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Abstract

Though belong to well-known state of matter, microscopic understanding of
glassy state is still challenging for scientists. This article will summarize theoretical
and experimental effort have been made to unveil mystery of glass, begin with
experimental phenomena like dramatic change of viscosity below glass transition
temperature Tg , fragility, aging and dynamical correlation function of glass etc.
For theoretical side, we emphasize random first-order transition theory of glass
transition studied by Peter Wolynes.
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1 Introduction

Condensed matter physicists study various structures of materials with fascinating prop-
erties. Among them, glass is one of most important and mysterious subjects of interest.
From view point of material itself, it is interesting as its ubiquitous role in our daily life
and its rich physical phenomena under different temperature. Also it is typical materials
that have not attained a state of complete thermal equilibrium due to large viscosity ,
which give rise to glass’s aging phenomena. In academia, abundant theory of glass transi-
tion and formation are proposed to explain well-defined set of physical phenomena so it’s
a quite contentious topic. Some fundamental issues like whether there exist ideal glass-
transition at low temperature and whether thermodynamics or purely kinetic mechanism
play roles in glass formation and dynamics are still unsettled.

We will first begin by introducing rich experimental phenomena of glass under different
condition, with focus on fragility of glass. Then we will briefly introduce various theory
proposed by researchers, focusing on Random first order transition theory (RFOT) which
beautifully unveil universality of fragility property of different materials and fit experi-
ment data point pretty well. Notice RFOT theory argue there is ideal glass transition and
answer this question from thermodynamics, in contrast to some purely kinetic theories
where thermodynamics plays no role. Readers should refer to article [1] [2] if interested at
RFOT , and refer to [3] for thermodynamics and kinetic viewpoint about glass transition,
and [4] for thorough theoretical review of this topics.

2 Basic Experimental Phenomena of structure glass

transition

Glass exhibit rich phenomena and different phases under different temperatures, in the
argument following, readers are encourages to visit fig.1 as we proceed our argument
below.

Figure 1: regimes of aperiodic condensed matter phases. Fig.1 from [1]

Starting from gas phase, we may cool glass down and compress it under vapor tem-
perature Tv, under which we have liquid phase, which usually above crystallization tem-
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Figure 2: intermediate time structure factor F (k, t) plot against ln(t). c is result below
TA, b is result near TA, a is result above TA. Figure from [3]

perature Tm. Glass at liquid phase is just very dense gas held together by attractive
force between molecules. Interaction between molecules in this phase is collisional, which
imply no two molecules will stay close to each other after interaction, which akin to gas
phase case. In supercooled regime, glass maintain its neighbor over hundreds thousands
times of vibrational and collision time, beginning near temprature TA. These local struc-
tural pattern will persist longer as temperature lowered. At low enough temperature, the
transition time will exceed our daily life timescale. In this case, structure of glass will
slowly evolve with time . We call this phenomena as aging. It is from this sense, we say
glass is a form of matter which is not in thermal equilibrium.

Above argument is confirmed by neutron scattering experiment data about interme-
diate time structure factor F (k, t) which exhibit plateau when temperature is below TA
(fig.2). F (k, t) is defined as :

F (k, t) =
1

N
< ρ(k, 0)ρ(k, t) >

ρ(k, t) =
N∑
i=1

exp(ik · ri)
(1)

In this article , we will focus on fragility of glass, which describes how viscosity
of different glass form materials changes as it approaches critical temperature T0, see
fig.3. The substances that exihibit Arrhenius-like relationship between temperature T
and viscosity η is termed as strong glass , whereas those exhibit convex curves is termed
as fragile glass. The full dynamics show in figure 3 range from 1 ps on low viscosity side
to 104 when approaching glass transition temperature Tg. Fitting experimental data,
relaxation time τ (inverse of η) can be described by Vogel-Fulcher(VF) law:

τ = τ0e
DT0/(T−T0) (2)

There are also different equations for fitting experimental data, since viscosity data below
temperature T0 is still unavailable as relaxation time scale exceeds laboratory time scale
as T approach T0.

In parallel to dynamical change of supercooling, there is also thermodynamic phase
transition at glass transition temperature TK . See fig.4. The discontinuity of heat
capacity cp implies there is phase transition at T = Tg, and it is well approximated
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Figure 3: Viscosity of serveral supercooled liquid plot as function of inverse temperature.
Substance with Arrhenius-like dependency of temperature is called strong glass wheras
those have convex shape curve is called fragile glass. figure from [1]

Figure 4: Main figure: extrapolation of experimentally determined configuration entorpy
Sc above and below glass transition temperature Tg. Here configuration entropy Sc be-
comes 0 at Kauzmann temperature TK which equal to T0 in eq.(2) in Vogel-Fulcher law.
Inset is heat-capacity jump , which show signature of first order phase transition at
T = Tg. figure from [5]
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by heat capacity difference between liquid and crystal. An interesting observation is if
we extrapolate configurational entropy sc below Tg, there exists finite temperature TK
called Kauzmann temperature where Sc = 0, and TK = T0 in eq.(2) for all glass formers.
Using heat capacity jump ∆cp at glass transition temperature Tg, we have temperature
dependence of configuration entropy Sc:

Sc = ∆cp(1− TK/T ) (3)

The beautiful relationship of TK which is temperature from thermodynamics phase
diagram where configuration entropy sc vanish and T0 which relates to kinetics (viscosity)
should not be coincidence. There should be deep connection between thermodynamics
and kinetics. Random first order transition theory (RFOT) address this problem beauti-
fully. Below we will give brief introduce RFOT.

3 Random First Order Transition Theory

The notion of random first order transition receive its theoretical support from early
research of liquid glass transition theory and exactly solvable model of spin glass with
quenched disorder including Sherrington Kirkpatrick model [6] , potts model[7] . Early
theory about liquid glass transition so-called mode-mode coupling theory [8] suggest fea-
tures similar to first order transition. It predicts characteristic behavior of correlation
function near predicted transition, as indicated in fig.2. Most importantly, it suggests
below transition, glass configuration will freeze into random configuration which corre-
sponds to local minimal in state space of density functional ρ(r), i.e. there is broken
ergodicity.

Picture here is molecules will vibrate around its local potential minima and interact
with its neighbor as in ordinary solid, but instead of having periodic structure, we have
aperiodic amorphous structure. Occasionally , when thermal vibrational amplitude ex-
ceed roughly one-tenth of interparticle spacing (called Lindemann ratio), molecules will
deviate from their fiducial position which corresponds to jumping from one local random
configuration to another. Lindamann ratio does not depend on detail of molecular in-
teraction, thus it’s universal . We will see this will help explain variation of material’s
fragility with configurational heat capacity ∆cp below.

In RFOT, free energy of system is given by density wave ρ(r):

F =

∫
f(ρ(r))d3r = kBT [

∫
d3rρ(r)(ln(ρ(r))−1)+

∫
d3rd3r′(ρ(r)−ρ0)c(r−r′)(ρ(r′)−ρ0)]

(4)
Here first term is entropy localization penalty , second term is interaction term, where
c(r−r′) is correlation function. c(r−r′) for specific material can be determined by liquid
structure factor from experiment. In frozen aperiodic structure, the density wave ρ(r)
can be decomposed as sum of localized Gaussian dist around sets {ri} :

ρ(r) =
N∑
i=1

(π/a)3/2 exp(−α(r − ri)2) (5)
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Figure 5: A. Average free energy as function of localization factor α. B. illustration of
liquid like droplet inside glassy region corresponds to single mean field minimum config-
uration.

For large α, we can say localization site ri weakly interact with each other. Combining
(eq.4) and (eq.5) we have expression for free energy:

F/N = kBT [
3

2
ln(

αr20
π
− 5

2
) + 1/N

∫ ∫
d3rd3r′(ρ(r)− ρ0)c(r − r′)(ρ(r′)− ρ0)] (6)

The free energy F of whole system of course vary with location of center ri, but assuming
localization factor α in (eq.5) as constant, the average free energy F (α) =< F (ri, α) >
as function of α is shown in fig.5 (A). α = 0 corresponds to uniform configuration. We
see there is a second local minimum α = αL which corresponds to localized random
configuration. The free energy difference between uniform configuration and localized
random configuration is accounted by entropy contribution TSc(T ).

Between metastable state α = αL and global minimum state α = 0 there are point
α ≈ 0 which corresponds to local maxima for averaged free energy F (α). This is saddle
point which manifested as spatial structure of large droplet configuration in the midst of
localized configuration with α = αL, see fig.5 (B). This saddle point is also transition state
for reconfiguring frozen wave density ρ(r). In this droplet, different aperiodic microscopic
random configuration can convert to each other.

To compute barrier height for transition state, we note there will be surface tension
reflecting deviation of α of layer from bulk configuration α = αL. Also, in droplet region
α ≈ 0 instead of α = αL so there is also free energy difference proportional to volume of
droplet region (per volume TSc). Combining two effect above we have expression for free
energy difference:
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F (r) = −4

3
πTscr

3 + 4πσr2 (7)

According to (eq.7), solving maximum of free energy we have reconfiguration energy
barrier:

∆F † =
16

3
πσ3/ (Tsc)

2 (8)

The surface tension σ can be traced back to interaction between droplet surface with
surrounding configurations, it is one half of the difference of interaction energy between
α = 0 and α = αL. Assuming typical thickness of surface layer is r0 which is average
molecular difference, we have:

σ × 4πr2 = (−finteraction)× 1

2
× (4πr2)r0

σ =
r0
2

(−finteraction) =
r0T

2
[
3

2
nkB ln(αr20/πe)− Sc(T )]

(9)

As surface tension depend only logarithmically on α, we can replace α above by αL,
meanwhile near Kauzmann temperature TK ,configurational entropy Sc(TK) = 0. For
temperature between TA and TK , above two approximation large cancel and we have:

σ =
3r0nkBT

4
× ln(αLr

2
0/πe) (10)

Due to universaility of Lindemann ratio mentioned above, αLr
1/2
0 should be universal

for all materials, thus for droplet surface tension σ, σ/nr0kBT is universal for all materials.
However, there are still inconsistency between experimental result and theoretical

prediction above in (eq.8). Viscosity data show s−1c scaling for free energy of activation
instead of s−2c there. The right answer comes from complexity of interaction between
droplet surface and their environments. To lower interaction energy, surrounding envi-
ronment will adjust their random configuration, which gives surface tension σ depends
on droplet size r . This is pretty much like what happened in random field Ising model.

Accounting this , we will have surface tension σ(r):

σ(r) = σ0(
r0
r

)
1
2 (11)

Using equation above one find expression for F (r):

F (r) = −4

3
πTScr

3 + 4πσ0r
1
2
0 r

3
2 (12)

Its maximum gives right barrier height :

∆F † =
3πσ2

0r0
TSc(T )

=
3πσ2

0r0

T (∆Cp
T−TK

TK
)

= DkBT
TK

T − TK
(13)

We can see from (eq.13) and (eq.2) , it’s obvious T0 in VF law equal to TK which is
Kauzmann temperature. We see from point of view of thermodynamics barrier crossing
, Random First Order Transition Theory resolve this puzzle beautifully.
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Figure 6: Fragility relationship with configuration entropy jump ∆cp for various materials.

Coefficient D is called fragility which using universality of Lindemann ratio takes the
form:

D = 32R/∆cp (14)

Above relationship of fragility agree with experiment beautifully, see fig.6.
Another useful prediction is reconfiguration length scale ξ of droplet. The value r†

corresponds to transition state free energy F † scale with temperature T as :

r† ∝ 1

(TSc(T ))2/3
=

1

(T − TK)3/2
(15)

We see cooperative length scale r† is temperature dependent and RFOT give precise
prediction of its scaling.

4 Conclusion and Future Outlook

Different glass materials’ viscosity show distinct dependence on temperature. Deviation
from Arrhenius-like law of viscosity and temperature is characterized by fragility con-
stant D. Characterizing microscopic state of glass as random configuration with local
free energy minima and transitions between them are local configuration rearrangement
in droplet region much like nucleation process, Wolynes and his coworkers successfully
relate fragility D with configuration heat capacity jump ∆cp, thus show there is only
quantitative not qualitative difference between strong and fragile glass.

Although with great success of RFOT, we have to bear in mind prediction of RFOT
only apply to purely amorphous materials. Many samples exhibit partial crystallization
are expected to deviate from prediction of RFOT theory. Another effect worth noting
is role of Quantum mechanics in glass transition and fragility. We expect quantitative
details of amorphous materials’ property like vibrational excitation spectrum and heat
capacity ∆cp will given by quantum mechanics calculation. But general picture of random
configuration and droplet will not be affected by quantum mechanics.

Finally, although RFOT provides insight of relation between viscosity and thermo-
dynamic property, it avoids hardest part of problem: provide quantitative prediction for
macroscopic quantity from precise form of molecular interaction potential and structure.
Future direction in this field should pay greater attention to liquid-state structure theory
and powerful molecular simulation techniques to address problems mentioned above.
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