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We present mechanisms for sidebranch generation in dendritic growth, stressing the importance
of nonlinear effects. One such mechanism, which we call solvability-induced sidebranching, relies
on the fact that the steady states form a discrete family. In addition, time-dependent simulations of
crystal growth in the boundary-layer model are performed. We find that there is a critical value of
the anisotropy strength below which the needle crystals are linearly unstable to tip splitting; above
this value, the needle crystals have a finite-amplitude instability.

I. INTRODUCTION

The mechanisms responsible for pattern formation dur-
ing diffusion-limited interface motion are beginning to be
understood, through a combination of analytical, numeri-
cal, and experimental work."? Simplified models of soli-
dification in two dimensions have permitted the identifi-
cation of the physical features necessary for dendritic
growth, and provide a convenient testing ground for
theoretical ideas. The crucial step which has led to the
present theories of dendritic growth is the realization of
the central importance of anisotropy.>* Early dynamical
simulations of the boundary-layer model (BLM), and later
the geometrical model (GM), showed that dendritic
growth did not occur in the traditional formulation of
solidification which neglected anisotropy. For sufficiently
large anisotropy, dendritelike structures were generated.
In the GM, these were accompanied by tip oscillations,
whose amplitude, as a function of time, served as an indi-
cator of the stability of these dynamical states.* In the
boundary-layer model, no such oscillations were observed,
and it was not possible to conclude whether or not the
dendritelike structures were genuine dynamical steady
states. The conclusions concerning the role of anisotropy
have been shown not to be artifacts of the simplicity of
the BLM and GM, through numerical simulation of a
nonlocal model with anisotropy,® and by experimentation
using a hydrodynamic analogue of solidification.®

Another important development has been the discovery,
in the GM and BLM, that the continuous family of
steady states which exists in the absence of surface tension
is destroyed when surface tension is nonzero.”® This has
prompted numerical®!° and analytical'! attempts to inves-
tigate whether or not this occurs also in more realistic
nonlocal models of solidification. Numerical work indi-
cates that there are only a discrete set of steady states for
both  two-dimensional and  axisymmetric three-
dimensional needle crystals. In the regime of small
growth velocity, singular perturbation theory techniques
have shown why there are only discrete steady states, and
furthermore have predicted scaling laws for the tip veloci-
ty.”? In the case of the related problem of the Saffman-
Taylor finger, these techniques have yielded the form for
the finger width as the surface tension approaches

zero.13—13

The fastest of the surviving discrete set of steady-state
solutions, known as needle crystals, seems to possess a
special dynamical significance. Time-dependent simula-
tions of both the GM and the BLM have shown that this
needle crystal is an attractor for a wide range of initial
conditions, for large enough anisotropy.”® The dendrite-
like solutions, discussed further in the following para-
graph, are characterized by an apparently stable tip, fol-
lowed by a time-dependent train of sidebranches. This
stable tip coincides with the tip of the fastest needle crys-
tal. It is reasonable that the fastest of the needle crystals
is the most stable; what is surprising is that the dendrite-
like structures seen in the time-dependent simulations are
essentially an oscillation about this needle crystal. In the
GM, it has been possible to perform a direct linear stabili-
ty analysis about the fastest needle crystal. This calcula-
tion has revealed that the most unstable eigenmode—the
mode with the largest real part, 2—is controlled by the
anisotropy stength. This mode is, in fact, a complex con-
jugate pair of eigenmodes; for Q>0 the needle crystal is
linearly unstable, and from the dynamical simulations, ap-
pears to evolve by tip splitting. For the regime Q <0, the
needle crystal is linearly stable. Sidebranches are not gen-
erated periodically at a constant distance from the tip, and
true dendritic growth does not seem to occur. This corro-
borates the observation, from the dynamical simulations,
of a decrease in the amplitude of the tip oscillations in
this regime. In the BLM, however, it has not been possi-
ble, so far, to perform the analogous calculation, owing to
the significantly greater complexity of the equations.

The purpose of this paper is twofold. Firstly, we con-
sider the implications for dendritic growth of the behavior
just described for the GM. If the experimentally observed
dendritic growth is not a transient phenomena, then the
generation of sidebranches must occur through a different
mechanism than in the GM. We discuss a number of pos-
sible alternatives, paying special attention to the role of
nonlinear effects. One such scenario relies on the discrete-
ness of the steady states—a most attractive feature to us.
Secondly, we present numerical studies on the BLM to try
to address the same questions which have been understood
satisfactorily for the GM. The BLM is one step closer to
realistic physics, in that it incorporates memory effects.
The description of the GM and BLM as “local” usually
refers to both space and time dynamics. In fact, this
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nomenclature is somewhat misleading in the case of the
BLM: the points along the interface in the BLM are cou-
pled by a diffusion field. Thus the motion of the interface
in the BLM at a given time depends not only on the in-
stantaneous configuration of the interface, but on the con-
figuration at all earlier times. It is not inconceivable that
the BLM has a dynamics closer than the GM to that of
the fully nonlocal equations, which have not so far been
solved. At the beginning of this investigation, we hoped
that the BLM would generate sidebranches in accordance
with one of our scenarios. We find, however, that the
BLM does not seem to show steady-state sidebranching,
but does have realistic tip splitting.

One possible approach to the question of sidebranching
and instabilities is to diagonalize the stability operator, as
has been done for the GM.® In this paper, we have chosen
instead to perform detailed dynamical simulations allow-
ing the investigation of nonlinear effects which we believe
play an important role in the generation of sidebranching.
The linear stability analysis will be presented elsewhere.

The content of this paper is as follows. In Sec. II, we
summarize the ideas of velocity selection, and present nu-
merical results for the dependence of the selected velocity
on undercooling and anisotropy strength for the BLM.
Here, and in Sec. IV, the anisotropy is included via the ki-
netic modification to the Gibbs-Thomson boundary con-
dition. Section III contains our discussion of possible
mechanisms for dynamical generation of sidebranches in a
general setting, i.e., nothing is specific to the BLM or
GM. Section IV is a presentation of our numerical results
for the BLM. In our conclusions, we stress the impor-
tance of doing more experiments to test the various side-
branching mechanisms.

II. VELOCITY SELECTION IN THE BLM

In this section, we limit ourselves to the BLM, and dis-
cuss how the selected velocity v* depends on the anisotro-
py strength, a, and the dimensionless undercooling, A.
Throughout, we use the dimensionless form of BLM in
two dimensions, with anisotropy included in the kinetic
term modifying the Gibbs-Thomson boundary condition.
The kinetic term is the lowest-order correction which
arises if one wishes to take into account the nonequilibri-
um nature of the interfacial dynamics. The BLM is speci-
fied by the equations for the heat content density of the
boundary layer, & (s,t), where s is the arclength along the
interface, and ¢ is time, as well as an equation of continui-
ty which involves the normal velocity of the interface, v,
and w, the temperature of the interface divided by A.
These equations are, respectively,’
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Here « is the curvature of the interface. In Eq. (2.3), the
modified Gibbs-Thomson boundary condition, we take the
kinetic coefficient 8 to be

B(0)=aA*[1— cos(40)], (2.4)

where 0 is the angle between the normal to the interface
and the direction of propagation of the dendrite. We con-
sider only the case of fourfold anisotropy. In these equa-
tions, the subscript » on the time derivatives indicates
that the derivatives are co-moving with an identified point
on the interface. As the evolution proceeds, the arclength
position of this point, and the curvature there evolve ac-
cording to the exact kinematical equations
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Equations (2.1) to (2.6), together with initial and boundary
conditions, completely specify the BLM. The quantities
in these equations are related to the physical quantities by
a scaling of length and time, whose significance is largely
cosmetic, namely
3 8
(oS, _wT @
0 d 0

where S and T are the physical arclength and time,
respectively, dy is the capillary length, and D is the
thermal diffusion coefficient in the liquid.

The BLM possesses a set of steady-state solutions—
needle crystals—for given A and a. These are convenient-
ly obtained from the BLM equations in the stationary
frame of the needle crystal with velocity v, by integrating
the corresponding set of first-order ordinary differential
equations in the arclength s. As has been explained in
previous work,” the integration proceeds from a fixed
point of this system of equations until the tip, 8=0, is at-
tained. Physically acceptable solutions must be differenti-
able there, implying that the mismatch function
M(A,a,v)=dw/ds | ;_o vanishes. The possible steady-
state velocities then satisfy the condition

M(A,a,v*)=0, (2.8)

an equation which is equivalent to a solvability condition.

As a prelude to our studies of the dynamics of the
BLM in the vicinity of the steady-state solutions (Sec. IV),
we have numerically generated needle crystal solutions for
a range of a with 0.75 <A <0.95. We are able to compute
the selected velocity to an accuracy corresponding to a
value for the mismatch function of about 10~'¢. Figure 1
shows a graph of v* against a for varying values of A.
We observe approximately linear behavior for some non-
zero interval, before the curves bend over at large a.
Another feature is the behavior at very small a. Analyti-
cal calculations'? on the BLM with kinetic anisotropy, in
the limit A—0, suggest that v* behaves as a power law in
a. This regime is not seen in the figure, where a >0.01.
So far, we have not been able to perform numerically reli-
able calculations at values of a smaller than those exhibit-
ed. There is a perceptible change in behavior, possibly
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FIG. 1. Selected velocity, v*, as function of a, for various A.

signaling a power-law dependence. As we shall see, the
small a regime is probably not accessible to experiment
because the corresponding needle crystals are very unsta-
ble.

III. SCENARIOS FOR DYNAMICAL GENERATION
OF SIDEBRANCHES

We turn now to the central topic of this paper, the
question of how sidebranching can arise in dendritic
growth. First, we consider the linear stability of the nee-
dle crystal solution, and then show how sidebranching can
arise naturally if one includes nonlinear effects. None of
this section is specific to the GM or BLM.

There are two central points which we wish to address,
namely, why are dendrites almost always observed to be
the only alternative to tip-splitting behavior, and what
controls the dynamics of the sidebranches. Recent experi-
mental results suggest to us that there is not necessarily a
unique answer to these questions. For example, in experi-
ments on the hydrodynamic analogue for solidification,®
needle crystals are sometimes observed, although it is hard
to exclude the existence of small amplitude sidebranches
which rapidly anneal. In experiments on helium crys-
tals,!® one also seems to have needle crystals. To our
knowledge however, needle crystals have not been seen in
the more conventional metallurgical systems.!” Further-
more, the origin of sidebranching may differ from system
to system. Consider the recent experimental results of
Dougherty, Kaplan, and Gollub'® on NH,Br crystals
growing from a water solution. From measurements of
the dendrite width as a function of time at a given dis-
tance from the tip, they conclude that the sidebranches
along different crystallographic orientations are uncorre-
lated. This observation suggests that noise effects are im-
portant, although it leaves open the question of whether
the noise is due to microscopic fluctuations or to chaotic
dynamics.

On the other hand, recent experiments by Couder
et al.'»?° demonstrate that a small bubble, placed at the
tip of a finger in a Saffman-Taylor or Hele-Shaw cell, can
induce persistent sidebranching. Their pictures exhibit
essentially perfect correlation between the sidebranches on
either side of the finger. This would suggest that noise ef-
fects are not important here. This is surprising since the
system is effectively two dimensional, and one would ex-
pect there to be less correlation than in the three-
dimensional experiments. Pieters and Langer?' have sug-
gested that the needle crystal solutions are linearly stable,
and that sidebranching is due to selective amplification of
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noise in the system. The amplitude of the sidebranches
could then be experimentally controlled by changing the
amount of noise in the system. Whether or not this is the
case should be determined as soon as possible. Certainly
this is a possible explanation of sidebranching in some
systems, but the experimental results mentioned above, to-
gether with the results of numerical simulations on the
GM, suggest to us that deterministic mechanisms for side-
branching must also be considered. We restrict ourselves
to two of the simplest such mechanisms below. Within
such a framework, it is natural to think of the needle crys-
tal as being a fixed point (in the moving frame) of the
solidification equations, while the dendrite corresponds to
a limit cycle. As some parameter such as the anisotropy
is varied, the fixed point bifurcates? to a limit cycle via a
linear or finite amplitude instability. The hope then is
that by a local analysis about the steady-state solution
near the onset, one can understand the appearance of side-
branches, calculate their amplitude, etc.

As a preliminary, we remark that it is very clear, after
the fact, that dendritic growth is intimately related to an-
isotropy. Intuitively, in the absence of anisotropy, one
would expect that the instabilities of an interface would
not single out a particular direction in which to grow
coherently. Only if there is sufficient anisotropy might
one expect stable growth in a preferred direction. The re-
sults of detailed analysis support this general picture, as
we shall see below. We shall defer discussion of the obser-
vations of Couder et al. until the end of this section. The
next two paragraphs discuss the linear stability of needle
crystals. Following that, nonlinearities are included. This
gives rise in a very natural way to two scenarios for side-
branching, each depending on the nature of the most un-
stable eigenmode.

A. Stabilization by convection

There are two approaches to the question of stability
within linear theory. The first is to consider the time evo-
lution of a disturbance, and calculate its long-time
behavior by an asymptotic analysis. The second is to find
the spectrum of the linear stability operator. Neither of
these approaches has been thoroughly carried out for a
nonlocal model of solidification. First, we describe a poor
man’s version of the time evolution method, and in Sec.
III B, we discuss the spectrum directly.

Consider a small perturbation near the tip of a dendrite
whose extent is much smaller than the radius of curvature
of the tip. The initial behavior of the perturbation is to
grow, even if the needle crystal is stable. In addition, the
growth is accompanied by convection effects:>>?* the dis-
turbance is pushed down the interface towards the tail of
the dendrite. Thus, even if the amplitude grows, the den-
drite can be stable in the frame moving with the tip. In
the case of Saffman-Taylor fingers,>>2® directional solidi-
fication,?” and flame propagation,28 this argument has
been used to discuss the linear stability of the selected
shape. However, a number of assumptions are made
which seem to us to be questionable, particularly in the
case of interest here. Let us rehearse the argument in
more detail for the case of the free dendrite. Consider a
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needle crystal with tip radius p*, moving at the selected
velocity v*, and let a perturbation near the tip be
represented as a wave packet whose mean wave number is
g, and whose spread is Ag. We assume that 27 /g <<p*.
Let w(v,q,0) be the growth rate of a perturbation of wave
number g on a flat interface inclined at an angle 6 to the
crystal axis, and moving normal to itself with an instan-
taneous velocity v. Of course, this is not really the result
of a linear stability analysis, because a flat interface does
not have a steady state, except at A=1. However, for per-
turbations growing as exp(wt), w0, the analysis is a
good approximation because the displacement of a planar
interface is proportional to V7. How does the perturba-
tion evolve in time? If the velocity of the perturbation
tangential to the interface is v* sinf(s), then the usual ar-
gument says that the amplitude at an arclength position
sy, given an initial position of s; is

A(sp)=A(s;) exp [ fotw(v* sin6(t),q(¢),0(2))dt (3.1

Here the time dependence of the variables is displayed ex-
plicitly; it arises from the simultaneous translation and
stretching of the wave packet. Now use the known
behavior of w. Near the tip, w >0, and the perturbation
grows. Simultaneously, it is pushed down the tail so that
eventually the normal velocity of the interface at the per-
turbation is small enough for w to change sign. Since we
can choose A(s;) to be arbitrarily small, it is always possi-
ble to arrange that A(sy) be within the linear regime.
Thus, it is concluded that the needle crystal is linearly
stable, at least for large gq.

The argument just given is not strictly correct. Firstly,
it is not true that the perturbation moves along the arc-
length with velocity v*sinf. In fact, many wavelengths
contribute to the wave packet, and their motion will not
be simple, especially in the vicinity of the tip. Away from
the tip, the wave packet will move at the group velocity,
with dispersion contributing to its spread. In addition, @
is not purely real when anisotropy is included in the cal-
culation. It picks up an imaginary part, corresponding to
a traveling wave contribution. Secondly, the argument is
not specific to which needle crystal we are talking about.
In the Saffman-Taylor problem, for example, there are in-
finitely many fingers slower than the selected one. A
naive application of the arguement predicts these to be
stable as well. Thirdly, the spreading of the perturbation
has not been taken into account. By this we do not just
mean that the wavelength is changed, but that in real
space the wave packet spreads. If spreading is sufficiently
important, the conclusions of the analysis should be re-
versed. Finally, the argument, as we have presented it,
cannot be straightforwardly applied to solidification, be-
cause the motion of the perturbation is not just specified
by the shape of the perturbation. The configuration of
the thermal field has to be specified too. This is another
way of seeing that it is not adequate to assume that the
perturbation is simply convected. We conclude that we do
not learn much from the naive application of this argu-
ment for the case of dendrites, especially since one is re-
stricted to q large.

B. Eigenmodes in linear stability theory

We now discuss the other approach to stability, i.e., us-
ing the eigenmodes of the linear stability operator. The
spectrum of this operator is expected to consist of a con-
tinuous part and a discrete part. The most dangerous
eigenvalue, @,y is that with the largest real part, 2. In
Fig. 2 we have sketched how ) might be expected to vary
with a. This figure describes mathematically our previ-
ous claim that anisotropy is necessary for the needle crys-
tal to grow in a well-defined direction. Note that the
analysis of the preceding section predicts stability against
large g perturbations only, and thus simply tells us that
unstable eigenmodes must be smooth on the scale of the
tip radius. In Fig. 2(a), ) decreases monotonically with
increasing a, passing through Q=0 at a=a.. When
Q <0, the needle crystal is stable, and from the point of
view of the tip, transients die away, moving down towards
the tail. For Q > 0, the needle crystal is unstable, to either
tip splitting or sidebranching. Within a linear analysis,
only at =0 can one have a limit cycle corresponding to
periodic sidebranching. However, in that case, the ampli-
tude is not determined, and one must look towards non-
linear effects. The scenario exhibited in Fig. 2(a) has been
shown to occur in the GM. There Q corresponds to a
complex conjugate pair of eigenmodes. When >0, the
simulations show that one has oscillations of increasing
amplitude at the tip until finally tip splitting occurs. To
our knowledge, this in not observed to be the case experi-
mentally. In the hydrodynamic experiments of Ben-Jacob
et al.,® tip splitting proceeds smoothly and without oscil-
lation. Nevertheless, one should search for such an oc-

Q
(a)

0 Qg a

a2 (b)

Y Qa

FIG. 2. Graph of Q versus a as given by linear stability
theory. (a) is the case of the GM. (b) is a hypothetical case in
which sidebranching could occur generically in a linear theory.
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currence experimentally. A more natural route to tip
splitting is to have wp,,, real. As we shall show in Sec. IV,
this is the case in the BLM: it exhibits realistic tip split-
ting with wpn,, coming from a single real eigenmode. In-
terestingly, sidebranches are not ruled out even if w,,,, is
real.

What does linear stability theory tell us about den-
drites? Below «a., a sidebranch instability eventually
reaches the large amplitude regime where linear analysis
can no longer make predictions. Thus, within linear sta-
bility theory, a limit cycle can occur only precisely at ..
There is no reason to expect that the experiments have
happened to be at or near the critical value of the aniso-
tropy at which periodic solutions are predicted in linear
theory. A possible way out of this dilemma is to conjec-
ture that some mechanism causes ) to be zero for an in-
terval of a, as depicted in Fig. 2(b). We do not think that
this is realistic, and in addition, the amplitude of the side-
branches are still not determined. To obtain a unique lim-
it cycle, it is necessary to consider nonlinear effects. De-
pending on whether w,,,, is complex or real, one is lead to
a Hopf bifurcation scenario or a solvability-induced side-
branching scenario.

C. The Hopf bifurcation

A Hopf bifurcation?? is the natural scenario if wg,,, of
the linear theory is complex. In this case, a limit cycle
can arise via a supercritical or subcritical transition, as il-
lustrated in Figs. 3(a) and 3(b), respectively. Consider
first the supercritical case which can occur if the system
is linearly unstable. If we tentatively identify a as the

A (a)

° Clc Q

A (b)
e ;

0 a al a

FIG. 3. Bifurcation diagrams for the Hopf bifurcation
scenario. The amplitude, A, of the limit cycle is plotted against
a. (a) is the case of a supercritical bifurcation. (b) is the case of
a subcritical bifurcation, whose unstable branch is shown by a
dashed line. a. is the threshold predicted by linear stability
analysis, a, is the point at which the bifurcation would be ob-
served to occur.
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control parameter which takes the system through the bi-
furcation, then the nonlinear terms cause the amplitude of
the sidebranches to stabilize at a value proportional to
v'a.—a. One has stable and persistent sidebranches in
some range below «., and the transition is continuous.
On the other hand, if the bifurcation is subcritical, then
the small amplitude branch of the limit cycle is unstable.
The amplitude cannot be made arbitrarily small near the
point of onset; instead, one has a finite amplitude instabil-
ity. Furthermore, the onset of sidebranching will not
coincide with the a, of the linear theory, and there will be
the familiar kind of hysteresis effects.

In this Hopf bifurcation scenario, the sidebranch eigen-
mode has no reason to vanish at the tip, so that the emis-
sion of sidebranches should be accompanied by a periodic
oscillation in the tip velocity and radius of curvature. In
the extensive experiments of Glicksman et al.,'” the den-
drites apparently show no such oscillatory behavior, so we
do not think that a Hopf bifurcation occurs there. Anoth-
er mechanism must be responsible for the sidebranches.
More recently, however, there have been reports of tip os-
cillations in two and three dimensional dendritic
growth,?>16 giving strong evidence that at least in certain
growth regimes, one has a Hopf bifurcation. There is also
an older report of such behavior.’® In Ref. 16, needle
crystals and dendrites are observed under the same condi-
tions. If this is not due to some uncontrolled effect such
as fluid motion, this is evidence that a subcritical bifurca-
tion is present.

It is unfortunate that in the GM, the sidebranches are
transients, not true limit cycles: the nonlinearities do not
stabilize the sidebranch mode. Below a, as given by the
linear stability analysis, the tip oscillations grow, eventu-
ally inducing tip splitting. We suspect that by introduc-
ing further nonlinearities in the GM, one could exhibit a
Hopf bifurcation. Something along these lines was at-
tempted in Ref. 31, but it is not clear whether limit cycles
were obtained. What can be expected for more realistic
models of crystal growth? The competition between the
sidebranches with nonlocal dynamics may provide the
nonlinear stabilization required in a Hopf bifurcation.
Thus we believe that this scenario is very realistic and is
quite likely to occur in a variety of systems.

D. Solvability-induced sidebranching

Now we suppose that the linear stability theory is
described by Fig. 2(a), with wp,,, being real. This leads to
a very interesting scenario for the generation of side-
branches for a <a, as follows. Let the amplitude of the
eigenmode corresponding to wy,x be A. In the absence of
any special symmetry, the Landau equation for A,
neglecting mode-mode coupling, is

34
at
The right-hand side is of the form —dV(4)/dA4, with
V(A4) sketched in Fig. 4. Let us use the convention that
A >0 is a perturbation of positive curvature at the tip.

The sign of the nonlinear term then corresponds to stabili-
zation against too sharp a tip. Below the threshold «.,

=—(a—a.)Ad—A*. (3.2)
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v(A)

a>a,

V(A)

/

a<a

FIG. 4. Potential for the single-mode Landau equation, for
a>a.and a<a,.

one of two possibilities may occur. If a perturbation is
such that A4 <O, the needle crystal will tip split. This
does not occur via oscillatory motion, and presumably
corresponds to what is seen in the hydrodynamic experi-
ments and in the BLM. If 4 >0, the needle crystal
evolves towards a sharper tip, and is then stabilized by the
nonlinear term. However, because of the singular effects
of surface tension, there are only a discrete set of needle
crystals, implying that the nonzero value of A4 cannot cor-
respond to a global steady state. Thus, if the tip is stable,
some portion of the interface away from the tip must ex-
hibit periodic or chaotic motion. The nonzero value of 4
will excite other modes, and the resultant dynamics of the
tip and sidebranches will depend sensitively on the mode-
mode coupling of the system in question. Thus to deter-
mine whether the tip curvature really does stabilize at a
different value from the selected one, one must include
the mode-mode couplings dropped in Eq. (3.2). Neverthe-
less, this scenario is appealing to us because it not only in-
corporates the linear and nonlinear stability analysis, but
it also relies on the discrete nature of the steady states.

Experimentally, this scenario is characterized by a
nonoscillating tip, and probably a regular emission of
sidebranches. To distinguish it from a noise-induced
scenario, it is necessary to control the noise in the system
and see for instance that the sidebranches are symmetric
about the tip. Finally, one should find a finite amplitude
instability to tip splitting as predicted in Fig. 4(b). We
have not found evidence for this method of generating
sidebranches in the BLM, but we hope that it will explain
some experimental cases of dendritic growth.

E. Limit cycles in Hele-Shaw flow

We now turn to the observations of Couder et al.
These experiments are important as they are examples of

a deterministic limit cycle giving rise to dendritic growth
with nonlocal dynamics. Couder et al. have studied
Hele-Shaw flow in both the radial and Saffman-Taylor
geometry. They found that by placing an air bubble at the
tip of a finger, they could generate needle crystals and
dendrites. There is no manifest anisotropy in the radial
cell experiments, and yet the dendrites maintain a fixed
direction of propagation. We suspect that the trajectories
would wander if the system was noisy. In addition, the
dendrites they obtain have sidebranches which are un-
decorated, and do not evolve into dendrites themselves,
contrary to what occurs in metallurgical cases. The regu-
larity and strong correlations present in the sidebranching
indicate a deterministic origin whose nature can be quali-
tatively understood from the fact that the bubble remains
near the tip. Naively, one would expect the bubble to be
transported away from the tip as discussed in Sec. IIT A.
This does occur for bubbles too small or too large, but for
bubble sizes a few times the plate separation, the bubble
sticks to the tip of the finger and remains there. The ef-
fective curvature of the finger tip is thereby increased and
this gives rise to a faster moving front. In the channel
geometry, for small velocities, the overall system finger
plus bubble is stable, and one sees steady-state fingers with
widths smaller than -;— At higher velocities, instabilities
set in which destroy the local stability of the bubble at the
tip. However, there is a nonlinear stabilization mecha-
nism which keeps the bubble in the neighborhood of the
tip as follows. When the steady-state system becomes un-
stable, the bubble moves away, either parallel or perpen-
dicular to the finger direction. This displacement creates
a perturbation at the finger interface, which grows and ef-
fectively forces the bubble to come back. The interface
disturbance then gets advected down towards the tail,
while the bubble now moves in the opposite direction.
This is again stabilized, thus the system goes into a limit
cycle. The above mechanism can be observed very clearly
when the bubble motion is perpendicular to the growth
direction, where the resulting ‘“sidebranches” are highly
asymmetric and the finger tip essentially follows the bub-
ble, thus appearing to wiggle.

To conclude, the Couder et al. experiments are evi-
dence for a deterministic generation of sidebranching,
with nonlinear effects playing a crucial role. We hope
that with a detailed analysis, the mechanism can be under-
stood mathematically.

IV. NUMERICAL RESULTS IN THE BLM

In this section we present results of time-dependent
simulations of the two-dimensional BLM as a test of the
above scenarios. In all the runs that we report on,
A=0.75, and reflection symmetry about the tip has been
imposed. First, we discuss the stability of the needle crys-
tals to small perturbations, illustrating the behavior of
long-lived transients. We then exhibit the most dangerous
eigenmode, which in the BLM is a tip-splitting mode with
®max being real. We find that a¢,~0.038+0.002. Finally,
we present data showing that the nonlinear effects fit into
the framework of the discussion of Sec. III. We demon-
strate the existence of a nonlinear instability. However,



1388 OLIVIER MARTIN AND NIGEL GOLDENFELD 35

we do not find evidence for sidebranching, indicating that
the mode-mode coupling destroys the solvability-induced
scenario in the BLM.

Figure 5 shows the evolution of a perturbation about
the needle crystal at a=0.1. In the figure, we have plot-
ted the difference between the time-dependent curvature
and the curvature of the steady-state needle crystal. It can
be seen that after a period of initial growth, the distur-
bance decays away rather slowly. Note that we are well
into the stable regime, with a=0.1>>a., and that the
amplitude of the perturbation is very small, so that the
behavior should be given by the linearized theory. Anoth-
er feature which can be seen from the figure is that the
disturbance does indeed get convected down towards the
tail.
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FIG. 5. Time sequence of an initial perturbation at A=0.75
and a=0.1. We have plotted A«(s,t)=x(s,t)—k*(s) as a func-
tion of s, where k*(s) is the curvature of the needle crystal.

The slow decay of the transients hinders numerical
determination of the slowest decaying eigenmode, and so
we have proceeded by working below a, and extracting
the fastest growing eigenmode. Of course, one has to do
some experimentation to find a.. Our procedure is as fol-
lows.

First we start with the needle crystal solution for the
chosen value of a, and evolve it dynamically. A distur-
bance which is smooth on the scale of the tip radius can
be achieved either by adding a small amount of noise to
the velocity as in Ref. 21, or by changing for a short time
the value of « in the simulation. The disturbance thereaf-
ter grows with time. Its value as a function of arclength
can be obtained by subtracting the steady-state needle
crystal from the time-dependent profile. This is most
conveniently done for the curvature rather than the actual
displacement. To determine whether one is in the linear
regime, we check whether the growth is exponential in
time, i.e., for short times, linear in the amplitude of the
disturbance. Thereafter, we rescale the disturbance as it
evolves so that its curvature at the tip remains small
enough for nonlinear effects to be small. The evolution
then purifies the disturbance: the fastest growing eigen-
mode is extracted, all other modes being filtered out. For
each a, one obtains a measurement of the growth rate of
the eigenmode and its shape. We have found that the
growth rate is real, i.e., there is no evidence for any
sinusoidal time dependence.

As an example, the curvature part of the fastest grow-
ing eigenmode at a=0.035 is shown in Fig. 6. Notice
that it is localized near the tip, and that it is nonoscillato-
ry, implying that w,., is real, in agreement with its
growth behavior. Thus the linear behavior of the BLM is
given by Fig. 2(a), with the instability being a tip splitting
eigenmode.

What about the nonlinear effects, and does the
solvability-induced sidebranching scenario occur? Figure
4 suggests that as the amplitude of the mode at the tip
changes sign, there is a transition from dendritic to tip-
splitting behavior. To test this, we changed the sign of
the eigenmode of Fig. 6, and used it as an initial condition
at «=0.035. For short times, the mode grew, entering
quickly the nonlinear regime. The time evolution then be-
came rather chaotic, with no evidence of a limit cycle. Fi-
nally, after a very long time (10* time units), the curvature
of the disturbance at tip changed sign, showing that in the
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FIG. 6. The fastest growing eigenmode, for a=0.035 and
A=0.75. We have plotted « versus s. Units on the y axis are
arbitrary.
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FIG. 7. The result of evolving the mode of Fig. 6 for 500
time units, plotted in real space, at «=0.06 and A=0.75.

BLM, the corrections to the single-mode picture destroy
the nonlinear stability conjectured in Sec. III. On the oth-
er hand, Fig. 4 does predict that there is a nonlinear insta-
bility; our numerics indicate that this is not destroyed by
mode-mode coupling. For example, at a=0.06, well
above a,., a 1% reduction in the tip curvature using the
mode of Fig. 6 induced tip splitting. The result after 500
time units is shown in Fig. 7. We have analyzed how the
disturbance grows once it is in the nonlinear regime, and
find that it is faster than exponential. This is consistent
with the sign of the nonlinear term used in Eq. (3.2).

As we mentioned previously, though the BLM does not
exhibit solvability-induced sidebranching, we hope that
other models or certain experimental conditions will.

V. CONCLUSIONS

In this paper, we have presented a number of possible
scenarios for the generation of sidebranches in dendritic
growth. We have stressed that nonlinear effects play an
important role, and have shown that there exists at least
one scenario in which it is the combination of both the
nonlinear dynamics and the singular nature of the steady
states which is responsible for sidebranching. In the
BLM, the most unstable eigenmode is associated with tip
splitting without oscillation, in contrast to the case of the
GM. We have also found a nonlinear instability above a,;
however, mode-mode coupling in the BLM seems to
prevent the dynamical generation of sidebranches.

A number of important points are amenable to experi-
ment. Firstly, one should see steady-state needle crystals,
not only dendrites.!” They are predicted by every scenario
for sufficiently small noise. Perhaps this can be checked
in the hydrodynamic analogue, where the suppression of
noise and the control of anisotropy strength are, in princi-
ple, possible. Another possibility is to perform experi-

ments on *He near the roughening transition, as has been
done by Rolley, Balibar, and Gallet.'® In this system, it is
possible to control the anisotropy independently from the
diffusion of impurities, and indeed, they seem to obtain
needle crystals. Secondly, we think that experiment is
capable of distinguishing between the different scenarios.
It would be very interesting to know if tip splitting can be
accompanied by oscillations as dendritic growth some-
times is. Observation of such oscillations would be fur-
ther evidence for a Hopf bifurcation scenario. The ques-
tions of whether the transition to sidebranching occurs
continuously or discontinuously, and whether or not there
is hysteresis would discriminate between the subcritical
and supercritical bifurcations. Finally, other scenarios
will probably emerge from more experiments.

In directional solidfication, experimentation near the
cusp—dendrite transition might be capable of answering
the questions posed in the preceding paragraph. After
most of the work reported in this paper had been complet-
ed, we learned of recent experiments by Bechhoefer and
Libchaber.?? First, they generated steady state cusps with
a well defined wavelength at a drawing velocity vy. Then,
they changed the drawing velocity to v,. If this is done
slowly, the wavelength of the pattern cannot change. This
gives rise to a continuous transition to dendritic growth
which is interpreted as being due to the inaccessibility of
the steady state for v,. This is related, but not identical,
to the solvability-induced sidebranching scenario. In both
cases, the tip is dynamically stable, and because the sys-
tem is not able to attain a steady state, sidebranches are
generated. This sidebranching arises because of the singu-
lar nature of the velocity selection. The steady state is not
permitted, in one case because of an external constraint (it
is exceedingly difficult to change the wavelength of the
cusps), and in the other because it is linearly unstable. We
also remark that it is unlikely that the sidebranches in
their experiments are noise induced. This could be defini-
tively tested by introducing external noise.
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