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Abstract: Turing patterns are finite-wavelength, stationary formations which can de-
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This essay provides a phenomenological description of how Turing patterns form, de-
scribes methods of preparing Turing patterns, and provides some examples of Turing
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1 Introduction

Pattern formation is a phenomena seen throughout nature, where an initially homoge-
nous system evolves to form structures with one or more wavelengths, often in steady
state. Examples range from reasonably recognizable patterns such as stripes or spots
on animals to more abstract patterns like the branching patterns of leaves. A partic-
ular class of these patterns, known as Turing patterns, are steady-state solutions with
wavelengths observed to be independent of the volume of space they occupy or bound-
ary conditions, indicating that they are emergent from the interactions of microscopic
degrees of freedom in the system.

Alan Turing formulated the formation of Turing patterns through the diffusion and
reaction of morphogens which are typically species of chemicals or biological agents
but can be as abstract as full organisms in predator-prey systems [1]. The dynamics
of the concentration of these morphogens, X;, are dictated by the diffusion-reaction
equations:

0X;
ot

Where g; are local functions of the full set of n morphogen concentrations and D; is
the diffusion coefficient for the i-th morphogen. The key feature of these equations is
that the interactions are fully local, not depending on any spatial derivatives of X,
and therefore Turing pattern formation is the result of an emergent spatial scale from
the consecutive reactions then diffusion of morphogens.

This paper seeks to explain how Turing patterns form phenomenologically, un-
derstand what the requirements for Turing pattern formation are, and how these re-
quirements are interpreted in some examples of engineered or natural Turing patterns.
We begin with the phenomenological description, using linear-stability analysis of the
framework then discuss some of the implications and applications of Turing patterns
in nature, using the Hydra as an example. Then we discuss a couple concrete and
measured examples of Turing patterns, the chlorite-iodide malonic acid system and
the stripe formation on zebra fish. Finally, we introduce how the set of Turing pattern
examples might be expanded using stochastic rather than deterministic models.

= gi(X1,..., X)) + D;VZX, (1)

2 Phenomenology

Turing patterns in reaction-diffusion systems are described as stationary, finite-wavelength
solutions which arise from homogeneous initial conditions. Although not exactly nec-
essary, these patterns generally arise from systems with two morphogens, an inhibitor
and an activator whose local densities we write as X and Y respectively. We will apply
linear stability analysis to build a description of such systems. Considering X and Y
as small deviations away from equilibrium values, we can write the linearised reaction



diffusion equations:

aa); = —aX +bY + D, V’X (2)
Y
aat = —cX +dY + D,V?Y (3)

where a, b, ¢, d are positive reaction rates and D, and D, are respective diffusion rates.

The idea behind pattern formation is that the inhibitor is able to diffuse fast enough
to suppress the homogeneous growth of the activator. For example, we consider the
activator as a prey, which reproduces and feeds predators, and the inhibitor as a preda-
tor, which feeds on the prey and is territorial as to scare away other predators. If the
predator is too slow, then the prey overgrows and forms a homogeneous final state.
However, if the predator is sufficiently fast then the predator is able to herd the prey
into stationary territories of prey where it feeds. That is assuming the feeding rate of
the predator is sufficiently small as to not overfeed and kill off the prey. This suggests
a condition with D, > D, for the formation of Turing patterns [11].

Asserting a solution of the form X oc Y o< e?***++! then dispersion relationship is
provided as the solution to the eigenvalue equation:
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If we assume a uniform initial condition with deviation away from equilibrium concen-
trations X =Y = 0, then the formation of patterns requires some instability which can
be achieved if Re(wx(k)) > 0 at some wavelength, in which case the Fourier compo-
nents of the densities at said k will grow exponentially towards some other fixed-point.
To describe these fixed-points we will need a full picture of the non-linear reaction
rates, outside of this linear stability analysis.

Nonetheless, the linear stability procedure follows. If Re(maxy wy(k)) > 0 then the
system will evolve to a new equilibrium and if arg max; w (k) # 0 or co then the new
equilibrium will consist of some wavelength which forms our Turing pattern. As such
we work only with w, which automatically satisfies this condition for w_. The finite
wavelength critical point is:

ko = —(a+d)|, (5)
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with:
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The conditions for w(kg) > w(0) = (d —a)/2 + \/(d + a)?/4 — be and w(ky) > 0 is then
[1]:
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Figure 1: Phase diagram for the onset of Turing instabilities in the linearised model
system.

A phase diagram of this condition is provided in Fig. 1 and the result is that for
(a + d)/vbe = 2, then any D,/ D, admits Turing patterns, since the corresponding
reaction rates are well balanced. Otherwise, we generally need that D, > D, which
was our expected result.

3 Implications

Throughout this process, we’ve made no mention of boundary conditions and funda-
mentally, we don’t need to. This is because Turing patterns arise as an emergent
scale from the local interactions in the system. If we had introduced boundary con-
ditions, periodic for instance, then the continuum of admissible wavelengths would be
discretized. However, the system would still be able to evolve towards a wavelength
nearby k.

Further, our analysis can be interpreted as a form of spontaneous breaking of parity
symmetry. The linearised reaction-diffusion equations are symmetric under reflections,
x +— —x, which generally is a property of simple systems. However, once the Turing
instability forms, a bifurcation develops with new steady-states at k = +ky. Therefore,
the parity symmetry has to break and the system effectively chooses a handedness by
which finite-wavelength fixed point it evolves to.

Turing originally proposed that this method of pattern formation could be used to
account for various asymmetries observed in biology such as the branching patterns
seen in leaves or left- /right-handedness in organisms [1]. As a specific example, Turing
proposes the Hydra which is a small (not quite micro-) freshwater organism consisting
of a tube (body) with 4-6 tentacles extruding from one end (the head). Being a
relatively simple organism, it would seem counter-intuitive that the developing hydra
can seemingly break the radial symmetry of its body to form the asymmetric tentacles



of its head.

Hydra, in fact, show some more breaking of asymmetry which ultimately turn out
to be related to reaction-diffusion processes. Hydra reproduce asexually by budding,
which already requires pattern formation, and if cut, may regenerate into two new
hydra each with only one head, i.e., the portion cut away from the head somehow
knows that it needs to grow a head whereas the other somehow knows it does not.
This "polarity" of hydra is an example of an emergent asymmetry [2].

The role of interactions and diffusion of activators and inhibitors is demonstrated
in hydra grafting experiments. Here it is proposed that the formation of a head is
caused by the excess activator morphogen and the head produces inhibitor to prevent
the formation of a second head [3]. If the hydra’s head is removed then rapidly grafted
to the opposite end, then the inhibitor is able to diffuse back through the hydra and
prevent the formation of a second head. However, if some time elapses (4-6 hr) before
the hydra’s head is re-grafted then the activator concentration is able to overgrow and
the hydra is able to grow a second head even after the first is re-grafted.

Ultimately, this is not a precise example of the Turing instability but rather just a
demonstration of how the activator/inhibitor dynamics may play a role in determining
the placement of the hydra’s head. However, in Fig. 2, we observe the formation
of multiple hydra from a single spherically symmetric aggregate of cells. This could
be explained directly using Turing’s instability. The initially symmetric state has the
inhibitor and activator homogeneously distributed but the inhibitor is able to diffuse
rapidly and herd the activator into some finite wavelength spherical harmonic which
depend only on the diffusion/reaction rates. The maxima of the spherical harmonic
correspond to excess activator, which results in the formation of buds (b). Eventually
these buds sprout into heads (c¢) and the infusion of inhibitor from these new heads
quell the formation of any more heads and the newly formed organisms split apart [2].

This model of the formation of hydra from an aggregate of cells seems to have
some spectacular analogues in more complicated systems. As a direct comparison, the
human blastula seems to undergo a similar process in order to form the beginnings of a
gastrointestinal system and eventually the fetus. Ultimately, Turing’s instability seems
to suggest that relatively simple systems can develop extreme complexity. However, in
practice this is not so easy as the requirements on morphogen diffusions are difficult

Figure 2: Formation of hydra from spherical aggregate of cells (a) by first forming
asymmetric buds (b) then forming heads (c¢). Taken from [2].



to achieve.

3.1 Turing Patterns in Chemical Systems

Direct confirmation of Turing pattern formation required design of a chemical system
which exhibited the inhibitor /activator structure. These systems are generally used for
clock experiments where w takes on a complex part and the chemical concentrations
exhibits oscillations. The most popular system is the Belousov-Zhabotinskii (BZ) re-
action where bromate oxidizes an organic acid such as malonic acid [5]. However, this
system has a narrow region in which Turing patterns can arise and a more controllable
reaction was desired and the chlorite-iodide-malonic acid (CIMA) system was chosen
[4].

The CIMA system consists of many reactions but the ones of predominant interest
are:

A" + ClO; + 4H' — 21, + Cl™ + 2H,0, (8)
2C10, + 21" — I, + ClO;, (9)

where chlorite (ClOy) can be identified as the inhibitor for iodide (I7) and iodide un-
dergoes redox with the neutral chlorine dioxide to activate chlorite [6]. The malonic
acid (MA) acts as a reducing agent, to replenish iodide from elemental iodine or other
oxidation states. The other reactions, such as oxidation of chlorite or iodide are con-
sidered to be controlled and negligible by the selection of malonic acid concentration
[4]. All other species besides iodide and chlorite are assumed to be plentiful such that
they do not deviate from equilibrium. This lends the following processes, with [X]
representing the concentration of the reactant X, X for iodide and Y for chlorite,
the over-text on the arrows representing the reaction rate, and all other constants as
chemical dependent quantities:

o BMAL x (10)
x oo, 1)
ks[L2] X]Y]
AX +Y — g, (12)

If we compile all constant reaction rates into unspecified constants, we can read off the
reaction-diffusion equations:

X 4eXY )

Y cXY

— =bX - ——+D,V?Y 14
ot 1+X2jL vV (14)

Then linearised about the homogeneous steady state (Xo = a/(b + 4bc) and Yy =
b(1+ X2)), we obtain a form similar to equation 2 to which some constraints need to
be made for the reaction rates to ensure that iodide properly behaves as an activator.
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Figure 3: Demonstration of oscillatory behavior of iodide in CIMA system by 460 nm
optical absorption (a) and iodide sensitive electrode. Wave-trigger pattern produced
by propagation oscillation of iodide in Petri dish (c). Taken from [5].

Nonetheless, the CIMA system demonstrates an inhibitor/activator structure and
therefore should show some semblance of pattern formation. Even better, iodide has
a distinct yellow-ish tint, allowing patterns to be observed by eye or by measuring
absorbance at 460 nm. Fig. 3a-b, demonstrates this through oscillations in the iodide
concentration and absorbance and by adjusting the geometry of the setup, these os-
cillations can be made to propagate across a Petri dish, forming ring patterns as seen
in Fig. 3c. However, these patterns are not Turing patterns. For one, the oscillatory
nature means that they will rarely reach a patterned steady-state. But even if the
oscillations are able to form standing waves, these waves will be defined by how long
the oscillation takes to cross the dish and, therefore, will scale with the geometry of
the setup [5].

In fact, the oscillations shown in Fig. 3a-b cannot be simply explained using our
linearised model. The sharp transition between low and high iodide concentration in
Fig. 3b indicates bistability of two equilibrium iodide concentration between which the
whole system forms a limit cycle. This can also be used to explain the double peak in
the absorbance, Fig. 3a, using hysteresis, where the iodide shows higher absorbance on
approach to the high concentration fixed point. This hysteresis is confirmed by direct
measurement [5].

So the CIMA system alone doesn’t show Turing patterns and our previous analysis
explains why. Generally speaking, the diffusion coefficients of chemicals in aqueous
solutions range from 1-3x107° cm?/s and if the chemical reactions are not well bal-
anced, which is usually the case, then we’d require the inhibitor to diffuse at least 20-30
times as fast as the activator [4]. This simply is not possible for small molecules and,
therefore, some modification is required.

Eventually Turing patterns were observed in the CIMA system once the reactions
were carried out in a polyacrylamide gel reactor [4]. In this case, the iodide binds to
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Figure 4: Demonstration of Turing pattern by CIMA system in a gel-reactor. Diagram
of gel-reactor (a), large scale image of gel-strip after steady-state is achieved (b), small
scale image of Turing pattern with 0.2 and 0.4 mm labeled (c). Taken from [4]

some added starch (S) through a reversible reaction:
S4+1 +1,=SI;

This starch was actually already present as a dye in the petri-dish in Fig. 3¢, however,
the polyacrylamide gel slows down the reaction such that the iodide remains bound to
the starch for a non-negligible time. The starch is bulky and particularly in the gel has
an extremely low diffusion constant, therefore the chlorate is able to travel across the
gel-strip much faster than the iodide.

Seen in Fig. 4c, the color in the gel forms colored dots, associated with high
concentration of iodide, which are reminiscent of the solution X ~ e27#/* 4 ¢i27¥/A
where A &~ 0.2 mm. The isotropicity of the dots, despite non-isotropicity of the gel-strip
(20x3 mm?) is indicative of Turing patterns. Furthermore, changing of the dimensions
or disturbing the pattern results in the development of the same dimension. Instead, the
wavelength is strongly dependent on temperature which suggests that it is determined
by the reaction and diffusion rates alone, a signature of Turing patterns. Although the
diffusion rates cannot be precisely controlled in order to determine the phase-boundary
and dynamics near the transition between inhomogeneous state and instability, the
malonic acid concentration can be used to tune the generation of iodide. The patterns
are observed over a range of [MA] = 8-13 mM, over which the wavelength does not
vary by more than 20% [4].

These experiments seem to be discouraging for the hypothesis of Turing patterns
being the driving force behind symmetry-breaking in the development of organisms.
While diffusion of morphogens between cells is not necessarily constant, it seems pretty
rare that a chemical inhibitor can achieve the excess speed required of pattern forma-
tion. In the following, we investigated some mechanisms by which Turing or Turing-like
patterns might arise even when these conditions are not met.

4 Turing Patterns in Biological Systems

We’ve introduced the hydra as evidence that Turing patterns might be used to describe
asymmetries in nature. However, this would require the inhibitor to diffuse much



Figure 5: Micrographs of hydra with Hybral indicated in black. Before removal of the
head, the Hybral is concentrated at the head (A). No Hybral is observed immediately
after the head is removed (B), then the signal appears at 3 hr (B), is fully restored
to original concentration at 4 hr (C), and begins to reform the head after 48 hr (C).
Taken from [7]

faster than activator which seems inaccessible to conventional chemical systems such
as aqueous solutions. However diffusion of morphogens between cells is much more
varied.

In Turing’s paper, he originally performed the analysis using a discrete model rather
than the continuum described in section 2; his analogy being that the discrete points
are cells with an internal equilibrium of morphogens but exchange morphogens intra-
cellularly outside of equilibrium [1]. The analysis is the same as in section 2. However,
the mechanism by which cells exchange morphogens may be more complicated than
just diffusion. For example, if the cell wall is permeable to the inhibitor but mostly
impermeable to the activator, X, then D, ~ 0 and the condition for Turing pattern for-
mation is only dependent on the reaction rates. Additionally, activators and inhibitors
inside cells may not interact strictly through reaction but by triggering or blocking
receptors which controls the production of morphogens. This means that the mor-
phogens are normally proteins which may be structurally varied with largely different
diffusion rates [9].

An inhibitor signal or morphogen which can inhibit cells over a long range of cells,
lateral inhibition, is well documented. For example, the human eye is able to distinguish
sharp features when retina cells which receive light laterally inhibit adjacent cells,
making them perceive less light and transforming what might otherwise be a slow
gradient of light into a sharp feature [7]. Short-range activator signals or self-catalysis
is somewhat less documented but tends to be easier to identify as its positive feedback
loop results in the difference in concentration being much stronger on the pattern
antinodes than for the inhibitor. For example, the proposed-activator HyBral gene is
very concentrated on the head of a hydra, as seen in Fig. 5a, and when the head is
removed, the signal reappears strongly before the new head grows, Fig. 5d-e [7].

For a more complicated example, the stripes on zebra fish (Danio rerio) demonstrate
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Figure 6: Demonstration of fit between reaction-diffusion model simulation and zebra
fish spots. Patterns of adult zebra fish are predicted using 16 day-past-fertilization
(16 dpf) patterns as initial conditions for the simulation, (B-D). The pattern of an
adult zebra-fish’s stripes 3 days after laser ablation was additionally used to predict
the stripes after fully regrown (E). Taken from [§]

behavior reminiscent of Turing patterns. These patterns are composed of multiple
pigment containing cells but can be modeled as consisting of xanthophores (yellow)
and melanophores (black). The local concentration of these cells determines the color
within a certain region of the pattern [8].

Through a series laser ablation experiments, the interaction of adjacent cells were
deduced. For example, if melanophores in a black stripe were destroyed by ablation
then the xanthophores in an adjacent stripe would persist but if the experiment was
reversed and xanthophores were destroyed in a yellow strip, then the melanophores in
an adjacent stripe would die over time (10-15% reduction in 3 days). This indicated
to the authors that the melanophores showed a long-range activation effect. The same
process indicated that melanospheres had a long-range self-inhibition effect [8]. Shorter
range effects were identified in younger zebra fish who had more randomly distributed
pigment cells, allowing for ablation experiments to take place within strips. Ultimately
it was deduced that both pigments had short-range inhibitory effects on each other [8].

The results of these experiments were fit to a 3-morphogen reaction-diffusion equa-
tion. Two morphogens were used to describe the xanthophores and melanophores
concentrations, with small diffusion coefficients as the cells should not travel much.
The third morphogen was described as a smaller, faster, unidentified molecule which



carried the long-range interactions. Because of the long-range self-inhibitory interac-
tion of melanophores, this smaller molecule was determined to be an inhibitor in the
network. The reaction rates were fit as linear coefficients but bounds were placed to
ensure no non-physical fast reactions would occur [8].

As seen in Fig. 6b-d, the simulation was able to successfully predict the patterns
on an adult Zebra fish using the patterns observed on the same zebra fish at 16 days
post-fertilization. These included not only lateral stripes, but also equally spaced dots,
demonstrating the richness of the patterns produced by such a nearly-linear network.
Additionally, the simulation was able to accurately predict the patterns which reformed
after some cells were ablated, Fig. 6e. These reformed patterns were particularly
complex, demonstrating almost topological features. While these experiments do not
directly demonstrate that the patterns are not dependent on boundary conditions, size
of fish, the accuracy of the simulations confirm that the stripes can be and are likely
formed by the relatively simple interactions captured in Turing’s model [8].

5 Stochastic Turing Patterns

We've seen that Turing patterns can arise in macroscopic or biological systems where
morphogens of very different sizes interact to achieve the correct conditions for insta-
bility. Additionally, we’'ve seen that Turing patterns can be formed in chemical systems
with proper design. However, the formulation presented fails to describe the vast num-
ber of postulated examples of Turing pattern formation in nature. For example, cell
division in simple cells would require inhibition and activation to be mitigated by small
molecules which would have similar diffusion constants [7]. Therefore, we would require
a modification to the current description.

One possible modification is the introduction of noisy forces to the concentrations
in the reaction-diffusion equations:

0X;
ot

where ;(t) is mean-zero white noise: (&;(t)) = 0 and (§(¢)¢;(t)) = B;;j0(t —t'). The
transition between the previous deterministic reaction-diffusion models to this stochas-
tic model is in effect identical to the shift between mean-field theory and higher orders
in thermodynamic limit expansions of a statistical field theory, i.e., the introduction
of this term and presumption that it has an effect requires that the thermal or con-
centration fluctuations are comparable to the system size. This might initially seem
unjustified, since the systems which display Turing patterns are usually large com-
pared to noise. However, the non-orthogonality of the eigenvectors for A;; can result
in extreme sensitivity to the noise through a process known as giant amplification [11].

Giant amplification and the field-theoretic techniques to analyze this stochastic
reaction-diffusion system are outside the scope of this paper. However, once the power
spectrum for the Fourier modes are determined, the Turing pattern formation can be
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predicted just as in the linear stability analysis in section 2, by analyzing the conditions
under which the amplification is largest for finite wavelength. Analysis of the Levin-
Segel model for plankton-herbivore dynamics provided a necessary requirement for
pattern formation in the stochastic model of D, > 2.48D, whereas the deterministic
model provided D, > 27.8D, [10].

The stochastic model can generate Turing patterns where the deterministic model
cannot, called quasi-patterns. An explanation may be provided in terms of the fixed
points. In our linear stability analysis, the regions where the growth-rate of the k =
0 modes was maximal indicated attraction of the full-non-linear system towards a
homogeneous fixed and the Turing instability was formed when the system became
attracted to a k # 0 fixed-point. However, in actuality, the & = 0 fixed point may
be metastable, meaning that sufficiently large fluctuations can push the system out of
the basin of attraction and destabilize the homogeneous solution. Giant amplification
then plays the role of amplifying the noise to reach instability [11].

Karig et. al. were able to provide evidence for the formation of quasi-patterns by
genetically engineering bacterial cells to respond to small molecule inhibitors and acti-
vators, N-(3-oxododecanoyl) homoserine lactone and N-butanoyl-L-homoserine lactone
respectively. The activator simultaneously triggered the production a red fluorescent,
making the patterns measurable. After about 16 hr, the fluorescent had formed into
dots which were determined to be Turing patterns. Deterministic and stochastic model-
ing of the system confirmed that the diffusion constants of the small-molecule inhibitor
was too slow relative to the activator to form normal Turing patterns, indicating that
the patterns were likely quasi-patterns [11].

The theoretical and experimental evidence for quasi-patterns in stochastic systems
may provide an explanation for why so many pattern form in nature when the condi-
tions for deterministic Turing patterns are so narrow.

6 Conclusion

Pattern formation is an emergent phenomena observed throughout nature, where a
seemingly homogeneous initial condition evolves towards a, usually stead-state, finite
wavelength structure which does not depend on boundary conditions or initial sym-
metries. Turing’s description of a fast-moving inhibitor morphogen and a slow-moving
activator in reaction-diffusion systems seems to be a good framework for describing
these patterns. However, Turing patterns are not always so easily formed and the
conditions for which they can form provide information about the interactions and
morphogens which comprise of the system.

In this term essay, we applied linear stability analysis to build a phenomenological
picture as to why Turing patterns form and what the conditions for their formation
are. We then discussed the implications of said patterns on how asymmetries might
form in biological systems, using the hydra as an example. We described two confirmed
examples of Turing pattern formation, the chemical CIMA system and the biological

11



formation of stripes on zebra fish, and the difficulties in ensuring the Turing instability
conditions are met. Finally, we introduced the idea of stochastic Turing patterns which
provide a framework for potentially broadening the conditions under which Turing
patterns form.
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