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Abstract

Various phenomena present in living systems, such as tissues, bacterial colonies, and
neural networks, are the result of the interaction of a large number of components and,
therefore, can be studied using statistical physics techniques. Thanks to new experimental
technologies, it is now possible to study biological systems in detail and build statistical
mechanics models directly from the data. Interestingly, the parameters for the models
found are very close to a critical point. This essay describes experimental observations,
simulations, and mathematical analyzes of biological systems where criticality has been
found and discusses the presence of self-organizing criticality phenomena as a result of
evolution.
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1 Introduction

In biology the existence of different levels of organization is well known, ranging from cells,
tissues, to ecosystems and the entire biosphere. At each level, we can observe different phe-
nomena which are the result of the interaction of their lower-level components. For example,
we have flocks of birds at the population level or extrusion of epithelial cells at the level of
living tissues. These emerging phenomena have motivated scientists to use statistical physics
techniques to explain systems from their active units, such as birds in flocks and cells in tissues.
An active unit is an element that can obtain material and energy from its environment, and use
them to move and interact with other units or the environment itself. This flux of energy and
matter between the environment and the systems makes a living system state a state out of
equilibrium. However, for living systems to be functional, these states must be located in spe-
cial parameter regions, even under the changes in the environment, and therefore the biological
system requires certain robustness in its non-equilibrium state.

Until a decade or so it was not possible to follow the behavior of each active unit present
in biological systems, independently and simultaneously, due to their large habitual numbers
and, on occasions, complex movements and interactions [1]. It is for this reason that recent
experiments shed new light on the study of active matter. The detailed data allowed, with-
out the need for a precise model, to calculate probabilistic distributions from raw data and
build statistical mechanics models directly from them. From these studies, it was recognized
that regardless of the level of organization, different statistical models for different biological
phenomena shared something in common, which was that they were all relatively close to crit-
icality [2] [3] [4]. The biological systems models give rise to a parameter space, which supports
a phase diagram given by different qualitative behaviors. The set of parameters found in the
experiments, however, were not established in one phase or another but were located very close
to critical surfaces of the parameter space.

To explain the presence of this phenomena, an evolutionary discussion is required, “Nothing
in biology makes sense except in the light of evolution” [5]. To be close to a critical point must
represent an increase in fitness for the species, so these regions have been favored by evolution
with the flow of time. For this reason using both, statistical mechanics and information theory,
it is shown that adaptation to heterogeneous environments is more efficient when the system is
close to criticality, since it provides a better balance between precision and flexibility.

In this essay, we begin by presenting how statistical models are built from raw data obtained
in biological systems, and what phenomena are signs of criticality. Later, using these techniques,
examples of criticality are presented at different levels of organization: bacterial clusters, ant
colonies, flocks of birds, and networks of neurons. Finally, we present a discussion on the
emergence of criticality the reason why it was favored by natural selection.

2 Thermodynamics in Biological Systems

To build a link between data obtained from biological systems and thermodynamics we need to
build a model that reproduces key measurements, such as mean neural activity or mean velocity.
For this reason, it is necessary to move to the probabilistic perspective of thermodynamics,
which originated in statistical physics. Any thermodynamic observable in systems with a large
number of degrees of freedom is captured by the Boltzmann distribution:

Pσ =
1

Z
exp(−βεσ) (1)
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where the probability to have a microstate σ is given by a normalized distribution that depends
on the temperature and its energy εσ.

To be more specific, for a system with N degrees of freedom, where N is a large number,
we identify the state of each ith element and place it in an array σ = (σ1, σ2, . . . , σN). To
build a model in the most general sense, without the need for a prior structure, from raw data
with many degrees of freedom, we use the principle of maximum entropy [6]. This principle
states that given an observed distribution Pr(σ), the most appropriate probability distribution
to model this data, is given by the distribution Pm(σ) that maximizes the Shannon entropy:

S[Pm(σ)] = −
∑
σ

Pm(σ) logPm(σ), (2)

while at the same time, it satisfies our prior knowledge. This prior knowledge is usually given
by moments of Pr(σ) as the average of some observable:

〈Oa(σ)〉m = 〈Oa(σ)〉r. (3)

Finally, with the use of Lagrangian multipliers, we can write the explicit form of Pm(σ) as:

Pm(σ) =
1

Z
exp

(∑
a

βaOa(σ)

)
, (4)

with βa the Lagrangian multipliers associated with the different modes Oa.
Once the probability distribution is built, we are able to define the “energy” of the proba-

bility distribution as:
E(σ) = − logPm(σ). (5)

Furthermore, it is common to identify different microstates that share energy in common, and
for this, it is necessary to take into account the number of these states. For this reason, we
define the microcanonical entropy S(E)

S(E) = logN (E) (6)

where N (E) is the number of possible σ with energy less than E. For large N , the entropy
becomes very peak at a value E = E∗, solution of:

dS(E)

dE
= 0. (7)

For this reason, for large N most of the microstates have the same energy E∗.
The special properties of the system, such as the interaction of the degrees of freedom, are

encoded in S(E) and can be studied by its form. For example, S ′′(E) < 0 is the footprint for
first-order transitions. Also, S ′′(E) = 0 are footprints for second-order phase transitions where
the variance of E diverge, phenomena associated with a long correlation length. We mention
footprints because they are sufficient but not necessary conditions for the presence of criticality.
In the study of biological systems, the knowledge of a critical behavior considerably reduces
the space of microstates visited and can help in the understanding of the emergent phenomena.

It should be noted that the maximum entropy distribution is not necessarily the real model
of biological systems, and it is also arbitrary in a sense since one chooses in an arbitrary way
which statistical moments to use in the Lagrangian multipliers process. For this reason, some
other statistical moments must be kept out of the model while it is being built. The reliability
of the model will then be tested by predicting these moments.
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3 Criticality in Biological Systems

3.1 Bacterial Clusters

Studies of colonies of Bacillus subtilis under controlled systems [7] have shown the emergence of
dynamic clusters. Bacterial clusters are small organizations of bacteria, with a variable number
of members, where the center of mass of each bacteria pair is separated, at most, by a fixed
distance R and the direction of movement differs only up to a maximum value of α. The values
of R and α are imposed, however, the results found were weakly dependent on them if one
considers sound values.

In [7] the position, orientation and speed of each bacteria is measured at different times, and
with this they analyze different clusters and their dynamics. Different clusters are identified as
shown in Fig. 1, and the average velocity inside the Ith cluster ~VI = 〈~vi,I〉I , speed ~SI = 〈|~vi,I |〉I ,
direction of movement ~PI = 〈 ~vi,I|~vi,I| 〉I and orientation ~ΘI = 〈~θi,I〉I along with their variations are

calculated, where i labels different bacteria inside the cluster.

Figure 1: Identification of four different clusters overlaid on an experimental image. Here the
white rods represent individual bacteria. Image obtained from [7].

Finally, a study of the spatial correlation of variations is performed. For example,correlation
Cφ, of the average variation of Θ over clusters of the same size L, are shown in 2.

Figure 2: Correlation of the orientation variance as a function of the distance r, and the unitless
parameter r/ξ. The image on the left presents three different curves that corresponds to three
different cluster sizes, L = 18.5µm, 36.5µm, and 54.5µm. We observe that the correlations
functions are practically identical once the distance r is divided by their respective ξ. Image
obtained from [7].
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A good measure of the correlation length ξ is given by the distance when Cφ touches zero.
This distance changes as one deal with different cluster size L, however, as it is also shown in
Fig. 2, up to ξ, the correlation behavior is similar. After computing the four average correlation
functions, corresponding to the motion direction, velocity, speed, and orientation, it was found
that all of them had a correlation length that follows ξ(L) = 0.3L. The fact that correlation in
bacteria clusters are found to be scale-invariant, long-range order, and only dependent on the
cluster size suggests the existence of criticality.

Figure 3: Correlation length ξ as a function of the cluster size L. Different colors represent
different objects under study: direction, velocity, speed, and orientation variance, however,
as can be observed, the correlation length is independent of the choice of source, and it only
depends, linearly, on the cluster size L. Image obtained from [7].

3.2 Ant Colonies

In ecology studies, large-scale spatial patterns are important to understand species diversity,
stability, etc. In [8], a study of ants Azteca instabilis in a completely homogeneous region
of shady trees was performed. It was observed that these ants tend to form cluster colonies
as observed in Fig. 4a. The separation of the colonies into clusters can be explained by the
presence of natural enemies that generally have a density-dependent response. What was not as
expected was a power relationship between the size and frequencies of these clusters, a signature
of criticality, as we observe in Fig. 4b. What is more, by reproducing the population dynamics
with cellular automatas, they found that there is a wide region around the measured parameters
where this power law holds. The last observation indicated that, if there was criticality, it was
a robust criticality.

3.3 Flocks of Birds

Flocks of birds are not as simple organizations as just thousands of birds that fly with the same
average velocity. As expected for survival strategies, the flock should be a dynamic structure
capable of responding to hazards that can only be observed from a certain region of the flock.
In addition, the signal of this danger must spread over large distances and speed, producing a
change in the average movement of individuals, far from the signal source.

This theory is corroborated by recent measurements of flocks of European starlings, Sturnus
vulgaris in [9] [10]. The evolution in time of the 3D position and speed of each bird is recorded.
The results showed that the flight is not only coordinated but even the fluctuations in the
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(a) (b)

Figure 4: (a) Distribution of ant nests over 45 hectare at two different years. We can observe
the total population form clusters. These clusters have dynamics, we can observe certain drift
from 2004 to 2008, and also, the creation and annihilation of clusters as shown inside the little
frames. (b) The appearance frequency of clusters and their size are related through a power
function. It is less probable to find large clusters than smaller ones. Images obtained from [8].

average speed of each bird are strongly correlated. This correlation is present even in birds
separated by very long distances with what appears to be a linear dependence on the flock size.
As we expect birds to only interact locally, the obtainment of long-range correlations provides
us with some clue for the presence of criticality, as a result of the desired maximization of the
range of influence while minimizing each bird speed variation.

To elaborate our mathematical model, we first define the state of the flock by the flight
speed of each bird vi = |~vi| and its direction ~si = ~vi/vi. Then, the similarity between the
motion of neighboring birds is given by the correlation:

Qint =
1

2v20N

N∑
i=1

1

nc

∑
j ∈ i NNs

|~vi − ~vj|2 (8)

where NNs means nearest neighbors, nc is the number of nearest neighbors, and v0 is just a
normalization term for the correlation to be dimensionless. Another useful quantity to build
the model is the average flock speed:

V =
1

N

N∑
i=1

vi, (9)

and the speed variation:

σ2 =
1

N V 2

N∑
i=1

(vi − V )2, (10)
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leading us to the following maximum entropy distribution:

P (~vi) =
1

Z
exp

(
− J

4v20

N∑
i=1

∑
j ∈ i NNs

|~vi − ~vj|2 +
µ

v0

N∑
i=1

vi −
g

2v20

N∑
i=1

v2i

)
. (11)

To verify the model, it was tested with correlations for arbitrary distances:

Q(r) =
1

V 2
〈|~vi − ~vj|2〉, (12)

fluctuations over the mean direction:

Cdir(r) = 〈(~si − ~P ).(~sj − ~P )〉rij = r where ~P =
1

N

N∑
i=1

~si (13)

and correlations between speed fluctuations

Csp(r) = 〈(vi − V ).(vj − V )〉rij=r. (14)

The results of this comparison are shown in Fig. 5.

Figure 5: Measured correlation functions (blue) compared with the correlation functions pre-
dicted by the maximum entropy model (red). Images obtained from [3].

Criticality can be quantified by the value of g/Jnc, and the value found in the model, which
is ≈ 10−3, explains why we observe scale-free speed correlations. The fact that it is not exactly
zero is because they work with finite sizes. In the model, we can see that the speed correlation
is associated with the parameter g, and it suggests long-range correlations for small values of
g, as we can see in Fig. 6. What is more, the model predicts that for large values of g, we find
that the speed variance is small and that the correlation decreases rapidly with distance, on the
other hand, for small g, both the speed variance and the correlation-length are maximized, as
the last one tends to a linear function of distance. It is worth noting that both, the measured
value of g, and the one predicted by the model, are in the last regime. Also, with an analysis
similar to the study of bacteria in the previous subsection, where one relates the correlation
length ξ to the position where the correlation becomes zero, they found that the correlation
length is also linearly dependent on the flock size L. These two observations clues for the
possible existence of criticality in the system.

It should be noted that the flock system is, for three main points, very different from the
system of bacterial clusters [7]. The first point is the type of interactions they have, whereas
birds have topological separation, bacteria interact through hydrodynamics, excluded volume,
and intertwining flagella. Second, interactions between different flocks are rare, while bacteria
clusters often interact. Lastly, flocks are 3D systems and bacterial clusters 2D. The similar
results found are a clue that the emergence of criticality could be a general characteristic of
collective motion.
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Figure 6: On the left, we observe the correlation function of the speed variance predicted by the
maximum entropy model. Different colors represent different values of g, value that increases
in the direction the arrow. We observe that for smaller values than the optimal g, which is the
one that optimizes the model with the data, the correlation function collapses into the same
yellow curve. On the right, we observe the linear dependence of the correlation length ξ on the
flock size L. Images obtained from [3].

3.4 Network of Neurons

The activity in networks of neurons has been studied by measuring the on/off of states of each
neuron as they are performing certain work [2]. From the data obtained, it has been possible
to construct an entropy function for the activities, and when analyzing its energy dependence
it was discovered that the model is located at a critical point.

To simultaneously monitor a large number of neurons, the experimental setup worked on
the retina of a salamander while watching gray-scale movies of a swimming fish. In this way,
the activity of 120 retinal ganglion cells was recorded in a span of 120 minutes. It is worth
noting that the recorded cells belong to an area of the retina that covers a specific visual region,
and therefore, their activity can be related to certain pixels of the video. The data obtained
from this measure are the peak σi = +1 and the silence σi = −1 activity for each neuron i of
the 120 neurons, as can be seen in Fig. 7.

With these data, they build a model using the maximum entropy method where the observ-
ables are the mean probability that each neuron generates a peak 〈σi〉, the correlation between
spiking in pairs of neurons 〈σiσj〉, and the probability that K out of N neurons spike in a time
interval P (K):

P (σ) =
1

Z
e−E(σ) (15)

E(σ) = −
N∑
i=1

hiσi −
1

2

N∑
i,j=1

Jijσiσj − V

(
N∑
i=1

σi

)
. (16)

This model was tested with correlations between a triplet of neurons, and the probability of
spiking of individual neurons given the global activity, the last one presented in Fig. 8.

Finally, it was found that the relationship of entropy and energy. This relation tends to a
linear map as the value of N increases in the model, as one can observe in Fig. 9. For large N
this relation implies dnS

dEn
= 0 for all n ≥ 2, signature of being located at a very unusual critical

point.
In a system in equilibrium, S ′′(E) = 0 does represent the divergence of some specific heat,

this is not exactly our case since we work in a system that is not in equilibrium. However,
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Figure 7: From top to bottom. Four frames of the movie presented to the salamander. The
response of neurons to the the video, black points represent peak activity. Discretized neuronal
activity using ∆τ = 20ms bins, these is the data that will be used to compute probabilities.
Image obtained from [11].

Figure 8: Spiking probability of individual neurons as a function of the effective activity that
surrounds it. Measured activity are represented with black dots, while the model prediction is
given by the red curve. Image obtained from [11].

since we work with thermodynamics, we can still calculate the specific heat in the usual way,
defining an effective temperature T as a model parameter in:

P (σ, T ) =
1

Z(T )
e−

E(σ)
T (17)

Do note that the original maximum entropy model, that reflects nature, is given by P (σ, 1).
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Figure 9: Entropy vs Energy computed from the maximal entropy model. Different colors
represents results for different number of neurons in the model. Image obtained from [2].

The results of this process are shown in Fig. 10 and the presence of a peak at T = 1 is notorious,
what is more, this peak increase its value as N goes to the thermodynamic limit.

Figure 10: Heat capacity in maximum entropy models with one parameter T for different
number of neurons N . The presence of a peak at T = 1, where the original model is located,
indicates the presence of criticality in the system. Image obtained from [2].

4 Emergence of Criticality

To understand the emergence of criticality in biological systems, we must explore the evolu-
tionary reason for its appearance or, in other words, answer the question of whether there is
any advantage in fitness in the presence of critical phenomena. In [12] this evolutionary expla-
nation is explored in the field of information theory. Living beings are in constant interaction
with others and their environment, so natural selection optimizes the ways of perceiving and
responding to these interactions. Obtaining and analyzing information is vital for the survival
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of living beings. However, there is a problem if the information to analyze is too detailed, as
it makes it difficult to interpret. Only essential features of the environment should produce in-
ternal changes of state, like tuning the active/non-active genes in a genetic regulatory network,
and be the basis for future responses.

4.1 Model

In a large and unpredictable external environment, living beings can only internalize the world
through probability distributions. In this way, a certain set of parameters α = (α1, α2, dots)
present in the real world, like the temperature, amount of nutrients around, or pH, can only
be probabilistically represented in the internal state of the active unit. This state, without loss
of generality, can be written as an array of binary values si: s = (s1, s2, dots, sN), and can be
interpreted, for example, as tuning the on/off states of different N genes in a genetic regulatory
network.

In this way, defining Psrc(s|α) as the probability that given an external environment α, the
most convenient internal state to obtain is s, living things, as they cannot obtain or process all
the information α, handle a reduced set of parameters β, producing a change of internal state
with probability Pint(s|β), as we can see in Fig. 11. Finally, to translate the environment to
internal states as efficiently as possible, Pint(s|β) should be as close as possible as Psrc(s|α).

Figure 11: Schematic representation of a living being responding to the environment labeled by
a set of parameters α. This set α can only be probabilistically gauged by the living being [6].
The most accurate change of internal state s given by the probability distribution Psrc(s|α),
can not be accessed by the living system, so they use a reduced set β that captures the most
important features and work with an imperfect proxy Pint(s|β). Image obtained from [6].

The closeness between probabilities distributions can be measured by the Kullback-Leibler
(KL) divergence D(α|β):

D(α|β) =
∑
s

Psrc(s|α) log
Psrc(s|α)

Pint(s|β)
. (18)

which has its minimum value of zero when the two probability distributions are identical,
and quantifies the loss of information when one works with Pint(s|β) instead of Psrc(s|α). So,
if obtaining a better good internal representations of the world increases fitness, the goal of
evolution should be to minimize the KL divergence, setting the optimal parameters β for it.

To find the most optimal set β we map the probability distribution to one that resembles
statistical physics:

P (s|γ) =
1

Z(γ)
e−H(s|γ), (19)

where H can be generally written as:

H(s|γ) = γµ φ
µ(s) (20)
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for φµ(s) observables of the variable s, similarly to the construction of maximum entropy
models. Now, the minimization of the KL divergence is given by the set β that best reproduces
the lowest moments of Psrc(s|α):

〈φµsrc〉α = 〈φµint〉β. (21)

Furthermore, to add different possible environments, a probability ρsrc(α) is also added, leading
to a more general condition:

〈φµint〉β =

∫
dα ρsrc(α) 〈φµsrc〉α. (22)

Now let’s take a simple case when there is only one parameter α, 〈φ〉α has sigmoid shape with
transition at α = αc, and ρ(α) covers both phases. An optimal β will match 〈φµsrc〉 which is
between the two asymptotic values of the sigmoid, so β, for heterogeneous environments, will
end up close to αc. In general, minimizing the KL divergence is analogous to maximizing the

susceptibility χ = −d〈β〉β
dβ

, and it results that generally, χ has a peak close to a critical region
The demonstration of these statements are out of the scope of the essay but a discussion of it can
be found in [12] [13] [14]. This result can be interpreted as the following: it is advantageous to
favor the region where a small parameter change provides the maximum variability for different
complex sources, i.e. a region close to criticality, because then the most distinguishable outputs
can be produced by the model. It offers the best possible trade-off between accuracy and
flexibility, to accommodate both regular and noisy signals.

4.2 Simulation Results

To test this hypothesis, a computational evolutionary simulation is designed. Here, a population
of M active members with one-dimensional parameters β is exposed to a variety of complex
environments, that is, different values of α, with probability ρsrc(α), and is left to evolve using
a genetic algorithm. In this algorithm, from time to time a pair of individuals is chosen and
one of them is eliminated with a probability according to its fitness, given by who has the
least divergence KL. The living unit that survives, reproduces, creating a pair with parameters
β very close to the original up to some random mutations. This algorithm simulates natural
selection under different external conditions. The presented evolutionary scheme converges to
a stable state, which is presented in Fig. 12 for different forms of ρsrc(α). We observe that
for heterogeneous media, i.e. well distributed ρsrc(α), the optimal internal state is close to
the critical point, while, in homogeneous models, the β parameter depends largely on specific
sources and is not necessarily close to the critical point.

5 Summary and Future Steps

This essay reviews many biological systems close to criticality. We show that, for complex
systems such as networks of neurons, where a mathematical model is still incomplete, the prin-
ciple of maximum entropy provides a first toy model that allows us to observe and study some
inherent features of the phenomena, characteristics that the complete model must also present.
This approach was only possible recently due to advances in technology, as a simultaneous
recording of the different degrees of freedom is required. The resulting models are successfully
tested with other statistical moments and explored through simulations, to obtain a model that
is as reliable as possible. From these “experiments” a common characteristic was observed in
many biological systems, which is that their models are positioned very close to critical points.
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Figure 12: Probability of β having a specific value in a population after this populations has
evolved with a genetic algorithm and achieve an steady state. Heterogeneous and homogeneous
external conditions are imposed to the population of N elements, and it can be see that, for the
heterogeneous cases, the β parameter converges close to criticality. Dashed lines represent the
susceptibility χ of the internal probability distribution, which has its peak close to the critical
point. Image obtained from [6].

It seems that it is a common feature of these types of systems, and it opens the option that
there could be some deeper theoretical system behind their behaviors [1]. It makes it a valuable
reason to study different cases when criticality arises, test the type of criticality, and in the
future explain the reason why this might happen. Could there be an inherent reason related to
being using the maximum entropy principle? We have observed in the first two examples the
presence of criticality signs that do not use the mentioned method, however, there may still be
some statistic problem that is still eluding us. On the other hand, there is much speculation
about why criticality should be observed in biological systems [3], specifically based on the ef-
fective propagation of information over long distances, or obtain the most efficient information
possible from the real world [12], so far no conclusive evidence has been found. Exploration
of more critical phenomena in biology, and understanding first, if it is intrinsically related to
living things, and then why evolutions lead to it and if there is any relationship behind its
appearance in some different processes or if it is just a coincidence, they are future direction of
the area.
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