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We perform the linear-stability analysis in the boundary-layer model of dendritic solidification us-
ing both the direct matrix-diagonalization method and the differential-equation integration method.
The fastest needle-crystal steady state is found to be linearly stable for nonzero anisotropy; succes-
sively slower needle crystals have successively more unstable modes. This result agrees with those

previously obtained on other models.

I. INTRODUCTION

Complex structures are often observed in nonequilibri-
um systems, such as the dendritic crystals seen when
solid grows from the undercooled melt,! or Saffman-
Taylor ﬁngers,z'3 formed when one viscous fluid is dis-
placed by another of lower density. Considerable pro-
gress has recently been made in the understanding of
such systems.*>

In dendritic solidification, a branched structure grows
from the undercooled melt, with an approximately para-
bolic tip and sidebranches decorating the sides. The rate
of growth of the dendrite is controlled by the rate of
diffusion of latent heat of melting away from the
solidification front. The dynamics is described by the
diffusion equation together with appropriate boundary
conditions!

du /3t=DV*u , (1.1a)
v,=—DVu-, (1.1b)
u,=A—dy(0)k—BO), , (1.1¢c)

where u is the dimensionless temperature field, D the
diffusion constant, A the dimensionless undercooling, 0
the angle between the normal to the curve and some fixed
direction, and dy(8) the capillary length which may or
may not be isotropic; v,, k, and u, are the normal veloci-
ty, curvature, and the temperature of the interface; the
last term in Eq. (1.1c) accounts for the fact that the inter-
face is not static.

This moving-boundary problem turns out to be quite
difficult to solve and for this reason a variety of simpler
models have been proposed,®’ one of which , the two-
dimensional boundary-layer model (BLM),%° is the sub-
ject of this article.

We shall be concerned with steady-state solutions of
the BLM, and their stability. In the BLM and other
models it is crucial to include the effect of crystalline an-
isotropy in the boundary condition Eq. (1.1c) in order
that a steady-state, uniformly translating solution ex-
ists.%° Such a steady-state solution is known as a needle
crystal; loosely speaking, it corresponds to a dendrite
without sidebranches. In the absence of surface tension
and anisotropy, Eq. (1.1) possesses a continuous family of
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needle-crystal steady states known as the Ivantsov solu-
tion.'°

These solutions are completely unstable because
d,(0)=0; furthermore, the existence of a continuous
family of solutions rather than a single solution raises the
problem of how the Ivantsov solution can be a zeroth-
order approximation to experiment'"!'? or time-
dependent computer simulation,® where only a single
steady-state dendritic tip is observed for a wide class of
initial conditions. This problem was resolved through
the realization that surface tension is a singular perturba-
tion.’

Once the surface tension and anisotropy are included, a
discrete set of needle-crystal steady states with velocities
Vg,VUq,Vy,. . . is selected from the continuum through a
nontrivial solvability condition. The velocities v;
(i =0,1,2,...) decrease with increasing index number i.
However, only the fastest-moving needle crystal in this
set corresponds to the tip of the dendrites reproducibly
observed in the time-dependent computer simulations.’

The reason for this selection is believed to be due to the
conjectured stability of these solutions, namely, that only
the fastest solution is linearly stable while other solutions
are unstable with a tip-splitting instability. The propose
of this paper is to demonstrate that the conjectured sta-
bility spectrum does indeed occur within the BLM. This
result is of particular interest because our linear-stability
calculations are fully time dependent, and do not rely on
a quasistatic approximation.

Our results supplement existing calculations on other
models, which are valid either in a WKB approximation
or in a quasistatic limit. Bensimon, Pelcé, and Shrai-
man'? studied the discrete mode instability analytically
using the WKB (Ref. 14) approximation for short-
wavelength perturbations. They found that only the
fastest solution of the discrete set is linearly stable and
the ith solution has i unstable modes. Their results are
valid for small Peclet numbers for dendritic growth.
Kessler and Levine!® studied the quasistatic limit of Eq.
(1.1) and reached the same conclusion. However, the
quasistatic approximation is true also only in the smali-
Peclet-number limit which implies small undercooling A.
Their results do not extend to the case of greatest in-
terest, namely, the case of vanishingly small anisotropy
strength.
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Here we present the linear-stability analysis for the
BLM. We performed the calculations in two ways: the
first using direct discretization of the stability operator,
the second using a shooting technique originally
developed by Mack'® to study the Orr-Sommerfeld equa-
tion. The former technique is prohibitively expensive if
one requires good reliability, and cannot be used for very
small anisotropy. Our shooting technique is rapid and
accurate. The two methods are in agreement over the
range of anisotropy where they can be both performed;
thus we believe that both techniques are either correct or
incorrect. For very small anisotropy we use the shooting
technique.

We found that the fastest needle crystal is indeed
linearly stable for all nonzero anisotropy (and we give our
bounds for this result later). The slower needle crystals
are linearly unstable for all nonzero anisotropy, with the
number of unstable modes equal to the index number of
the needle crystal under consideration. Our results are
entirely consistent with the previously mentioned calcula-
tions of other authors on other models.'>!*

The results are, however, in disagreement with the con-
clusions reached by studying the time-dependent simula-
tions'”!® and assuming that the evolution of the system
remained within the domain of the linearized dynamics.
We believe that these calculations probe the nonlinear
dynamics and so they cannot be directly compared with
our results.

The BLM is believed to be a faithful representation of
the dynamics of solidification for A 1. Our calculation
is the first to treat the interface and diffusion field dynam-
ics on equal footing, as one is obliged to do in the
boundary-layer limit. Thus we expect that our results
will apply to Eq. (1.1) in this regime. Our results comple-
ment those of Kessler and Levine,'* which might reason-
ably by expected to apply to Eq. (1.1) in the limit A—0.
The conclusion is that sidebranching is either a nonlinear
or noise-induced effect. Furthermore, as we and others
have emphasized, velocity selection is not related to a sta-
bility principle.

The rest of the paper is organized as follows. In Sec. II
we give the linear-stability-equation formalism of the
BLM. In Sec. III we present the stability analysis for the
Ivantsov solution of the BLM. This calculation is due to
Goldenfeld and Langer.! In Secs. IV and V we present
the results of the matrix method and integration (shoot-
ing) method respectively. Finally, Sec. VI is devoted to
discussions.

II. BLM STABILITY ANALYSIS

The solidification front can be specified by its curva-
ture k (s,1) as a function of arclength s along the interface
where k(s,1)=060/3s. The following kinematical
differential equations are exact in describing the front
motion:

ok 2

Ll == z+§’s_2 ]u,, : (2.1a)
ds s

— | =] kv,ds', (2.1b)
dr |, fo

where the subscript » indicates that the derivatives are
made along the normal.

The excess latent heat released from solidification ac-
cumulates in a layer at the interface. If the thickness / of
this layer is small compared with the local radius of cur-
vature then we may simply consider the dynamics of / it-
self instead of the thermal field u (x,¢). This is the crux
of the BLM approximation, which is good at large under-
cooling A— 1. For detailed discussions of the BLM refer
to Ref. 8.

Introducing the heat content density h(s,t) as a
dynamical variable

h(s,t)=wl=w2/v,, s (2.2)

where w=u,/A, we can write down its evolution equa-
tion as
oh(s,t) 1 3 h ow

n=vn(1-—Aw)——U"hk+F-é; o 3s

3
EY (2.3)

The modified Gibbs-Thomson boundary condition Eq.
(1.1c) now reads

w=1—A%a(0)k —BO, , 2.4)

where a(6) and B(0) incorporate the crystalline anisotro-
py into the surface-tension and kinetic-growth term, re-
spectively.

We assume the fourfold symmetry of the growth and
write

a(f)=1—¢, cos40 (2.5a)

and

B(6)=¢€, A*(1—cos40) . (2.5b)

Our numerical work is done in two cases separately: an-
isotropy in the kinetic-growth term with €,540, €, =0
and anisotropy in the surface-tension term with €50,
€ =0.

Equations (2.1)-(2.5) completely determine the inter-
face motion in BLM. All the quantities are written in di-
mensionless form, and are related to the physical quanti-
ties, denoted by capital letters, through the scaling
k=d,K /A, h=AH/d,, s=AS/d, t=ADT/d},
and v =d,V /(D A%).

We now write the equations in s coordinate and 6 coor-
dinate using the relation

0 d s a

21 ==] - 2 6

ot | ot |, fokv"ds ds 2.6)
and

9 3 w, 3

=2 s 2.7

ot |, ot|, a6 a0 @.7)
Equations (2.1a) and (2.3) become

oh 1 0 h dw

AL I, _ —k 2, -~ 9 rUr

ar |, on(1—Aw) w+A2 ds w Os

Ok o dst (2.8a)
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%l:_ =- k2+5% vn..%foskvnds’ (2.8b)
in the s representation and
% e)_—.v,,(l—Aw)——kw2+sz‘% %%;‘]
k%% R (2.9a)
% 9=_k2 1+3"’ei2 b, (2.9b)

in the 0 representation.

As it turns out, working in the 6 coordinate is much
more convenient than the s coordinate due to the absence
of integrals in Eq. (2.8). The two coordinates are con-
nected by the transformation k=0960/9s. When k is
larger than zero, the correspondence between s and @ is
single valued. This is indeed true for an infinitesimal per-
turbation around a needle crystal. The physical results
are independent of the specific choice. What is important
is that in both cases we are doing the linear-stability
analysis in the moving frame of the needle crystal and not
in the laboratory frame.

The needle-crystal steady-state solution 4 *(6),k*(0),
. .. obtained by setting in Eq. (2.9)

oh*

ok*
ot o

0 ot

=0 (2.10)
]

is known, in general, only numerically. Now we consider
small time-dependent perturbations to the steady-state
solution. We perform the expansion

h(6,t)=h*(0)+h(6,t)8+0(8%) ,
k(6,t)=k*(0)+k(6,t)6+0(8%) ,

(2.11a)
(2.11b)

where 8 is a small quantity, introduced here for book-
keeping purposes only. Plugging Eq. (2.11) into Eq. (2.9),
and keeping only terms linear in §, we obtain the linear-
stability equation

L3 IS PR il
3 |~k |1 g [P (2.12a)
and
oh _ .- 9Y, 9h -
2Pl =(1— _ _ 9% F
a |, (1—Aw)v, —(Av, + 2wk )i —w*k + 30 20
av a3 i
+k§_h___" k_lﬁ._é}i 1 98 |hkdw E
96 36 36 360 A2 360 | w 36
8 [meom |, k8 [Khow
A? 36 | w 36 A? 36 | w 96
Lk d [hEdw | k o [mkmaw
A2 30 | w 36 A2 30 | w? 96 |’
(2.12b)

We have omitted the superscript , in the steady-state
solutions. The tilded quantities are first-order perturba-
tions to the steady-state quantities. Equation (2.12) de-
scribes the time evolution of small perturbations as seen
in the frame moving with the needle crystal.

For simplicity, instead of using 4 and k, we use k and ¢

as our independent field variables, where
x =tan@ , (2.13)

_ 7,(0,t)
d(x,t)=

cos0 (2.14)

After some lengthy algebra, Eq (2.12) can now be writ-
ten as

Ok(x,t) _ . 23296
S ==k 2.152)
N ) -

30 _ 002 10,02 1 eyx0f
at ax? ox

*k ok ~
+Cyx) 55 +Cs(x) -+ Celx)E . 2.15b)

Here C;(x) are functions of the steady-state solution
h(x),k(x), . . . and their first- and second-order deriva-
tives, which can be calculated numerically.

We seek solutions to the linearized equations of the
form

k(x,t) k(x)
é(x,1) é(x)

The eigenvalue spectrum {A} solved under appropriate
boundary conditions determines the linear stability of the
steady-state needle crystal under consideration.

The needle crystal is said to be linearly stable only
when all the eigenvalues in {A} satisfy Re(A) <0, which
means that perturbations will decrease with time. On the
other hand, if there is certain eigenvalue A which has
Re(A) >0, then the small perturbations will grow with
time so as to make the needle crystal linearly unstable.

~exp(At) . (2.16)

III. LINEAR STABILITY FOR THE IVANTSOV
SOLUTION

Before we present the stability analysis for nonzero
surface tension and anisotropy we first discuss the special
case of the Ivantsov solution and its linear-stability spec-
trum. This calculation can be done analytically and was
first performed by Goldenfeld and Langer.!’

In the absence of surface tension and crystalline aniso-
tropy, a(8)=p(6)=0 in Eq. (2.4), the BLM recovers the
continuum of the Ivantsov solution. In this case w =1,
h =1/v,, and Eq. (2.9) takes the form

3
% —(1—A, —k+k—or O

, 30 20 ° (3.1

Using Eq. (2.10), which implies v, =vycos6, we find the
steady-state solution

k*(8)=vy(1—A)cos®d , (3.2)
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where v, can take an arbitrary value from zero to infinity.
These solutions form the Ivantsov continuum, represent-
ing parabolic fronts translating uniformly with velocity
vo-

To study the linear stability of the Ivantsov solution we
proceed in a similar way to that sketched in Sec. II to find
the linear-stability equation. The coefficients C; in Eq.
(2.15) now have simple analytic forms. Equation (2.15)

becomes

~ 27
M:—Ué(l—A)z(l"i‘xz)—S/zw , (333)

at dx?

-~ 2

(1—A) 2372 _

3g(x,1) _ Vo Ut x D F e 0)

ot (1+x2) | (1-4)

_2x§‘% —&(x,1) (3.3b)

Inserting Eq. (3.3b) into Eq. (3.3a) with the use of Eq.
(2.16), we get

428

d¢(x déx
+2)\

dx? dx

where the eigenvalue A has been rescaled in units of

v3(1—A), the inverse of the characteristic time for the

needle crystal to travel a distance of one tip radius.
Letting #(x)=exp(—Ax2/2)f(x), Eq. (3.4) reduces to

) A+ A1 4xD1B(x)=0,  (3.4)

d?

f X)L a2 f(x (3.5)
We recognize this to be the equation of motion for a har-
monic oscillator. Thus the eigenvalue spectrum is simply
a continuum {A}=(—o,+ o). The corresponding
eigenfunction can be written

é(x)=[ 4 sin(Ax )+ B cos(Ax)]exp(—Ax2/2) (3.6)

for A€ (— o, + = ), where 4 and B are constants.

We see that the Ivantsov family is totally unstable with
a continuum of unstable modes, and the corresponding
eigenfunctions are spatially localized.

IV. MATRIX-DIAGONALIZATION METHOD

The most straightforward way of solving the stability
equation (2.15) is to discretize it and solve the eigenprob-
lem for the resulting stability matrix. We refer to this
method as the matrix method.

We first solve Eq. (2.9) for the steady-state needle-
crystal solution, following the method discussed by Ben-
Jacob et al.® The idea is to integrate a set of first-order
ordinary differential equations (ODE’s) from a fixed point
of the system (corresponding to the tail of the needle
crystal) until the tip 6=0. Then the condition of
reflection symmetry at the tip is imposed, which requires
the vanishing of a mismatch function, taken to be
L'(Ae,v)=(dw/ds) | _,.

The result is the selection of a discrete set of needle-
crystal steady states with their velocities v;
(i =0,1,2, ... ) decreasing with increasing index number
i, where v; is a function of the undercooling A and the an-

isotropy €, or €,. This procedure can be performed with
an accuracy corresponding to a value of the mismatch
function of about 106,13

Next, we discretize Eq. (2.15) along the needle crystal.
The discretization is performed with a uniform spacing in
x with N points on half of the needle crystal ranging from
the tip (x =0) to far into the tail (x =L, a cutoff). For
most of the runs, we choose L ~5 corresponding to an
arclength of about ten tip radius, which is checked to be
long enough for convergence. By this we mean that the
continuum modes have converged to being stable and
that the discrete modes are insensitive to varying L. This
is discussed further below.

The derivatives are discretized using the standard
three-point formulas which are accurate to O(1/N?). Fi-
nally, we obtain a 2N X 2N stability matrix M which can
be written schematically as

N k(i) k(i

é() é(i) o
The matrix M ', M2, M?*', M?? and thus M are calculated
numerically from the steady-state solution with appropri-

ate boundary conditions imposed at the tip and tail,
namely,

MNXN MI{IZXN @.1)

= 2
w My MPn ansan

_4d4(0) _ -
dx dx =0, k(L)=¢(L)=0 (4.2a)
for symmetric modes and
k(0)=4(0)=0, k(L)=&(L)=0 (4.2b)

for antisymmetric modes.

Truncation of the matrix M can be made in order to
minimize the possible boundary effects. We will only re-
port results on the symmetric modes for simplicity; simi-
lar results were also obtained for antisymmetric modes
with no qualitative physical difference.

Since the matrix M is not symmetric in nature, its ei-
genvalues are complex-conjugate pairs in general. We
used IMSL EIGRF subroutine on the VAX computer and
EISPACK RG subroutine on the CRAY computer to per-
form the matrix diagonalization; both subroutines gave
the same results.

Figures 1(a)-1(c) are typical eigenvalue spectra. The
eigenvalues are scaled in units of v, /p, as in the Ivantsov
case. The spectra are totally different from that of the
Ivantsov solution because of the nonperturbative nature
of the selection mechanism. The spectrum generally con-
sists of three parts.

One is an approximate zero mode in the spectrum
whose appearance is due to the translation invariance in
the comoving frame of the needle crystal. It is approxi-
mate because of both the linearization approximation of
our stability operator and the finite numerical accuracy.
Its existence has been discussed by Kessler and Levine in
the cases of geometrical model®® (GM) and the Saffman-
Taylor problem.?! This zero mode can serve as a check
of the numerical procedure we employed. We have ob-
served zero modes in all our well-converged spectra, the
zero mode being more than three orders of magnitude
smaller than a typical eigenvalue. For example, in Fig.
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away from the tip along the needle crystal as seen from
the comoving frame. The extended nature of the eigen-
function determines that the spectrum is sensitive to the
cutoff length L, as indeed observed in the numerics. As
we change L, slight changes in the continuum are ob-

1(a), Ay=4.5X 10~ !4, which is virtually zero.

Another part of the spectrum is the complex continu-
um which extends to large negative Re(A) and Im(A). Ei-
genvalues are grouped in complex-conjugate pairs. The
eigenfunctions of these eigenvalues are extended, with

amplitude oscillating and diverging to infinity at the tail  served.
Using the matrix method we have studied the eigenval-

of the needle crystal.
ue spectrum for A=0.75, €, >0.03, and €, >0.04. No

This complex continuum is associated with the convec-
tive instability as it describes the disturbance advected continuum instabilities are observed, i.e., all Re(A) <O.

-2.57 -81
% Re () & %o -71 o
% S ° Re (1)) °
°°° 0°° °° °°
. -2.0 S . -6 .
o o ° <
°°° °°° uo °°
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o o ° °
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. -3y
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0 20 -I0%A1hi 10 2 ;

(a) ’/\ r Im(‘x)

98 6 4 2 P2 4 6 8 10 \
Im(X)
(b) y

l..

1.

0.5+

(c) et

8+

FIG. 1. Eigenvalue spectra for the needle-crystal solutions with velocity v; (i=0,1,2,3,...) at A=0.75, €, =0.3, €, =0. (a) is the
spectrum for the fastest-moving needle crystal i =0, with no unstable mode; (b) is the spectrum for slower needle crystal i =1, with
one unstable discrete mode at 3.21; (c) is the spectrum for needle crystal i =2, with two unstable modes at 7.13 and 3.86.
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For smaller €, or ¢, the convergence of the continuum
part becomes poorer. The computation is extremely hard
to implement because of the rising CPU time needed to
keep reasonable numerical accuracy. There are two main
reasons for this difficulty.

Firstly, in order to get the physical spectrum, the
discretization length ds must be smaller than the charac-
teristic stability length I =2m(dy/)'"?, or ds<Il,. We
know that /; scales with v, as

1

s~ .
v(lJ/Z

On the other hand, the tip radius scales with v, roughly
as

So after all, the number of necessary discretization points
scales as

which diverges for vanishingly small anisotropy when
J

vy—0.

The second reason is the possible noise amplification
due to the nonlinear effect. It is possible that the fastest
needle crystal is linearly stable but may have a nonlinear
instability with exponentially vanishing threshold ampli-
tude. This scenerio was suggested by Bensimon?? in the
context of Saffman-Taylor fingers. Assuming this non-
linear instability, very small numerical noise or inaccura-
cy may get amplified so as to make the continuum unsta-
ble.

The third part of the eigenspectrum, which is the most
interesting one, consists of discrete eigenvalues. They are
always real and may lie both on the positive and negative
real axes. The positive real eigenvalues correspond to the
absolute instability of the interface; i.e., such modes can-
not be made to appear stable by transforming to some
different reference frame. Their eigenfunctions are local-
ized around the needle-crystal tip, so the existence of
such positive real eigenvalues implies the tip-splitting in-
stability of the interface.

We list the velocities, tip curvatures, and the discrete
unstable eigenvalues for different members of the needle
crystal family {v;} at A=0.75, €, =0.3, €, =0:

vg=4.40X 1071, ky(0)=2.53x10"", A={none} ,
v;=9.80x10"2%, k,(0)=2.37x1072% A={3.21},
v,=2.35X10"2, k,(0)=5.89x1073, A={3.86,7.13},
v3=7.40X 1073, k;(0)=1.85x1073, A

—{4.58,8.54,12.0} .

The corresponding spectra are shown in Fig. 1. We should note that in Fig. 1(c) there is a continuum part lying in the
right half of the complex plane. This is due to the numerical difficulty as we discussed previously. The continuum
should converge completely to the stable region if we compute more accurately using larger matrices. For this same
reason, the eigenvalue 4.58 for v; is not well converged and should be smaller. The eigenfunctions of some of these un-
stable modes are plotted in Fig. 2. As can be seen, they are truly localized and represent the tip-splitting instability of
the interface. Calculations were also done for 0.90 > A > 0.65 and ¢, > 0.1 with qualitatively the same result.

Results for anisotropy in the surface-tension term at A=0.75, €,=0.40 are also given below, which are similar to

those for kinetic-term anisotropy:
vo=0.580, ky(0)=0.341, A={none},
vy =1.43x10"1, k,(0)=3.18%x107%, A={3.72},

v;=5.35X10"2%, k,(0)=1.35X10"2, A={3.53,7.05] .

From these results, we find that the ith needle crystal is
unstable with i unstable discrete eigenmodes. The
fastest-moving needle crystal (or the zeroth) is linearly
stable. This result agrees with those of Kessler and
Levine'’ and Bensimon et al."

We cannot exclude the possibility that the fastest-
moving needle crystal v, has a discrete mode instability
for smaller anisotropies than those used above. At the
smallest anisotropies used above, the wavelength of the
most unstable mode of a planar interface moving along
its normal at the speed v, is about four times smaller
than the tip radius. To push the calculation to anisotro-
pies smaller than €, =0.03 and €,=0.04 we have used
the shooting method, discussed in Sec. V.

V. DIFFERENTIAL-EQUATION
INTEGRATION METHOD

In this section we study the discrete mode instability
using the differential-equation integration (shooting)
method first used by Mack!® to study the Orr-
Sommerfeld equation. The method was later used by
Kessler, Koplik, and Levine® in studying the GM of
solidification. The method involves the separation of the
original stability equation (2.15) into a set of first-order
ordinary differential equations on which the numerical
integration can be performed. The eigenvalues are select-
ed in order to satisfy certain boundary conditions. For a
detailed discussion the reader is referred to Ref. 16.
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FIG. 2. Eigenfunctions of the unstable modes in Fig. 1. (a)

Eigenfunction k(x) for mode 3.21 in Fig. 1(b); (b) eigenfunction
k(x) for mode 7.13 in Fig. 1(c).

The advantage of this shooting method is in that it gets
rid of the heavy algebratic matrix operations encountered
in the matrix method and thus saves a lot of computing
time. It is more than one order of magnitude faster than
the matrix method and can be made very accurate. The
only sacrifice is the complication of formulating the prob-
lem.

Introducing &(x)=dk(x)/dx and g(x)=d ¢(x)/dx, the
linear-stability equation (2.15) along with Eq. (2.16)
reduces to the four first-order differential equations:

dx =e(x), (5.1a)
205 g, (5.1b)
dglx) _ A -

= Tk (5.1c)
de(x) M A14x*)72C-Cq

= k(x)

dx C,

e I O BT R 5.1d
-+-C4 ¢x—c4gx—c4x. (5.1d)

These four equations are an alternative way of writing the
two second-order stability equations. Notice that A is a
complex number in general, hence, k,$,g,¢ are all com-
plex functions.

The boundary conditions are now
k(x),d(x),g(x),2(x)—>0 as x —>o , (5.2a)

along with

k(0)=0, 4(0)=0
for antisymmetric modes and
g(0)=0, 2(0)=0 (5.2b)

for symmetric modes. We can find the asymptotic solu-
tion of Eq. (5.1) at large x — c using the WKB method.
There are four linearly independent sets of solutions:

$(x); y~exp[ — LAx2+idx +0(V vy)] (5.3a)
and

¢(x)3,4~exp

2 iV v,
A 24 25iVivy s,

1, 5
I et s

+0(vvy) (5.3b)

Expressions for k ,g, . . . are not listed since they have the
same large x exponential behavior. Since we are only in-
terested in the unstable discrete modes with Re(A) > 0, we
find that only solutions Eq. (5.3a) satisfy the boundary
condition equation (5.2a) while solutions Egq. (5.3b)
diverge at large x and fail to satisfy boundary condition
equation (5.2a).

Solutions Eq. (5.3a) provide the initial conditions for
our numerical integration of Eq. (5.1), which proceed
from a large finite value of x =L to the tip at x =0, with
a step length dx. Coefficients in Eq. (5.1) are calculated
numerically from the needle-crystal solution at every in-
tegration step.

We use the notation that S,=(k,,4,,2,,¢;) and
S,=(k,,$,,8,,&,) for the two sets of linear independent
solutions in Eq. (5.3a). Both S, and S, are integrated
simultaneously, which makes a total of eight complex or
16 real first-order ODE’s. We use the double precision
differential-equation solver DGEAR in the IMSL software
package on the VAX. Both the implicit Adams method
and Gear’s stiff method are used with choices of different
iteration methods. We compare results from different
methods to check the correctness of our computer codes
and check if our problem is stiff, as it should not be. For
most of the work, the Adams method is used.

The admixture of solution S; with S, and with those in
Eq. (5.3b) due to the computational roundoff errors tends
to destroy the linear independence of the S, and S, solu-
tions. Thus the Gram-Schmidt orthonormalization pro-
cedure is employed after each integration step to keep
this independence. To save computer time, orthonormal-
ization can be done every several steps instead of one.

The solution vectors after orthonormalization are
denoted by S1°¥ and S5°%, where

Sy =8,/(st-85)'"%,
[, — (ST -55)81™ ]
| S2 = (ST 5581 |

(5.4a)

Snew — (5.4b)
_At the tip of the needle crystal, x =0, the solution
(k(0),4(0),g(0),2(0)) is the linear combination of the
two independent solutions S, and S, at x =0.
The enforcement of the boundary condition equation
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(5.2) leads to two complex secular determinant equations:

2,(0) g,(0)

D(A)= 2,(0) 2,(0) =0 (5.5a)
for symmetric modes and
k,(0) k,(0)

DA)= 3.(0) 3,0) =0 (5.5b)

for antisymmetric modes.

Integrations are performed for different A values in the
complex plane to search for those which satisfy Eq. (5.5).
Again, we report results on symmetric modes only for
simplicity. In actually carrying out the searching, we
choose different A values, integrate Eq. (5.1), and thence
obtain the value 2D(A). Then we plot contours of
ReD(A)=0 and ImD(A)=0 on the complex A plane,
where Re? and Im? are real and imaginary parts of
D(A), respectively. The eigenvalues are the intersection
points of the real contours and the imaginary contours.
Equation (5.1) is solved only on the right half of the com-
plex A plane because that is where the unstable modes
may be.

Figure 3 shows the contour diagrams of the fastest-
moving needle crystal with index i =0 at €, =0.20 [Fig.
3(a)] and the next fastest needle with index i=1 at
€, =0.30 [Fig. 3(b)]. We see from Fig. 3 that there are no
intersection points outside the real axis [where Im(A)5£0].
In other words, all the unstable modes must be purely
real. We have checked this for different A and € ;. This
can also be seen from the spectra obtained using the ma-
trix method.

With this result, we can simply assume A to be real and
do the shooting for A on the positive real axis only, which
simplifies our numerical procedure substantially. When A
is taken real, ImD(A)=0, the eigenvalues are simply

zeros of the real equation
ReD(1)=0. (5.6)

In Fig. 4 we plot the D(A) as a function of A for the
needle-crystal family {v;} with i=0,1,2,3 at A=0.75,
€, =0.30, €, =0. Discrete unstable eigenmodes are given
below:

vo=4.40Xx10"!, A={none} ,
v,=9.80x 1072, A={3.21},
v,=2.35X107%, A={3.82,7.08} ,
v3=7.40x1073% A={4.25,8.35,11.9} .

Eigenvalues for anisotropy in surface-tension term at
A=0.75, €,=0.40 are

vo=0.580, A={none} ,
v =1.43x10"1, A={3.71},
v,=5.35x10"2%, A={3.51,7.04} .

Again, as in the matrix method, we find that there are i
zeros of D(A) on the positive real axis and thus there are i
unstable modes for the needle crystal with index i.

We can compare these eigenvalues with those obtained
using the matrix method in Sec. IV. The agreement is re-
markable, better than 3%, except for the smallest eigen-
value in v;, which is not well converged. This agreement
gives us confidence in our numerical procedure and we
may safely go to smaller anisotropies for the fastest-
moving needle crystal.

Figure 5 plots the D(A) versus A curves for different
anisotropies 0.35>¢€;,€,>0.01 at A=0.75. As can be
seen, the curves are monotonic in A, and no zero is found
on the positive real axis, which means that the needle
crystal is linearly stable for anisotropies as low as 0.01.
Smaller anisotropy is unaccessible because the velocity v,
gets so small (less than 1073) that it is extremely hard to
get the steady-state solution with reasonable accuracy.
At the same time, shooting also gets more time consum-
ing. At this value of the anisotropy, the wavelength of
the most unstable mode for a planar interface moving

Im(X)

Im (X))

Re(X)

FIG. 3. Contours of ImD(A)=0 (dashed line) and
ReD(A)=0 (solid line). Only the upper half plane is plotted due
to the invariance of D(A) under the reflection A—A*. Note also
that on the real axis, ImD(A)=0. There is (a) for the fastest-
moving needle crystal at A=0.75, €, =0.2 no intersection point
between ImD =0 and ReD=0; (b) for the needle crystal with in-
dex i =1at A=0.75, €, =0.3 one intersection point on the posi-
tive real axis at 3.21.
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along its normal with speed v, is about one tenth of the
tip radius.

However, we can plot the data in another way to do
the extrapolation. To do this, we plot the quantity
1/]InD(0) | as a function of €,€,, where D(0) is the in-
tercept D(A=0). This is shown in Fig. 6, from which we
can reasonably conclude that the intercept D(0)>0 for
all €, ; >0. In turn, D(A) >0 for all A > 0; this asserts the
absence of discrete mode instability for the needle crystal
at all nonzero anisotropies.

V1. DISCUSSION

Let us summarize our main results as follows.

We have shown that the ith selected needle-crystal
steady state with velocity v; (i=1,2, .. .) is unstable into i
tip-splitting discrete modes. (Actually there are also i un-
stable antisymmetric modes, making a total of 2i modes.)
This picture is consistent with the observation by Bensi-
mon et al.'? in their WKB approach and by Kessler and
Levine'® in their numerical work.

The first needle-crystal solution (or the fastest moving

1.0 T T T T T

0.8+ (a) -
0.6}
0.4f .

0.2 1

ReD(X)
o)
T

-02+ 4
-04 p
-0.6+ p

-0.81 R

-1.0 i 1 L i 1

0.08, T T T T T T T

(c)
0.06} N

0.04f B

0.02- 4

ReD(\)
(o]

-0.06

T
1

-0.08 1 L It L 1
[¢]

one) is free of any discrete mode instability. This we have
shown to be true for €;; >0.01 and extrapolated to all
nonvanishing anisotropies. The absence of continuum
(which we presume is a convective instability) is estab-
lished numerically for €;; >0.03. It is believed that the
continuum does not play an important role regarding the
linear stability of the needle crystal. The conclusion is
then that the fastest-moving needle crystal is linearly
stable for all nonvanishing anisotropy strength.

We should mention that this result is in disagreement
with the direct time-dependent numerical simulations of
the BLM. In a recent paper by Pieters,!” time-dependent
simulations are performed. The method is to put small
perturbations (say, a bump) on the needle-crystal solution
at time zero and then let the system evolve in time. The
motion of the perturbations is monitored to determine if
the needle is stable against the perturbation. Instabilities
are observed for anisotropies below a critical value. The
same scenario had also been observed by Martin and Gol-
denfeld.'®

However, we believe that these observations are the re-
sults of the possible nonlinear instability as discussed in

(b)

0.5 4

ReD(\)
o

i
L

(d)

N

FIG. 4. ReD(A) vs A for the needle-crystal solutions v; (i =0,1,2,...) at A=0.75, €, =0.3, €, =0. A is taken real. ReD(A) has (a)
no zero for the fastest moving needle i =0; (b) one zero at 3.21 for the needle crystal with index number i =1; (c) two zeros at 7.08
and 3.82 for the needle with index i =2; (d) three zeros at 11.89, 8.35, and 4.25 for the needle with index i =3. Here the vertical scale
is amplified by 10°.
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ReD ()

ReD())

10

FIG. 5. D(A) vs € for the fastest needle crystal at different an-
isotropies, A=0.75. (a) Anisotropy in the surface-tension term,
curves from left to right are for €,=0.20, 0.10, 0.05, 0.03, 0.02
and 0.01; (b) anisotropy in the kinetic term, curves from left to
right are for €, =0.10, 0.07, 0.05, 0.04, 0.03, and 0.02.

Sec. IV. At small anisotropy, the threshold amplitude for
the onset of nonlinear instability can be exponentially
small as suggested by Bensimon for the Saffman-Taylor
problem, so a tiny small perturbation may soon ignite the
nonlinear instability and drive the system outside the
linear regime where our results are meaningful.

As a check, we chose parameter values which are in
the region claimed to be unstable by Pieters, for example,
A=0.80, €,=0.04, ¢, =0. We solved for the spectrum
using both the matrix and shooting methods. We found
the needle crystal to be linearly stable.

Of course, a detailed study using more accurate time-

o8- b

1/[1nD(x=0)|

o6 B
0.4} 4

o2t N

6005 00 0I5 020 025 030 03 040

Surface Tension Anisotropy e

(b) 1

08 b

0.6 4

1/]in D (x=0)|

0.4+ T

02r- i

. s 1 .
9] 005 0.10 0.15 0.20 025

Kinetic Term Anisotropy “

FIG. 6. Figure of 1/|InD(A=0)| as a function of anisotropy
€. The solid line is the extrapolation. (a) Anisotropy in
surface-tension term, €,%0, €, =0; (b) anisotropy in Kkinetic
term, €, %0, €, =0.

dependent simulations is needed to confirm the presence
of a nonlinear instability.
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