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1 show that diffusion-controlled growth can account for the occurrence of spherulites, their small-angle non-crystallographic
branching, and ‘he linear form of their radial growth rate. The characteristic dimension of the large-scale morphology is predicted to
scale with {8, where 8 is the diffusion length. These resuits provide quantitative support for the mechanism of spherulitic growth

proposed by Keith and Padden.

1. Introduction

Spherulites are polycrystalline aggregates with
an approximately radial symmetry. Close inspec-
tion reveals that they are comprised of a radiating
array of crystalline fibres, which branch at small,
non-crystallographic angles, giving rise to sec-
ondary fibres whose crysiallographic orientation
differs from that of the primary fibres. Successive
generations of fibres repeatedly branch, ap-
parently at random, to form a space-filling struc-
ture, whose diameter may be of the order of
micrometres, or in some cases even larger.
Spherulites are commonly formed by minerals
crystallizing from viscous magmas and devitrified
glasses, by high polymers crystallizing from the
melt, and by organic compounds crystallizing from
melts with added thickeners. In all of these cases,
the melts are of relatively high viscosity and the
crystallization is slow; furthermore, some degree
of undercooling 1s invariably required.

Despite the wide diversity of physical and
chemical properties among spherulite-forming
melts, the growth and subsequent morphology are
surprisingly universal. The morphology has been
described above. About the growth little is known,
apart from the observation that the radius R(1)
usually varies linearly with time 7. An explanation
of the existence of spherulitic growth should be
independent of the fine details of each individual

system, and should be based only on those fea-
tures which are shared by all spherulite-forming
melts.

Such an explanation was provided in a seminal
paper by Keith and Padden [1] in 1963. Keith and
Padden observed that spherulite-forming melts
have the character of alloys rather than that of
pure substances. Even in the case of polymer
melts of a single species, there are polydisperse
components of the melt, not to mention stereo-ir-
regular components, which crystallize less readily
than the majority component, and which will be
rejected preferentially from the growing solid. I
shall, in the following, refer to the rejected compo-
nent of the system being considered by the term
“impurity”. The rejection of the impurity leads to
an excess concentration of impurity which 1s
pushed ahead of the growing crystal. Keith and
Padden argued that this impurity boundary-layer
was in some way responsible for the fibrillation
observed in spherulites, although they were unable
to give any precise arguments as to why this
should be the case. The purpose of the present
paper is to provide these arguments.

The core of these arguments is the newly-devel-
oped theory [2] for the motion of diffusion-con-
trolled interfaces, which has been successfully ap-
plied to the problems of dendritic growth and
viscous fingers in two-dimensional hydrody-
namics. Until recently, it had been assumed that
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dendritic crystallization was the signature of diffu-
sion-controlled growth, and furthermore, that the
qualitative features of the growth were determined
solely by diffusion and surface tension [3]. It is
currently believed that this traditional view is in-
correct, and that crystalline anisotropy, arising
from the presence of a crystal lattice, must also be
included in order to explain the occurrence of
dendritic growth. In the modern theory, and in
experimental tests of the theory, a range of mor-
phologies can result from the growth dynamics of
the interface, as the driving force and anisotropy
strength are varied. One of these morphologies —
the dense branching morphology (DBM) [4] - is, |
propose, the spherulitic structure which is the
subject of this paper.

Since I shall be concerned with the different
morphologies which may result from diffusion-
controlled growth, it is appropriate to define care-
fully the terms dendritic growth and dense branch-
ing morphology. Dendrites are complex time-
dependent solidification fronts. Under carefully
controlled conditions, they exhibit a smooth, ap-
proximately parabolic tip, which propagates
without apparent change of shape, followed by a
train of oscillatory sidebranches with a well-de-
fined periodicity. In the laboratory frame, the tip
propagates at a constant velocity, whilst the
sidebranches grow away from the main body of
the dendrite. The sidebranches grow until they too
become fully-developed dendrites, growing in
crystallographically favoured directions away from
the parent dendrite. In contrast to this dendritic
morphology, the dense branching morphology is
not the result of a steadily propagating tip. In-
stead, the advancing growth front repeatedly bi-
furcates, generating an apparently randomly
branched structure with no obvious regularity.
Although a distinction is sometimes not drawn
between these two morphologies, they are quite
different, as we shall see.

In section 2, I shall briefly review the theory of
Keith and Padden, describing the quantitative pre-
dictions made, and focussing on the conceptual
basis of the theory. Section 3 recalls the evidence
for the view that crystalline anisotropy is of prime
importance in understanding the dynamics of un-
stable interfaces, and summarizes the present un-

derstanding of diffusion-controlled interface mo-
tion. Section 4 shows how the Keith-Padden the-
ory may be clarified and extended in the light of
recent developments, and makes a crude predic-
tion for the scaling of the characteristic length
scale with the diffusion length, which differs from
that originally given by Keith and Padden.

2. The theory of Keith and Padden

The theory starts from the assumption that
during crystal growth, impurities are segregated
from the crystal, thus forming a boundary-layer
ahead of the solidification front. The hypothesis
that growth is controlled by diffusion is discarded,
as this would lead to a growth law of the form
R(t) ~ yt, which is inconsistent with experiment.
In addition, diffusion-controlled growth was be-
lieved to result in dendrites, a morphology quite
different from spherulites. Thus, one is led to the
conclusion that nucleation-controlled growth is a
dominant feature of spherulitic growth. Keith and
Padden proceed by showing how an instability of
a planar interface akin to constitutional supercool-
ing might lead to fibrillation. Let us rehearse this
argument below. The concentration of impurities,
C, in the solidified material may reasonably be
taken as zero, whilst at a point x in the melt, the
normalized concentration field, u(x, t), satisfies
the diffusion equation

D vu=0u/dt, (2.1)
with boundary conditions at the interface
u,=A—dyk, (22)
v,=—D vu-n. (2.3)
Here,

u( x, t)=——c("’A’é_ Ce | (2.4)

D is the impurity diffusion coefficient, v, is the
velocity of the solidification front along n, the
outward normal to the solidification front; u,
corresponds to the impurity concentration at the
solidification front, and « is the curvature of the
solidification front. The coefficients A and d,, are,
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respectively, the dimensionless supersaturation and
the capillary length, given by

AC
}'VCeq
= 2.
o ACkgT,’ (2.6)

where AC is the miscibility gap (assumed not to
depend on k), C, is the equilibrium concentration
of impurity in the melt at the two-phase interface,
C,. is the impurity concentration at infinity, y is
the surface tension, V is the atomic volume, T, is
the equilibrium melting temperature, and kg 1is
Boltzmann’s constant. These equations are supple-
mented by the boundary condition at infinity that
u(x, t)y—0.

Egs. (2.1)-(2.6) do not possess uniformly trans-
lating planar solutions except in the special case
A =1. In general, the planar interface moves with
a velocity, which for large times, scales like v ~
t 172, In the special case A =1, or in the case of
directional solidification, where material is pulled
at constant velocity along the x-axis through a
temperature gradient, steady state solutions exist,
of the form

u(x, t)=A4exp(—x/98), (2.7)
where the diffusion length, 8, is given by
8=D/v, (2.8)

and v is the a priori arbitrary velocity of the
solidification front [3].

Constitutional supercooling provides a criterion
for the onset of instability of the planar interface,
eq. (2.7), in the cases of A=1 or directional
solidification. In the case of isothermal solidifica-
tion of an alloy, as considered by Keith and
Padden, an analogous criterion exists, with the
temperature field replaced by the impurity con-
centration field. This criterion predicts that the
planar interface is unstable to the formation of
cells whose characteristic width is of order é.
Keith and Padden interpret this result in the con-
text of spherulitic growth. The imposed tempera-
ture gradient, in the case of directional solidifica-
tion, presumably corresponds to the contraint pro-
vided by nucleation-controlled growth. The insta-

bility is then responsible for the fibrillation, and
the characteristic size of ine fibres (counterparts
of cells), L;, is then 4.

This is the crux of their theory. It is still con-
troversial [S] as to whether or not experiment
verifies the semi-quantitative prediction that the
fibre size scales with 8: the issue seems to concern
the interpretation of L,. 1t will be clear from the
discussion inn the subsequent sections that L; is
not to be ideantified with the microstructure on the
scale of lamellae. Instead, L; is a length scale
characteristic of the large-scale morphology, and
describes a level of organization higher than that
of the lamellae. This separation of length scales is
clearly illustrated in fig. 1. The figure 1s a photo-
graph of a spherulitic structure, formed by

Fig. 1. Spherulite of poly-(phenylene sulfide) grown from solu-

tion, clearly showing the presence of two distinct levels of

organisation: a macroscopic morphology, and a microscopic,

lamellar morphology. Figure by kind permission of H.D. Keith
and F.J. Padden, Jr.
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poly(phenylene sulfide), crystallized from solution.
It is likely that the solution underwent phase
separation, and that the displayed spherulite grew
from a concentrated droplet; I show this figure for
the purpose of illustration only. Clearly visible are
stacks of lamellae, organized into lobes. It is the
lobes, characteristic of the large-scale morphology,
whose dimensions are described by the number
L,. The microstructure, as exemplified by the
lamella spacing in the case of polymeric spheru-
lites, is determined by the fine details of the
crystallization process, and is not described by the
theories considered in the present paper. Whatever
the outcome of this debate, however, certain theo-
retical points require elaboration. Let us examine
these points in the remainder of this section.

The first point to notice about the theory is
that although diffusion-controlled growth is dis-
missed at an early stage, the final theory does
indeed appeal to diffusion-controlled interface dy-
namics. The supposed nucleation-controlled char-
acter is included insofar as the steady state solu-
tion for planar interface growth is invoked. Thus,
the theory, as it stands, is still open to the objec-
tion that it predicts that R(¢) ~ V1, in apparent
contrast to the experimental observations. We shall
see in section 4 how this point may be dealt with.

Secondly, the weakest part of the theory is the
prediction that the fibre dimensions scale linearly
with 8. This prediction results from the use of
ideas relating to constitutional supercooling. At
about the same time that the Keith—Padden the-
ory was proposed, Mullins and Sekerka [6] showed
how the instability of diffusion-controlled in-
terfaces is related to dynamics, not thermody-
namics. In particular, they identified two compet-
ing influences operating on the interface, by per-
forming a linearized stability analysis of the dy-
namics of the interface. The first influence is the
destabilization of the interface due to diffusion,
and was already recognized by Keith and Padden
in their original paper. Any outwardly directed
perturbation of an initially planar interface will
cause the isotherms in the melt to cluster around
the perturbation, thus increasing the local gradi-
ent, and causing the interface to grow even faster,
by virtue of eq. (2.3). So perturbations tend to
grow. This instability is weakened by the action of

the Gibbs-Thomson boundary condition, eq. (2.2)
- the coupling between the surface temperature
and the curvature of the interface. As the tip of
the perturbation grows and becomes sharper, the
curvature increases, and the impurity concentra-
tion drops there. Accordingly, more material dif-
fuses to the tip, raising the concentration and
causing the tip to flatten, by virtue of eq. (2.2).
Thus, a planar, diffusion-controlled interface is
unstable to long wavelength perturbations, but is
stable to short wavelength perturbations. The
length scale at which the two competing effects
become equal in magnitude defines the stability
length, A, given by

A, =2mydys . (2.9)

It is A, which confers the resulting pattern with a
characteristic size, although this 1s still a very
crude approximation owing to the linearized anal
ysis. In section 4, T will argue that Keith and
Padden’s physical picture is indeed correct, but
that quantitative predictions such as L~ § must
be modified to be of the form L.~ A_.

The third comment is related to the origin of
small-angle non-crystallographic branching. Keith
and Padden attribute thus to microscopic disorder
at the interface (such as screw dislocations in the
case of polymeric substances), but are unable to
explain in a general way why such disorder might
lead to the branching. For example, if the motion
of the interface is controlled by diffusion, as the
argument leading up to the prediction that L;~ 8§
suggests, why is dendritic growth not observed to
occur? A partial answer to this is provided in
section 4.

3. Dynamics of unstable interfaces

For many years, the formulation expressed by
egs. (2.1)-(2.6) was believed to encapsulate all the
physics essential to account for dendritic growth.
The advent of simplified models for diffusion-con-
trolled interface dynamics [7] and interfacial pat-
tern formation [8] permitted, for the first time,
detailed numerical studies of the time-dependent
behaviour of interfaces, well into the non-linear
regime. The boundary-layer model (BLM), in par-
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ticular, describes the dynamics of diffusion-con-
trolled interfaces in the regime where the su-
persaturation 4 is sufficiently large that éx < 1 at
all points on the interface. In this regime, the
diffusion can be assumed to be essentially curvi-
linear along the solidification front, and to take
place within a thin boundary-layer whose thick-
ness varies with position along the interface. The
BLM has been shown [7] to be asymptotically
close to the traditional formulation, egs. (2.1)-
(2.6), as A — 1.

In the numerical studies of the BLM, and in
subsequent studies of pattern formation at in-
terfaces, the following results were established
[7,8]. The traditional formulation of diffusion-con-
trolled growth, taking into account only the com-
petition between diffusion and surface tension, is
not sufficient to account for the existence of den-
drites. With these two effects included only, the
interface evolves by a sequence of instabilities
which are graphically described as tip-splitting.
Instead of evolving into a well-defined tip, propa-
gating persistently in one direction in space, fol-
lowed by a train of sidebranches, a potentially
dendritic perturbation of the interface bifurcates
and branches into two different directions in space
The branches then grow in size, until, when they
are of the dimensions A, they too bifurcate. and
so on. Crystalline anisotropy was included in the
model by allowing the capillary length, d,,, to be a
function of @, the angle Letween n and a specified
crystallographic axis. The 1nclusion of this effect
was shown to lead to dendritic-like growth. Crys-
talline anisotropy biases the instabilities of the
interface to grow in preferred spatial directions,
allowing the formation of coherent tip structures;
thus crystalline anisotropy plays an essential role
in the dynamics. Recently, it has also been shown
that uniformly translating non-planar solutions of
eqgs. (2.1)-(2.6) do not exist in the absence of
crystalline anisotropy, indicating that the ani-
sotropy is essential for the formation of shape-pre-
serving dendritic tips [10].

These theoretical results have also been dem-
onstrated in experimental studies of the growth of
bubbles in a Hele-Shaw cell [4,1{]. A Hele-Shaw
cell consists of a thin layer of glycerine sand-
wiched between two plexiglass plates, separated

by a gap of width b ~ 0.5 mum. Air is injected into
the space between the plates via a hole in the
centre of the top plate, at a range of pressures
between 50 to 150 Torr. The bubble of air does
not grow as an expanding circle, but instead un-
dergoes the Mullins-Sekerka instability. In the
absence of anisotropy, the instabilities grow in a
spatially incoherent way, forming a large-scale
structure by the repeated process of tip-splitting,
as described above. This structure, which is known
as the dense branching morphology, is shown in
fig. 2a. It is very clearly not dendritic; indeed, the
structure 1s reminscent of a two-dimensional
spherulite.

The growth of the bubble is described by the
equation for the evolution of the pressure field, P,
in the system. The pressure turns out to be a
precise analogue of the concentration field, C,
which we have already referred to in section 2.
The Navier-Stokes equations, averaged across the
gap, show that P obeys the diffusion equation
(2.1). The boundary condition at the air—glycerine
interface is of the form of the Gibbs-Thomson
condition, eq. (2.2), and relates the pressure drop
across the interface to the curvature of the inter-
face. (There is a small velocity-dependent modifi-
cation, due to the presence of a thin wetting layer
on the upper and lower plates, which may be
neglected for present purposes.)

Fig. 2a is probably the clearest demonstration
that diffusion and surface tension are not, on their
own, able to account for dendritic growth. Ani-
sotropy was included in the Hele-Shaw cell experi-
ments by engraving a regular grid with four-fold
symmetry of depth 0.015 inch on the lower plate.
Fig. 2b shows the result: the qualitative features of
dendritic growth are reproduced. Further experi-
ments have mapped out a variety of resultant
morphologies, as the anisotropy and the pressure
are varied [11].

In conclusion, we see that diffusion-controlled
growth can, if the effects of crystalline anisotropy
are negligible, result in a morphology qualitatively
similar to that of spherulites, at least in two di-
mensions. In the following section, we shall as-
sume that this conclusion is not altered in three
dimensions, and that surface tension and diffu-
sion, in the absence of anisotropy, can qualita-
tively account for the occurence of spherulites.
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Fig. 2. (a) The dense branching morphology in a 23 inch diameter Hele-Shaw cell. without anisotropy. t'he structure is created by the
growth of a bubble or air growing into a glycerine film sandwiched between the plates. (b) Dendritic growth in a Hele—Shaw cell with
anisotropy. The anisotropy was introduced by engraving an grid on the iower plate.

4. Theory of spherulitic growth

In the previous section, 1 summarized the evi-
dence that crystalline anisotropy plays an im-
portant role in diffusion-controlled interface mo-
tion, in contrast to the traditional description em-
bodied by eqs. (2.1)-(2.6). This formulation is
deficient in another respect, which is crucial for
the understanding of spherulitic growth. The
Gibbs-Thomson condition, eq. (2.2), is a state-
ment of thermal equilibrium at the interface. Dur-
ing crystal growth, the interface is not static, and
this must lead to a departure from the
Gibbs-Thomson condition. If the interface is
moving at velocity v, then this must be in response
to a chemical potential difference, Ap, across the

interface. The most crude approximation — linear
response theory - leads to a relation of the form

1
I
where B’ is a numerical coefficient. Ap is propor-
tional to the concentration difference between the
region ahead of the interface, and the concentra-
tion at the interface, i.e. to A — dyx — u. Inserting

this into eq. (4.1), and rearranging, leads to a
modified form of the Gibbs—-Thomson condition

u,=A-dyk~ Bu,, (4.2)

U=

Ap, (4.1)

where 88 i1s known as the kinetic coefficient.
This so-called kinetic term is the simplest cor-
rection due to non-equilibrium effects. For small
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4, v, ~ A* in the case of dendritic growth [10], and
the kinetic term is practically negligible. For larger
values of A, the diffusion length 8 becomes com-
parable to, or smaller than, the radius of curvature
of the solidification front, and the kinetic term is
of utmost importance. In particular, the inclusion
of the kinetic term can change the character of the
dynamics of a planar interface. As noted earlier,
except at the special case 4 = 1, egs. (2.1)-(2.6) do
not have a uniformly translating steady state
planar interface as a solution. Instead, v ~ ¢~ 1/2,
When the boundary condition, eq. (4.2), is used,
however, a uniformly translating planar interface
is allowed, provided that A > 1. The velocity of
the interface is found to be

v=(4-1)/B. (4.3)

In the case of spherulitic growth, the diffusion
length § is often much smaller than the radius of
the spherulite, and so the kinetic term is expected
to be important, and A > 1. Once the radius of the
spherulite is sufficiently large, then locally, the
motion is effectively one dimensional, with a uni-
form velocity in time. Thus, with the inclusion of
the kinetic term, R(¢)~t and t — oo rather than
the behaviour R(f) ~Vt expected from egs.
(2.1)-(2.6). As the spherulite grows, it should be
possible to observe the crossover between the vt
and the ¢ behaviour, and indeed, such observa-
tions have been reported by Tanaka and Nishi [12]
for a system where § was not much smaller than
the spherulite radius.

These considerations lead to the following pic-
ture. Keith and Padden have argued convincingly
that impurity diffusion is to be expected in
spherulite-forming melts. Diffusion-controlled
growth can lead, in a natural way, to the spheru-
litic morphology, firstly because non-equilibrium
or kinetic effects can cause the radius of the
growing crystal to be linear in time, and secondly
because the structure expected for weak or zero
anisotropy is characterized by multiple tip-split-
ting. This accounts for the non-crystallographic
branching, a phenomenon inexplicable on the ba-
sis of nucleation-controlled growth. Along with
Keith and Padden, I presume that microscopic
disorder due to kinetic effects is responsible for
the low effective anisotropy in these systems; a

more detailed theory of these effects is not possi-
ble at present, but the existence of defects in the
deposition at the interface is very plausible in light
of the chain nature of many spherulite-forming
materials.

The major question remaining is how to account
for the observed stability of the envelope of the
spherulite. The arguments given above deal with
spherically symmetrical solutions of the diffusion
equation. Linear stability analysis shows that these
solutions are unstable, with a stability length as
given by eq. (2.9), but with minor modifications
due to the kinetic term. Thus, we might heuristi-
cally expect that the fibre size is roughly L~ A,
but a convincing analysis beyond linear stability
theory is required.
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