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Abstract: Metabolic Network Cartography is a key visualization of an organism’s mech-

anism of processing. In a sense, life is an ultimate emergent phenomenon that can be found

in nature. However, most cartography only contains topological information, i.e., a math-

ematical graph. In this essay, we will take a look into series of recent development that

further incorporates geometrical information into these metabolic cartography. As a final

result, we will see an emergent pattern by utilizing this additional information.
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1 Introduction

1.1 Metabolic Network

Life is considered as one of the biggest emergent phenomena, yet it just seems impossible

to understand its mechanism. Metabolism is about how an organism’s body works, some

of us might recall the Krebs cycle and Calvin cycle that we learned in grade schools. Aside

from those "well-understood" metabolism pathways, there are countless pathways we do

not understand. Not only that, interactions between these gargantuan pathways remain as

mysteries. This collection of metabolic pathways are called a metabolic network. It is not

hard to see the importance to decipher such unknown monsters since one of many reasons

being having the solution will make us live longer. In fact, majority of pharmaceutical

drugs’ pathways are mostly not perfectly determined.

Figure 1. A relatively simple metabolic network. Usually things are a lot more complicated that
the path overlaps become unbearable to see. [1]

1.2 Missing Information in Ordinary Metabolic Pathway Maps

As mentioned in the previous section, extracting additional information without more

structural regularities is a tough problem. One problem with metabolic maps like figure 1

is that these maps are mathematically a graph; it is purely topological meaning that the

length or shape of connections does not carry significance. M. Serrano, M. Boguna, and F.

– 2 –



Sagues had a great insight to give metric to such figures and infer a lot more information

about the networks by using probabilistic methods with coarse-graining. Not only that,

they found a universal expression that actually describes both E. Coli and humans. Given

the complexity gap between two organisms, it is indeed astonishing. Note that this is

not the first attempt for the scientific community to find criteria for clustering metabolic

networks. Most network-based representation analyses before 2012 have failed. [3] In this

essay, we will first discuss the mapping itself including the metric, then we will eventually

move to a larger scale by a certain coarse-graining method that is analogous to Kadanoff’s

block spin. Along the way, there will be several data to show the validity of such mappings

agrees with classical biochemical analysis.

2 Hidden Geometry

2.1 Summary of the Mapping

First, we shall consider a bipartite network representation that contains two kinds of

vertices. One being the metabolites (ingredients or products that go into the reaction), and

the second type of vertex being reactions. In this representation, any given metabolism map

can be seen as a graph that is avoiding connections between the same types of nodes. See

figure 2 a. Now, Serrano et. al. considers mapping to a more "organized space" to simplify

the structure and give a simple metric. Luckily, one-dimensional circles were enough for

this task. The answer is S1 × S1. Although it is diffeomorphic to a two torus, it is more

helpful to see this as two overlapping circles, Figure 2 b. To simply put, one can think one

circle is for metabolite nodes to attach onto, and the other circle is for reaction nodes. Note

that this is not the first time the authors put out such a model. In their previous paper

[4], they proposed S1 model as well to study a completely different issue. We will address

that a little bit at the end. Coming back to the original problem, let m be the metabolite

and r the reaction. Then the natural metric is dmr := R∆θmr on two circles with radius R.

Where ∆θmr is the angular separation between some metabolite node m and some reaction

node r. We also define the probability measure

p

(
dmr
kmkr

)
:= Prob (m connecting to r) (2.1)
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Here, the km and kr are degrees of connection on somem node and some r node, i.e., the

number of neighbors, which is a piece of topological information. This effective distance

not only takes account of pure geometry but also the natural topology that resembles

the reality– the interaction of a pathway is more active is has more legs stretched out to

other reactions/metabolites. Furthermore, If one pays attention closely the metric given is

analogous to inverted Newtonian gravity. The entire embedding process to S1×S1 is a rather

complicated series of statistical detail (Maximum Likelihood Estimator, MLE, embedding)

that disrupts most readers being focused; therefore, see appendix A. In theory, the explicit

form of p
(
dmr
kmkr

)
, which is the interaction strength, can be set to any sensible integrable

function. However, the authors stick to the Fermi Dirac distribution in order to empirically

fit parameters µ and β. Perhaps one surprising thing is that these fit parameters’ values

are shared among human and E. Coli as we will mention later. See Figure 2c.

p

(
dmr
kmkr

)
=

1

1 + ( dmr
kmkr

)β
(2.2)

Another reason to set the function this way is not only due to a good fit to classical

physicochemistry result, but it is also true that this particular choice gives maximal entropy

interactions. It means that given a certain set of constraints to probabilistic calculations,

the choice yields the most kind of randomness in interactions.[5][6]

Figure 2d is the Receiver Operating Characteristic (ROC) curve. If one defines a

threshold in the connection probability, one can divide connections to true/false. The

dotted line is the randomized 50/50 guess line. We see that the true positive rate (TPR)

is much more than the false positive rate (FPR) by looking at the area under the curve.

Also note that in figure 2 b, the image of two nodes in Figure 2a might be far apart even

if the distance was close in the preimage, given that the metric exists. From here, we

now see there is a certain meaning to the distance between two nodes! As one can see in

the Fermi Dirac distribution (Fig. 2c), the connection probability p
(
dmr
kmkr

)
dies off if the

effective distance grows larger. We call this pathway localization. This is a hint for a higher

hierarchical structure thus where the coarse-graining comes in.
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Figure 2. (a) bipartite metabolic path (b) metabolic pathway mapped to S1 × S1 note that due
to additional topological weights to the metric, two near neighbors, even if one defines a distance
there, in a) can be far apart after the mapping (c) connection probability (Fermi Dirac)’s empirical
fitting to classical physicochemical data. (d) The Receiver Operating Characteristic (ROC) curve.
If one defines a threshold in the connection probability, one can divide connections to true/false.
The dotted line is the randomized 50/50 guess line. We see that the true positive rate (TPR) is
much more than false-positive rate (FPR) [2]

2.2 Validity of the Result

As one can see, Figure 3 is the global metabolic mapping S1×S1 of E. Coli. As we have

discussed before, the yellow nodes’ reactions and blue nodes are metabolites. Note the figure

does not label all pathway names. To help in terms of visual comparison, there are multiple

resizing and re-positioning of fonts and nodes in the figure. See the figure description. Now,

to do a sanity check, the comparison between the angular decomposition of Figure 3 was

made to compare with the already existing and trustworthy BiGG database (Figure 4).

We see that the well-known strong signal of highly localized pathways is standing out. For

example, the Oxidative Phosphorylation, Histidine, Glycolysis, Cofactor, and Prosthetic

group pathways do match up with the classical physicochemical database (BiGG). Note

the signal can appear at multiple different places on the ring with different probability

amplitudes! The name tag is just the average angular position. For instance, each reaction

i = 1, ..., Npath in each pathway gets assigned an normalized vector ri pointing outward.

The average is just a vectorial arithmetic average of this. If the average carries a norm
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Figure 3. Global S1× S1 map of E. Coli’s metabolism: Yellow nodes are reactions and blue nodes
are metabolites. To help in terms of visual comparison, node size is proportional to the logarithm
of the degree and placed in the radial direction according to formula r = R− 2 log km. Grey lines
have connection probability of less than 0.5, and black ones larger than 0.5. The pathway names
are written in the averaged angular position of all reactions within the pathway, and the font size is
proportional to log of number of reactions (indication of pathway "size") For human’s see Appendix
B [2]

of zero, it means that the probability distributions are evenly smeared out! (advantage

of isotropic shape). Whereas the unity norm indicates that all reactions happen at one

location. For human’s case, see appendix B.

〈~r〉 ≡
Np∑
i=1

~ri/Np (2.3)

Anyway, in figure 4, bars are color-coded according to their metabolic classes, written in

figure descriptions. the y-axis is the pathway concentration. along with this data agreement
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Figure 4. Graph of angular distribution of connection probability (dissected such that 2 degrees
per bin). Different metabolic pathway classes are color coded. For example, red is for amino acids
pathways. Orange: cofactors and vitamins. Violet for Nucleotide; turquoise for carbs; magenta
for tRNA; grey for alternate carbon; blue for xTP, xDP; green for transports; brown for glycan;
maroon for lipids.

with previous curve fittings, the data seems valid.

2.3 Coarse-graining and Emergence

In the previous two subsections, we saw that on the double rings, we saw some metabolic

pathways are closer to the other, whereas some are distant. This indicates we could build a

higher structure in terms of hierarchy. Recall that in the introduction, we have mentioned

that clustering metabolic pathways were a hard problem. Consider Figure 3, the double

circle map. Now slice it into 8 equal pieces like a pizza (Figure 5). Then the adjacencies are

computed between pairs of pathways according to the list of reactions and metabolites that
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are shared. However, before that, there is one problem: There are too many networks to

extract meaningful information from this calculation. For example, 460 out of 561 potential

pathways pairs overlap for E. Coli., and for humans, 1689 pairs out of 4278 pairs overlap

(shares common metabolites). Hence, a disparity filter is used to wash out uniformly,

randomly, distributed networks. The filter goes against the null hypothesis that states the

local probability weights that are contained to a node are randomly distributed. Thus the

p-value, probability that the null hypothesis is not rejected, between i and j node can be

written as [7]

Figure 5. A different representation. 8 sectors are sliced and binned. We will compute adjacencies
between pairs of pathways according to the list of reactions and metabolites that are shared.

pij = 1− (k − 1)

∫ wij/s

0
(1− x)k−2dx < α (2.4)

Where α is the significance level, which is the choice of our hands. After this appropriate

filtration, the cluster structure of emergent pathway maps reveals itself (Figure 6). Note

that the measure here between the pathways are written as

CrosstalkPaPb
= Σj∈Pa,k∈Pb,i∈v

(
p(xij) + p(xik)

)
|filter−survived−links (2.5)
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Where v ∈Mab is the set of metabolites shared by the same reaction that is present in both

pathway Pa and Pb.

Figure 6. Emerged Metabolic backbone (pathway clusters) (a) E. Coli. (b) Human. The larger
the ball is, the more reaction numbers it contains.

We see in figure 6 that both E. Coli. and Humans have star-shaped trees. This means

that clustering was successfully done with "parents" and its "child". For example, the

cofactor prosthetic group in E. Coli. plays a similar role as the human case: They supply

amino acid "child" pathways. Furthermore, to recapitulate the filtering statement above,

E. Coli. had 82 percent effective crosstalks (min 1.8 max 159.91), while humans only had

38.64 percent effective crosstalks (1689 out of 4278, as stated above, min 1.19 max 131.28).

It means human pathways are more independent or carries more modularity. This entire

procedure indeed resembles Kadanoff’s block spin renormalization group procedure. The

– 9 –



filter acted as an averaging-out tool in this case.

3 Discussion and Conclusion

In this essay, we have reviewed [2] and multiple previous papers published by the author.

Based on the data agreement with BiGG database and other classical physicochemistry

facts, the results do look promising. Aside from that, the MLE method to find the S1 × S1

embedding also looks pretty consistent as the parameter space was compact and theoretical

and the database agreed with each other. One thing the author did not address much is

the fitting parameter in the Fermi distribution looks universal, but it is just two cases. It

would have been nice if the author extended some examples to show. Additionally, the

existence of filtration. It is not too clear whether the result is stable against perturbation

by the significance level (it would change the modularity of pathway networks). Lastly, it

would also be nice to see whether this embedding still spits out a similar result if we swap

to another symmetric compact manifold st. the likelihood function still is nicely behaved.

4 Appendix

4.1 Appendix A

See [2],[4],[7] for MLE search for θi and hidden degree parameter, filtration function,

and finite size effect.

4.2 Appendix B (next page)
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