negative when evaluating at u = 0. Call the steady solution (u0, v0), we can find the
Jacobian for the linearized term:

J =

[
a b
c d

]
=

[
∂uf ∂vf
∂ug ∂vg

]
(u0,v0)

=

[
2ρau0
v0
− µa −ρau20

v20

2ρhu0 −µh

]
(15)

Imposing conditions 7, we require a + d < 0 and ad − cd > 0, which is a constraint
on the parameters. Next, we want to verify that introduing diffusion can create
instability for this steady state. That is to say, we need to find the existence of some
positive range of D2

D1
satisfying equation 13, which can be also written as

a2
(
D2

D1

)2

+ (4bc− 2ad)

(
D2

D1

)
+ d2 > 0 (16)

After careful checking of algebra, we find the positive half solution (while the solution
range below the smaller root is also interesting to discuss, we skip that part in this
essay)

D2

D1

>
ad− 2bc+ 2

√
bc(bc− ad)

a2
> 0 (17)

where bc < 0 according to equation 15 and bc − ad < 0 by the constraint on stable
uniform state. Hence, we prove that diffusion can introduce instability to the steady
uniform state of activator-inhibitor, when the inhibitor diffuses much faster than the
activator.

2.3 Simulation and comparison to observation

In the last section, we have shown that diffusion can be the origin of the emergence
of patterns in the activator-inhibitor model. However, because of the complexity of
dynamical systems, it is hard to solve the analytical form of u(x, t), and thus we
cannot read the pattern out of a closed expression in general. Computer simulation
is a powerful tool to study the evolution of dynamical systems. Simulations of PDEs
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and visualization of results reveal that models proposed in section 2.1 can reproduce
various types of seashell patterns in nature, as figure 2, 3, 4 and 5 show below.

  

a b

Figure 2: Emergence of a periodic pattern for (a) simulation equation 1 and (b) photo
of Lyria planicostata taiwanica[1].

Figure 3: Emergence of a stable pattern from uniform initial state [3]. Simulation
of equation 2, including the saturation effects. Parameters are ρa = 0.01 ± 2.5%,
ρ0 = 0.001, κ = 0.0, µa = 0.01, δa = 0.0, µa = 0.01, Da = 0.002, δ = 0.015, µs = 0.0,
Ds = 0.4.
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Figure 4: Activator-substrate system with a spatially periodic substrate source [3].
Left: photo of Volutoconus bednalli. Right: simulation of equation 3 with parameters
ρa = 0.1 ± 2.5%, ρ0 = 0.0025, κ = 0.5, µa = 0.1, δa = 0.0, Da = 0.01, δ(x)periodic,
δmax = 0.11, µs = 0.002, Ds = 0.05.

Figure 5: ”Colliding wave” pattern generated by hormone inluenced activator-
inhibitor model [3]. Left: photo of Oliva porphyvia. Right: simulation of equation 3
with parameters ρa = 0.1 ± 2.5%, h0 = 0.1, κ = 0.25, δa = 0.0001, µa = 0.1,
Da = 0.015, δh = 0.0002, µh = 0.014, Dh = 0.0, ρc = 0.1, µc = 0.1.
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3 Discussion

3.1 Other models for seashell pattern formation

The models introduced in section 2.1, which originated from the Gierer-Meinhardt
model, have the direct inhibitive effect proportional to the population of the inhibitor,
which shows up in the denominator of the activator’s growth term. While these mod-
els are capable of reproducing seashell patterns observed in nature (see section 2.3),
some other mechanisms cannot be ruled out because of the lack of molecular expla-
nation so far [1].
Here we introduce another inhibition mechanism realized by destruction of the ac-
tivator [1], which is also extensively studied in the literature. If the inhibitor can
annihilate the activator, the antagonistic effect will appear as a decay term of the ac-
tivator, with the decay rate depending on the density of the inhibitor. This predator-
prey mechanism for a reaction-diffusion system was proposed by L.A. Segel and J.L.
Jackson [7] as the following form:

∂a

∂t
= ρaa

2 − µaah+Da
∂2a

∂x2
+ δa

∂h

∂t
= ρha

2 − µhh+Dh
∂2h

∂x2
+ δh

(18)

which is a successful ecological model for pattern formation in plankton-herbivore
systems.
A neuron-based model also successfully reproduces many seashell pigment patterns
[4]. In addition to a diffusive process, noise can also be a factor to break the uniformity
and induce patterns in a diffusion-reaction system [8]. Even though the molecular
mechanism of seashell pattern formation are not yet clear, these effective models
constructed from broken symmetry and empirical observation in a population scale
manage to describe the macroscopic patterns. However, on the other hand, we cannot
rule out any model because of the lack of both microscopic picture and experimental
facts. We know even very simple cellular automata are capable of producing varies
type of patterns in their time evolution plots, so how much these models actually
characterize the system still need further study [9].

3.2 Seashell pattern as a complex system

In this essay, we mainly focus on a one-dimensional reaction-diffusion system with
only two species, and the quantitative analysis is limited to linear order. The examples
shown above are basic patterns (but already show a large variation). In some other
seashells, the pigmentation patterns exhibit complex behaviour [1]. For example, the
bifurcation of activator waves requires nonlinear analysis. Figure 6 shows a pattern
that potentially has more than one type of pigment, and the entire pattern seems to
be a superposition of multiple subpatterns [1].
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Figure 6: Complex pattern on Conus textile [1]

Another challenge to the reaction-diffusion model might be the global behaviour,
which violates our essentially Markovian assumption [1]. Examples include the mem-
ory of previous pattern when the new ones form at the next round and the reflection
symmetry of patterns on the bivalved shells [1]. Moreover, in some cases, the one-
dimensional assumption is not sufficient to capture behaviour of a growing front partly
because of uneven growth caused by the curved geometry of seashells [1].

4 Conclusion

In this essay, we model the pigmentation patterns on seashell surfaces as a dynamical
system. We introduce the one dimenional activator-inhibitor model for two species,
and show that it can create a linear instability for a uniform steady state that allows
patterns to emerge. Through computer simulation results, it has been found that
the model and its variations, with properly chosen parameters, can reproduce pig-
ment patterns observed in nature. Yet, despite the success of the activator-inhibitor
model at the population level, the lack of understanding of the underlying molecular
mechanisms along with the difficulty of conducting targeted experiments leaves many
questions in this subject open for future research.
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