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Abstract. Ordered media such as liquid crystals (LCs) provide a platform to

realize and manipulate nontrivial field configurations in which topological solitons

can emerge and behave like particles. In this term essay, we describe some of the most

recent studies on numerical modeling, experimental observation, and manipulation

of various topological solitons, such as hopfions, skyrmions, and heliknotons, in LCs.

In particular, such topological solitons can be tuned electrically, and interact to form

emergent structures, such as skyrmion bags and three-dimensional crystals.
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I. INTRODUCTION

Topological solitons are continuous and localized field configurations that can not be
continuously deformed into a trivial, such as a uniform, configuration1. Such nontrivial field
configurations can behave like particles, and people have been fascinated by this idea for a
long time. For example, Gauss proposed that knots in fields could behave like particles2, and
Kelvin suggested that atoms could be represented by knotted structures in an ideal fluid3.
Liquid crystal (LC), as a reconfigurable and electrically tunable ordered matter, provides
a facile platform to create and manipulate topological solitons. In this term essay, we will
review the most recent progress in understanding solitons in LCs, including their internal
nontrivial structure, their response to external stimuli, pair interactions between solitons,
and emergent solitonic condensed matter2,4,5. This term essay aims to give a broad picture on
this currently very active and exciting research field. For rigorous mathematical formulation,
numerical and experimental details, we will refer the readers to the cited articles.

II. HOMOTOPY THEORY

In this section, we give a brief introduction to homotopy theory which will allow us
to classify topological defects and topological solitons. We will explain the notation πn(R)
and, at least in this essay, we wish to distinguish the terms topological defects and topological
solitons1, as both objects will present in the later experimental observations in LCs.

A. What is an order parameter field n(r)?

We start with the description of the order parameter field n(r). n(r) means that at each
point r in the base space, we assign an order parameter value n in the target space. n can be
a scalar, vector, tensor or even a direct product of vector and tensor, depending on details
of the system. For example, in a two-dimensional (2D) ordinary spin system6 we will have
r ∈ R2, which is the 2D Euclidean plane, and n ∈ S2 which characterizes a unit vector in
3D. Therefore, n(r) can be viewed as a map from the base space to the target space.

B. Homotopy group πn(R)

We now introduce the concept of homotopy group πn(R), which classifies different classes
of mapping from the nth-sphere to the target space R. The nth-sphere, Sn, can be thought of
as a unit sphere embedded in the (n+1)D Euclidean space satisfying x21+x

2
2+· · ·+x2n+x2n+1 =

1. This can be understood through one simple example. Consider the case where both the
base space and target space are S1, namely a unit circle. In this case we will be considering
π1(S

1). Homotopy theory6 tells us that π1(S
1) = Z, which means that the mapping S1 → S1

can be classified by an integer Z, which will be used for topological defects later.

C. Topological defects and topological solitons

Although the definition of terms can vary in different literature, here we wish to distin-
guish topological defects and topological solitons. Let us begin with topological defects. Given
a n(r), wherever in some region of r the order parameter is not well-defined, we say that
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FIG. 1. Examples of homotopy theory. [(a)–(c)] Examples of S1 → S1 mapping with winding

number w = 1, −1 and 2. The arrows can be understood as spins. (d) Example of S2 → S2

mapping where the unit vectors denoted as cones cover the entire S2 once. [(e) and (f)] Closed

loop preimages in R3 (left) of two distinct n ∈ S2 marked as yellow and blue cone (right) where

the preimages linked (e) once and (f) twice. Figures are taken from Refs. [4–7].

there are defects in that region1. A topological defect is a n(r) configuration with defects
that can not be continuously deformed into a uniform configuration. For example, consider
a 2D spin system whose spins can only point along the 2D plane, see Fig. 1(a). At the
origin of Fig. 1(a), n(r) is not well-defined. And we can classify this defect by considering a
closed S1 loop C enclosing the origin. Along C, n(r) is well-defined, which realizes a mapping
from S1 to S1, which is classified by Z, see Sec. II B. Physically, this can be understood as
how many times, called w, the spin rotates along C by an angle 2π. Figs. 1(a)–1(c) show
configurations of topological point defects with w = 1, −1 and 2.

Next, let us consider topological solitons, which is a continuous n(r) that is well-defined
at every point of the base space but nevertheless can not be continuously deformed into a
uniform n(r). For example, consider the case where both the base space and target space
are S2. Homotopy theory6 tells us that π2(S

2) = Z. This means that such a continuous
n(r) is classified by an integer Z. In this case, this can be understood as how many times
the unit vectors of n(r) for all r cover the entire S2. For example, Fig. 1(d) shows a n(r)
covering the entire S2 once, and so this topological soliton has topological number 1.

III. CHIRAL LIQUID CRYSTAL

In this section we will describe the n(r) of LC, its free energy functional and the current
experimental techniques to obtain high-resolution images of LC’s n(r).

A. Order parameter

LC is an ordered fluid with either long-range, partial, or no orientational order8, and
can be composed of small molecular rods whose order parameter field, also known as the
director field, can be represented as n(r), where r ∈ R3 is our physical 3D space and n
is a nonpolar unit vector with head-tail symmetry such that n ≡ −n. We then say that
n ∈ S2/Z2 (see Ref. [4]) which means that we identify the antipodal points on the S2.

Therefore, we have that a 3D liquid crystal director field n(r) has r ∈ R3 and n ∈ S2/Z2.

Practically, to facilitate the discussion of solitons and visualize the LC’s director field, one
will consistently decorate the director field by a unit vector field such that we have n ∈
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S2. The mathematical reason5 is that in a simply connected manifold, for example R3, a
smooth director field with n ≡ −n can always be vectorized into a smooth unit vector field
n(r) ∈ S2. This is a process where we change the target space from S2/Z2 to S2. Therefore

we will vectorize the director field n(r) such that r ∈ R3 and n ∈ S2 in below.

B. Frank–Oseen free-energy functional

With n(r) ∈ S2, the Frank–Oseen free-energy functional of a 3D chiral LC is given by2,4,5

F [n(r)] =

∫
d3r

(
K

2
(∇n)2 +

2πK

p
n · (∇× n)− ε0∆ε

2
(n · E)2

)
, (1)

where K is the elastic constant, ∆ε is the LC’s dielectric anisotropy, E is the external electric
field. The local minima of F [n(r)] represent n(r) that might be observed experimentally. The
first and third term in Eq. (1) represent the elastic deformation energy and the coupling be-
tween LC and E. When ∆ε > 0 [∆ε < 0], the LC molecules will tend to be parallel [perpen-
dicular] to E. The second term is the chiral term, whose effect is to make the LC molecules
twist along a helical axis χ, and p is the distance over which the LC molecules twist 2π angle.
Experimentally, such a twisting can be induced by adding chiral dopant into the LC4. For
example, in Fig. 6(a) we show such a twisting of n(r) ∈ S2 (left) and the actual LC molecule
(right) twisting, both along the helical axis χ. The key message from this F [n(r)] is that

the competition between the external field, elastic deformation and chirality can lead to

a plethora of nontrivial field configurations.

C. Nonlinear optical imaging technique

Before we delve into the experimental studies of solitons in chiral LCs, let us describe
how people can obtain high-resolution image of the n(r). This is done through three-photon
excitation fluorescence polarizing microscopy4 (3PEF-PM). The simplified working principle
is as follow. A polarized light will be used to excite the LC molecules through a three-photon
process, which means that there will be three photons absorbed by a LC molecule. The
excited LC molecules will then emit fluorescence light. We then detect the intensity of such
fluorescence light. Crucially, the intensity scales as cos6 β where β is the angle between the
polarization of the light and the direction of n(r). Therefore, by using different polarized
lights and scan through the sample, we can reconstruct the LC’s n(r).

IV. ELECTRICALLY TUNABLE HOPFION

Let us delve into the first topological soliton in this term essay – hopfion. We will describe
the creation and manipulation of hopfions in chiral LCs. In particular, the topological
structure of the soliton can be tuned by applied electric fields4, as we will describe below.

A. The concept of far-field and preimage

To obtain the topological classification of hopfion using homotopy theory, we assume that
the director field n(r) at the boundary of the 3D sample points along the same direction
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n0, which is called the far-field. In such a case, we can perform a compactification4 to map
the r in n(r) from R3 to S3. Therefore our base space becomes S3, and then we can apply
homotopy theory. The relevant homotopy groups are π3(S

2) = π3(S
2/Z2) = Z (see Ref. [4]),

where recall that the LC has its target space S2/Z2 and then we vectorize it to be S2. There-

fore, given a fixed far-field n0, solitons in chiral LCs are classified by an integer Z. Let us

call this integer Q. This Q is also called the Hopf index4. In fact, given a unit vector field
n(r) with fixed far-field n0 we can compute Q through4

Q =
1

64π2

∫
R3

d3rεijkAiFjk, (2)

where Fij = n · (∂in× ∂jn), and Ai is defined through Fij = (∂iAj − ∂jAi)/2 which can be
computed numerically given the vectorized director field n(r).

To understand the topological significance of a n(r) with nonzero Q, let us introduce
the concept of preimage. Given a n(r), the preimage of a constant n1 ∈ S2 is a region in
the base space where n(r) = n1. In particular for the mapping S3 → S2, the preimage
of a n1 ∈ S2 will be a collection of closed loops in S3, or R3 with a fixed far-field8. With
the concept of preimage, there is a simple way that we can visualize a n(r) with Q 6= 0.
When Q 6= 0, the preimages of any two distinct n ∈ S2 will be closed loops that link
with each other Q times. As a demonstration, in Fig. 1(e) [1(f)] we show the preimages
of two distinct points on S2 for n(r) with Q = 1 [Q = 2]. As we can see the closed loop
preimages in Fig. 1(e) [1(f)] link with each other once [twice]. The key message here is that

a Q 6= 0 hopfion has preimages of any two distinct n ∈ S2 be closed loops linked Q times.

B. Tuning the internal structure of hopfions using electric field

Having understood the concept of preimage and how to determine Q by counting the
linking number of closed loop preimages, we now demonstrate how the hopfion’s internal
structure can be tuned4 by an applied voltage U along the far-field direction n0 = (0, 0, 1),
namely we apply an electric field E ‖ n0. In this section, the chiral LCs have ∆ε < 0.

When U = 0, the researchers first realize a Q = −2 micrometer-sized hopfion, whose
simulated n(r) is shown in Fig. 2(a), and the preimages of two distinct n ∈ S2 form a pair
of Hopf link, each with Q = −1, and so the total Q = −2, as shown in Fig. 2(d). When U is
increased to 2.6V < U < 4.2V, the researchers found that a boundary line at polar angle θc
measured from the north pole appears in the target space S2. For a n with θ < θc [θ > θc],
its preimage is composed of a single closed loop [two separated closed loops]. Importantly,
when 2.6V < U < 4.2V, the Q of n(r) is still −2. For example, the simulated n(r) for
U = 3.6V is shown in Fig. 2(b), where the researchers confirm numerically that this n(r)
carries Q = −2. Therefore, when U = 3.6V, suppose we choose two distinct n1 and n2 on
S2, there exist different ways that their preimages link to give Q = −2. In particular, there
will be three cases: (1) both n1 and n2 have θ < θc, (2) one of n1 and n2 has θ < θc and
the other has θ > θc, (3) both n1 and n2 have θ > θc. These three cases (all have Q = −2)
are shown in Figs. 2(g), 2(f), 2(e), respectively. Finally, when U > 4.2V, the Q of n(r)
changes from Q = −2 to Q = −1, where the simulated n(r), and the preimages of two
distinct n ∈ S2 linked once are shown in Figs. 2(c) and 2(h), respectively. Furthermore,
the researchers obtain a relation between θc, Q and U , which is shown in Fig. 2(i). As we
can see, when U < 2.6V, the hopfion has Q = −2 and the preimages of any two distinct
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n ∈ S2 form a pair of Hopf links. When U = 2.6V, there is a abrupt appearance of a nonzero
θc = 68◦ and when 2.6V < U < 4.2V, there exist three different types of linked preimages,
all giving Q = −2. The θc will slightly increase as we increase U , but then when U = 4.2V,
the hopfion undergoes a topological transformation from Q = −2 to Q = −1 and there will
be no θc hereafter.

FIG. 2. Electrically tunable hopfions. [(a)–(c)] Top view of the simulated n(r) at the midplane

cross-section of a 3D chiral LC sample at applied voltage U = 0, 3.6 and 5.0V. [(d)–(g)] The closed

loop preimages in R3 of points on S2 indicated as cones in the upper right insets. The lower right

insets of (d)–(g) are the schematics of the linking of preimages. (d) and (h) correspond to the

hopfions shown in (a) and (c) where the closed loop preimages linked twice and once. (f), (e) and

(g) correspond to three different types of closed loop preimages linked twice at U = 3.6V in (b).

The boundary line with polar angle θc is indicated as the black line in the upper right insets of (f),

(e) and (g). (i) The relation between θc, Q and U . Figures are taken from Ref. [4].

What we have described above are all simulation results. Importantly, all of them are
confirmed by experiment. Shown in Figs. 3(a)–3(f) are the experimental and simulation
results of nonlinear optical imaging, described in Sec. III C. Figs. 3(a) and 3(d) corre-
spond to Fig. 2(a) imaged using polarized light along the horizontal and vertical direc-
tions, respectively. Similarly, Figs. 3(b) and 3(e) [3(c) and 3(f)] correspond to Fig. 2(b)
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[2(c)]. As we can see the experiment and simulation match with each other, meaning that

hopfions in chiral LC can be tuned electrically and undergo topological transformation4.

FIG. 3. [(a)–(f)] Midplane cross-sectional nonlinear optical images (left) and computer-simulated

optical images (right) of hopfions in Fig. 2(a)[(a)&(d)], Fig. 2(b)[(b)&(e)] and Fig. 2(c)[(c)&(f)].

The polarization of lights are marked as double arrows at the top of the images. Regions with

bright green color have n(r) closely aligned to the polarization. Figures are taken from Ref. [4].

V. SKYRMION BAG

In this section, we describe the creation of stable, particle-like skyrmion bag with arbitrary
topological degree Q in chiral LCs5. This can potentially apply to display technology where
we store a large amount of information that is stable both energetically and topologically.

A. The topological degree Q

We begin with the classification of nontrivial n(r). We will consider a 3D chiral LC but
assume that n(r) is constant along the z direction. Therefore, the effective base space, with
fixed far-field n0, is S2. The relevant homotopy groups are then π2(S

2) = π2(S
2/Z2) = Z

(see Refs. [6 and 8]). We will call this Z integer invariant the topological degree Q, which
can be computed using5

Q =
1

4π

∫
R2

d2r [n · (∂xn× ∂yn)] . (3)

Pictorially, Q corresponds to how many times the S2 target space is covered by n(r) for all
r ∈ R2. Shown in Fig. 4(a) is a skyrmion tube translationally invariant along z with Q = −1.
The color of n(r) is drawn according to Fig. 4(b). The top view of Fig. 4(a) is shown in
Fig. 4(c) where we can see that at the origin of the disk the n points along (0, 0,−1) while
as we approach the boundary, n gradually twists to point along (0, 0, 1). In this case, all
the n shown in Fig. 4(c) will cover S2 once. And the n(r) in Fig. 4(c) will be called a full
skyrmion, where we introduce a π-twist in n(r) from the origin to the boundary. We can
add a further π-twist in Fig. 4(c) to obtain Fig. 4(d) where as we go from the origin to the
boundary, the n changes from (0, 0, 1), to (0, 0,−1), and finally back to (0, 0, 1). However,
in this case, Q = 0. This means that we can perform a continuous deformation such that
we change Fig. 4(d) to a uniform configuration, see the Supplementary Video 2 of Ref. [5].

https://www.nature.com/articles/s41567-019-0476-x
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FIG. 4. (a) A translationally invariant skyrmion tube with colored n(r) according to their directions

on the S2 in (b). (b) The colored sphere is used for dressing n(r) in (a), (c) and (d). (c) corresponds

to a full skyrmion with Q = −1. (d) corresponds to a n(r) with Q = 0. Figures are from Ref. [5].

B. Particle behavior of full skyrmions

Full skyrmions can behave like particles. For example, they can move around in the

chiral LC and interact with each other. Using F [n(r)] in Eq. (1), it can be shown the the
pair potential between two full skyrmions is repulsive and has the asymptotic form5

Vint(R) = a
e−bR

√
R
, (4)

where a and b are positive constants related to the materials parameter, and R is the
distance between the two full skyrmions. Shown in Fig. 5(a) is the experimentally measured
repulsive force between two full skyrmions, and the inset is the optical image of the two full
micrometer-sized skyrmions. The blue points are experimental data and the orange line is
the fitted curve to the asymptotic pair potential (4), which show great agreement.

The next question is whether we can create a long-lived structure of n(r) with |Q| > 1.
This is a nontrivial question, as quoted from Ref. [5] only fractional and full skyrmions have
previously been realized in chiral condensed-matter systems by the time Ref. [5] is published.

C. Long-lived skyrmion bag with arbitrary Q

In this work, a long-lived skyrmion bag is created by putting a large amount of anti-
skyrmions, each with Q = +1, inside a stretched skyrmion with Q = −1, which serve as the
outer bag. Suppose we placeNA antiskyrmions inside one skyrmion bag, we can realize a n(r)
with Q = NA − 1. We will then denote such a skyrmion bag as S(NA). Shown in Fig. 5(b)
from left to right are S(1)–S(4), two types of S(13), and S(59). Surprisingly, for S(NA) bag
with NA > 1, they can stay topologically unchanged for more than one year already by the

time Ref. [5] is published. And as NA increases, S(NA) becomes more stable5.

One of the reason for the stability as NA increases is that, as we can see in the case of
S(59), the antiskyrmions inside the bag self-organize to form a 2D hexagonal lattice such
that it is energetically unfavorable to slightly deviate one antiskyrmion from its equilibrium
position. Furthermore, a natural inter-skyrmion distance has emerged5. Therefore, the
stability may be understood as a result of emergent lattice structure with its rigidity.

Being stable, we can then ask whether S(NA) behaves like a particle. This can be
verified by measuring the repulsive force between two S(3), which is shown in Fig. 5(c). As
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FIG. 5. [(a) and (c)] Experimentally measured force (blue points) and the fitted orange curve to

the asymptotic pair potential (4) between two (a) full skyrmions and (b) S(3) bags, where the

upper right insets correspond to their optical images. (b) Optical images of S(1)–S(4), two types

of S(13) and S(59) bags from left to right. Figures are taken from Ref. [5].

we can see, the experimentally measured force between the two S(3) bags fitted nicely to

the asymptotic Vint(R) in Eq. (4). Therefore S(NA) bags indeed behave like particles.

VI. SELF-ASSEMBLED CRYSTAL OF HELIKNOTON

In this section, we consider another soliton that can appear in chiral LCs – heliknoton.
We will demonstrate that they can behave like particles, and can self-organize into various
hierarchical 2D and 3D lattice structures2. The chiral LCs considered here have ∆ε > 0.

A. Helical field

As we mentioned before, the second term in the free energy functional (1) introduces a
twisting tendency of LC molecules along the so-called helical axis χ. When such twisting is
not frustrated, we can attach a triad of orthonormal fields at each point of the chiral LC,
which we will call n(r), χ(r) and τ (r). n(r) is the vectorized director field of LC. χ(r) is
a nonpolar field along the helical axis. And τ (r) = n(r) × χ(r)2 is also a nonpolar field.
In Fig. 6(a) we show a helical field with n(r), χ(r) and τ (r) where n(r) is either polar or
nonpolar. Recall that when we say n is nonpolar we mean that n ≡ −n such that n ∈ S2/Z2.
Notice that both χ(r) and τ (r) are immaterial and nonpolar fields.

B. Heliknoton: topological classification

Given a helical far-field background with fixed helical axis χ0, a new type of soliton,
heliknoton, can emerge. First, the n(r) will again be continuous and classified by the Hopf
index2 Q since π3(S

2) = π3(S
2/Z2) = Z as in Sec. IV A. In addition, there can exist topo-

logical line defects in the nonpolar χ(r) and τ (r). In a 3D system with nonpolar field, we
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FIG. 6. (a) Helical field composed of a triad of orthonormal fields n(r), χ(r) and τ (r) where

n(r) is either polar (left) or nonpolar (right). The helical pitch p is also indicated. [(b) and (c)]

Two topologically equivalent examples of the orientation of nonpolar fields around a vortex line.

(d) Colocated self-knotted vortex lines in χ(r) and τ (r) where the cross-sections show schematic

orientations of χ(r) and τ (r) around the vortex line. Figures are taken from Refs. [2 and 9].

can have line defects classified by the first homotopy group6,9 π1(S
2/Z2) = Z2. Shown in

Figs. 6(b) and 6(c) are two topologically equivalent topological line defects9 for a nonpolar
field. We can see that the nonpolar field rotates ±180◦ when we go around a closed loop
enclosing the line defect, at which the direction of nonpolar fields is not well-defined. For
this reason, we will call such line defects as vortex lines hereafter. Since τ (r) is derived
from χ(r), χ(r) and τ (r) share the same vortex line. Such a vortex line can be self-knotted,
see Fig. 6(d). Crucially, if χ(r) and τ (r) are polar and belong to S2 instead of S2/Z2,
then π1(S

2) = 0 means there is no topological line defect6. It is precisely the nonpolar na-
ture of χ(r) and τ (r) that allows the existence of topological line defects, as π1(S

2/Z2) = Z2.

Therefore, heliknoton2 in helical fields is a soliton composed of linked preimages in n(r) and

knotted vortex lines in χ(r) and τ (r)10. We will see the visualization in the next section.

C. Heliknoton: examples of Q = 1 and Q = 2 and experimental images

Shown in Figs. 7(a)–7(c) [7(d)–7(f)] are the simulated n(r), χ(r) and τ (r) for Q = 1
[Q = 2] heliknoton. In particular, in Fig. 7(a) [7(d)] the preimages of the north and south
pole of S2 are plotted as white and black closed loops that link once [twice], which means
Q = 1 [Q = 2], and schematic figures of the preimage are shown in the upper right insets.
Furthermore, in Figs. 7(b) and 7(c) [7(e) and 7(f)] the vortex lines are shown as self-knotted
pink tubes and can be deformed into the configurations shown in the upper right insets, and
from the top view these self-knotted vortex lines have crossing number N = 3 [N = 5]. In
fact, there is a relation between Q and N , which is N = 2Q+ 1 (see Ref. [2]).

Shown in Fig. 7(g) is the optical image of coexisting micrometer-sized Q = 1 (left) and
Q = 2 (right) heliknotons in a LC with thickness d = 20µm when the applied voltage is
U = 2.0V along the far-field χ0 and they can be schematically denoted as the cartoon figures
in Figs. 7(h) and 7(i), where the black and white closed loops are the preimages of the north
and south pole of S2 and the pink tubes are the self-knotted vortex lines in χ(r) and τ (r).

As a remark, notice that the heliknoton is a localized field configuration where all of n(r),
χ(r) and τ (r) are highly twisted locally, as shown in Figs. 7(a)–7(f). Therefore, heliknoton
is a combination of linked preimages in n(r) and self-knotted vortex lines in χ(r) and τ (r).
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FIG. 7. [(a)–(c)] Computer-simulated midplane cross-section of n(r), χ(r) and τ (r) for a Q = 1

heliknoton in a 3D sample. [(d)–(f)] Computer-simulated midplane cross-section of n(r), χ(r) and

τ (r) for a Q = 2 heliknoton in a 3D sample. The upper right insets of (a) and (d) show schematics

of the linked preimages in n(r) with Q = 1 and Q = 2, respectively. The upper right insets of

(b)–(c) and (e)–(f) show schematics of self-knotted vortex lines with crossing number N = 3 and

N = 5, respectively. (g) Optical images of Q = 1 (left) and Q = 2 (right) heliknotons. [(h) and (i)]

Schematics of linked preimages (black and white loops) in n(r) and self-knotted vortex lines (pink

tubes) in χ(r) and τ (r) for (h) Q = 1 and (i) Q = 2 heliknotons. Figures are taken from Ref. [2].

D. Heliknotons as interacting particles

Given that heliknotons are localized field configurations, we can then ask whether they
behave like particles. Fig. 8(a) shows a gas of Q = 1 heliknotons. And their pair interaction
is highly tunable through different LCs, applied voltage U and the thickness d of the sample,
as shown in Fig. 8(b), which is the experimentally measured (attractive) pair potential. In a

thick enough LC sample, we can actually see that two Q = 1 heliknotons attract each other

and form a dimer , as shown in Figs. 8(c) and 8(d) at time t = 0s and 8s, where the dimer
in 8(d) is formed by one heliknoton at top and the other at bottom. Given that it is possible
to achieve attractive interactions between heliknotons, the next question is whether they
can self-assemble into crystals.

E. Emergent self-assembled two-dimensional crystal

For chiral LC sample with thin enough thickness, such as d = 10µm, the Q = 1 heli-
knotons with anisometric shape are all located around the horizontal midplane of the sample.

The attractive interaction allows heliknotons to self-assemble and form 2D rhombic lattice2 ,
as shown in Figs. 9(a) and 9(b). We can see that a heliknoton comes in and then is attracted
by the already-formed 2D lattice to fill in the groove. With initial positions set by laser
tweezers, a stretched kagome lattice2 can also form, see Fig. 9(c). For a given self-assembled
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FIG. 8. (a) A gas of heliknotons. (b) The experimentally measured (attractive) pair potentials for

different LCs and applied voltage U . [(c) and (d)] Two heliknotons in (c) attract each other and

form dimer in (d). Figures are taken from Ref. [2].

crystal structure, the researcher can also change its symmetry by changing U . For example,
when we increase U from 1.8V to 2.3V, the orientation of the heliknotons in a 2D lattice can
change from synclinic to anticlinic tilting (Figs. 9(d) and 9(e)). In particular, this process
is reversible2: when U is tuned back to U = 1.8V, we can change Fig. 9(e) back to 9(d).

FIG. 9. [(a) and (b)] A heliknoton in (a) is attracted by the 2D crystal and fill in the groove in (b).

(c) A 2D stretched kagome lattice formed by heliknotons. [(d) and (e)] 2D lattice with (d) synclinic

and (e) anticlinic tilting of heliknotons at U = 1.8V and 2.3V, respectively. (f) A schematic figure

of a 3D triclinic crystal with heliknotons at its lattice points. (g) From left to right is the process

where two 2D heliknoton crystals interact and self-organize into a 3D crystal. Figures are taken

from Ref. [2].

F. Emergent self-assembled three-dimensional crystal

We have seen that a plethora of 2D crystals can emerge in thin enough LC sample.
The next question is whether we can realize 3D self-assembled crystals in thick enough LC
sample. The answer is excitingly affirmative. Shown in Fig. 9(f) is a schematic figure of

a 3D triclinic lattice where the atoms at its lattice points are heliknotons. To obtain such

a 3D crystal, the researchers first form 2D self-assembled rhombic crystal planes, shown
in Fig. 9(g), and then these 2D crystal planes interact and move along lateral and axial
directions to form a 3D triclinic lattice where one 2D crystal plane is on top of the other.
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As a final remark, the experimentally observed heliknoton crystals exist within a broad
range of applied voltage U , which really allow us to tune their structures by applying weaker
or stronger external electric field E.

VII. CONCLUSION AND OUTLOOK

In this term essay, we review the most recent progress on various solitons in chiral LCs,
including hopfions, skyrmions, and heliknotons. For hopfions, it has been shown that their
internal topological structure can be tuned electrically4. For skyrmions, researchers have
created stable, particle-like skyrmion bag5 with arbitrary topological degree Q. For helikno-
ton, which is a combination of linked preimages and self-knotted vortex lines, it is found that
they can self-organize into 2D and 3D crystals whose structures can be tuned electrically2.
These research works open the door to solitonic condensed matter, where soliton is the build-
ing block of emergent matter. Although the author of this term essay does not participate
in these research works, here are some directions that can possibly be pursued:

1. Effective inertia masses of the solitons

2. The rigidity of the emergent 2D and 3D heliknoton crystals

3. Emergent 2D crystals formed by skyrmion bags S(NA), where NA might play the role
of atomic number, and different NA can possibly lead to hierarchical structures

4. Critical behavior of solitons when they undergo topological transformation that
changes their topological degree Q

The research works described in this term essay will not only provide insights to the under-
standing of solitons, but also have potential application to the display technology where we
can store information in stable solitons and tune them electrically in chiral LCs.

∗ kuansen2@illinois.edu
1 M. Kleman and O. D. Lavrentovich, eds., “Topological theory of defects,” in Soft Matter Physics:

An Introduction (Springer New York, New York, NY, 2003) pp. 434–471.
2 J.-S. B. Tai and I. I. Smalyukh, Science 365, 1449 (2019),

https://science.sciencemag.org/content/365/6460/1449.full.pdf.
3 N. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs on Mathematical

Physics (Cambridge University Press, 2004).
4 J.-S. B. Tai, P. J. Ackerman, and I. I. Smalyukh, Proceedings of the National Academy of

Sciences 115, 921 (2018), https://www.pnas.org/content/115/5/921.full.pdf.
5 D. Foster, C. Kind, P. J. Ackerman, J.-S. B. Tai, M. R. Dennis, and I. I. Smalyukh, Nature

Physics 15, 655 (2019).
6 N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
7 P. M. Chaikin and T. C. Lubensky, “Topological defects,” in Principles of Condensed Matter

Physics (Cambridge University Press, 1995) p. 495–589.
8 J.-S. B. Tai, Topological Solitons in Chiral Condensed Matters, Ph.D. thesis (2020).
9 G. P. Alexander, B. G.-g. Chen, E. A. Matsumoto, and R. D. Kamien, Rev. Mod. Phys. 84,

497 (2012).
10 Hence the name “heli”+“knot”+“on”, since we have a helical-field knot soliton.

mailto:kuansen2@illinois.edu
http://dx.doi.org/10.1007/978-0-387-21759-8_12
http://dx.doi.org/10.1007/978-0-387-21759-8_12
http://dx.doi.org/10.1126/science.aay1638
http://arxiv.org/abs/https://science.sciencemag.org/content/365/6460/1449.full.pdf
http://dx.doi.org/10.1017/CBO9780511617034
http://dx.doi.org/10.1073/pnas.1716887115
http://dx.doi.org/10.1073/pnas.1716887115
http://arxiv.org/abs/https://www.pnas.org/content/115/5/921.full.pdf
http://dx.doi.org/ 10.1038/s41567-019-0476-x
http://dx.doi.org/ 10.1038/s41567-019-0476-x
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1017/CBO9780511813467.010
http://dx.doi.org/10.1017/CBO9780511813467.010
https://www-proquest-com.proxy2.library.illinois.edu/dissertations-theses/topological-solitons-chiral-condensed-matters/docview/2409225557/se-2?accountid=14553
http://dx.doi.org/10.1103/RevModPhys.84.497
http://dx.doi.org/10.1103/RevModPhys.84.497

	Topological solitons in liquid crystals
	Abstract
	Contents
	Introduction
	Homotopy theory
	What is an order parameter field n(r)?
	Homotopy group n(R)
	Topological defects and topological solitons

	Chiral liquid crystal
	Order parameter
	Frank–Oseen free-energy functional
	Nonlinear optical imaging technique

	Electrically tunable hopfion
	The concept of far-field and preimage
	Tuning the internal structure of hopfions using electric field

	Skyrmion bag
	The topological degree Q
	Particle behavior of full skyrmions
	Long-lived skyrmion bag with arbitrary Q

	Self-assembled crystal of heliknoton
	Helical field
	Heliknoton: topological classification
	Heliknoton: examples of Q = 1 and Q =2 and experimental images
	Heliknotons as interacting particles
	Emergent self-assembled two-dimensional crystal
	Emergent self-assembled three-dimensional crystal

	Conclusion and outlook
	References


