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This paper is concerned with the onset of rigidity in randomly cross-linked macromolecules. We
discuss in detail the possible partitionings of configuration space, which may accompany the spon-
taneous breaking of translational invariance, treating separately the cases of crystals, amorphous
solids, and cross-linked macromolecules. We describe the order parameters for these systems, draw-
ing the distinction between solids with discrete translational symmetry and solids with macroscopic
translational invariance, such as randomly cross-linked macromolecular solids. We show that the
latter may be described by a sequence of probability distributions for the overlaps of equilibrium
states. In a cross-linked system of impenetrable linear chains, the configuration space of the solid
state is partitioned into two categories of equilibrium states: those related by translational and rota-
tional symmetry, and those unrelated by these symmetries. The latter are a consequence of the dis-
tinct topologies of the network, which are consistent with a given set of cross links. We show how
the overlap-probability distributions may be calculated.

I. INTRODUCTION

In this and the accompanying paper! (hereafter re-
ferred to as I and II, respectively), we shall be concerned
with the statistical mechanics of randomly cross-linked
macromolecular solids. These systems are of special in-
terest, not only because of their remarkable elastic prop-
erties’ and consequent technological and biological im-
portance, but also because of the unique difficulties which
are encountered in the description of their topologically
distinct configurations. Figure 1 illustrates this point: a
set of permanent cross links at given arc-length positions
on given polymer chains does not suffice to uniquely
specify the topology of the network. Many different to-
pologies are consistent with the given constraints. Due
to the permanence of both the backbone of the chains
and the cross links, the realized topology of the system is
determined once and for all when the cross links are
formed. The central problem is to calculate the statistical
thermodynamic properties of the system, accounting not
only for the cross-link constraints, but also for the re-
stricted configuration space available to the system by
virtue of its topology.

A related problem is the description of equilibrium
amorphous solids. Their existence is debatable for un-
constrained systems. However,the presence of quenched
disorder in the form of randomly positioned cross links
between macromolecules, and the consequent topological
constraints, guarantees that if a system of randomly
cross-linked macromolecules has a solid phase, then that
phase is an equilibrium amorphous solid.

Recently, we showed how a system of randomly cross-
linked macromolecules (RCM’s) can become rigid as the
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number of cross links is increased from zero.?> We were

able to demonstrate explicitly within a mean-field approx-
imation that such a system spontaneously breaks transla-
tional invariance when the number of cross links exceeds

FIG. 1. Two topologically inequivalent configurations with
identical cross-link locations.
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one half the number of chains in the system. Further-
more, we showed that the solid phase is indeed an equi-
librium amorphous solid, and we conjectured that the
structure of configuration space which emerges from our
calculation is a reflection of the role of topology in this
system. The purpose of this series of papers is to present
a detailed exposition of this work. In I, we explain the
conceptual framework of our theory, for the most part
without reference to a particular microscopic theory or
approximation scheme. The principal theme is the
description of the possible ways in which configuration
space can be fragmented into ergodic regions (known as
equilibrium states) when translational invariance is spon-
taneously broken.* These considerations lead us to define
an appropriate order parameter which can distinguish be-
tween not only fluid and solid phases, but also between
crystalline and amorphous solids. We also explain how
this information regarding the nature of the equilibrium
states may be obtained.

In II, we consider a minimal model of a network,
which incorporates both the effects of interactions be-
tween the chains and the cross-link constraints.* This
model is also capable of accounting for the topological
constraints and we show explicitly how the theory estab-
lished in I can actually be implemented. Subsequent pa-
pers in this series will study the static and dynamical elas-
tic response of RCM’s. In addition, we intend to report
on a computer simulation which is currently in progress.

Real systems are only able to explore a single topology,
and in principle we would like to be able to perform
statistical-mechanical averages within that one topology.
However, even for the simpler case of a knot or a link,
this is presently impossible. The mathematical obstacles
are worth recalling.’ To perform averages within one to-
pology requires that each nonintersecting configuration
of a knot or link be uniquely specified by a quantity
which depends only on the topology—a unique topologi-
cal invariant.® Topological invariants for knots and links
do indeed exist; examples are the Gauss invariant,’ the
Alexander polynomial,® and the Jones polynomial.’
These are numbers or polynomials which are invariant
under continuous, nonintersecting deformations. Howev-
er, they are not unique. Many topologically distinct
configurations may have the same topological invariant.
For example, of the first 91 simple links of two closed
curves, the Gauss invariant cannot distinguish 29 from
the unlinked case. No unique topological invariants are
presently known and a theory of RCM’s which focuses
on the properties of one topology is not possible at
present.

The main part of the present paper is a discussion of
the relationships between the concepts of broken ergodi-
city, spontaneously broken symmetry, and generalized ri-
gidity.!® It is convenient in conventional treatments of
spontaneous symmetry breaking in systems without
quenched disorder to rely on the method of small fields to
generate nonzero order parameters. For example, in the
case of a Heisenberg ferromagnet consisting of spins
S(x), below temperature 7., rotational invariance is
spontaneously broken; the spontaneous magnetization,
m = (S(x)), is nonzero and aligned along some direction
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in spin space. It is usually calculated by applying a van-
ishingly small uniform external magnetic field along the
chosen direction, thus ensuring that a nonzero magnetiza-
tion results. The expectation value is computed using al/
configurations of the system and the thermodynamic lim-
it must be taken before the zero-field limit is taken. In a
system such as a spin glass, however, the analogous pro-
cedure cannot be followed because the spins order in ran-
dom directions; thus the net magnetization is zero, and a
uniform external field will not select any one equilibrium
state. !!

An alternative procedure is to consider the large-
distance properties of the correlation functions
(S(x)-S(y)), computed using all the configurations of the
system. As [x—y|—>o, (S(x)-S(y))—>m'm. In a
Heisenberg ferromagnet, this limit is nonzero only below
T.. In a spin glass, however, the equilibrium magnetiza-
tion is a random function of position and, for large sepa-
rations, (S(x)-S(y)), evaluated over the entire
configuration space, vanishes. For spin glasses, and as we
shall show, for randomly cross-linked macromolecules,
these methods have failed. An alternative to these
methods is to consider explicitly the structure of
configuration space. This is the approach presented here.

As a simple example of the relationship between sym-
metry breaking and configuration space, consider a sys-
tem with degrees of freedom {c;} with i=1,...,N and
Hamiltonian #{c;}. Suppose, for example, that #{c;} is
translationally invariant. This means that configurations,
which are identical apart from a translation by an arbi-
trary vector a, have the same energy,

FH{c;}=FH{c,+a} . (1.1)
Suppose further that we are interested in computing the

expectation value of some function f;,, k40, taken, in
this example, to be

fix=explik-c;) . (1.2)
Then
Tr, fulc; (—Hfc; )
(fik>a= o/l Cilexp te:) (1.3)

Tr exp(—#{c;}) ’

where the subscript o denotes the microstates to be in-
cluded in the trace. The issue is what microstates should
be included in o? If o includes all the microstates then

(far7=e™2(fy)° (1.4)

and thus ( f; )2 =0. The only way in which {f; ) can
be nonzero is if o does not include all the microstates.
However, this is not sufficient. If all the microstates in
the reduced set o happen to remain in o under the group
of translations, then { f;, ) still vanishes. Therefore it is
only if the reduced set ¢ is not invariant under the sym-
metry group of #{c;} that { f;,)° can acquire a nonzero
value.

The requirement that the set of microstates included in
the trace be restricted is known as broken ergodicity;
when the restricted set is not invariant under the symme-
try group of ##{c;}, then that symmetry is a spontaneous-
ly broken symmetry. It is important to realize that bro-
ken ergodicity may occur without spontaneous symmetry
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breaking; an example is the liquid-gas transition on the
coexistence line. We will find it fruitful to think of
RCM’s in the following way. Imagine a network of ran-
domly cross-linked macromolecules, which do not in-
teract in any way at all (we will discuss later the compli-
cations due to the instability of this situation). All
configurations consistent with the cross-linking con-
straints are accessible. Now impose the additional con-
straint that the polymers cannot pass through each other.
Then the set of accessible configurations is reduced, and
depends only on the state of the system at the time of im-
position of the additional constraint. In this sense, then,
imposition of topological constraints is associated with
broken ergodicity.

When a system undergoes the spontaneous breaking of
a symmetry, it also acquires a generalized rigidity. Exam-
ples are spin-wave stiffness, London rigidity of a super-
conductor, and the rigidity of solids. If the two-point
correlation function either tends to a nonzero constant or
exhibits power-law decay at long distances, then the
divergence in the corresponding susceptibility is a signa-
ture of stiffness with respect to an appropriate external
probe. A sufficient, but not necessary, condition for the
occurrence of generalized rigidity is that a symmetry is
spontaneously broken. We shall discuss in detail how
various solids acquire their rigidity through the spontane-
ous breaking of translational symmetry. In particular, we
shall discuss the application of these ideas to equilibrium
amorphous solids, and to RCM’s, where the effects of to-
pology are important too.

We now give an overview of the present paper. Section
IT is devoted to a brief discussion of the description of
configuration space for classical systems in the thermo-
dynamic limit. In particular, we stress the logical rela-
tion between the concepts of ergodicity breaking, spon-
taneous symmetry breaking, and generalized rigidity. We
begin by describing the equilibrium-state decomposition
of configuration space for simple systems® and then for
randomly cross-linked macromolecules. By the term
“simple,”” we mean that the solid is formed from atoms or
nonpolymeric molecules. In Sec. ITI we address the issue
of how to define an order parameter for the solid state.
This issue is problematic for equilibrium amorphous
solids, where there are no distinguished Fourier com-
ponents of the density. We show that a suitable descrip-
tion of an equilibrium amorphous solid is in terms of a
certain overlap, which, loosely speaking, compares pairs
of ergodic regions in configuration space. This concept
has proved useful in the theory of spin glass.!> We con-
clude, in Sec. 1V, by discussing the practical implementa-
tion of the theory, by both Monte Carlo simulation and
analytically, using the replica method. We have included
an appendix, for completeness, which briefly summarizes
the properties of equilibrium states on which our theory
is based.

II. PHASES, EQUILIBRIUM STATES,
AND CONFIGURATION SPACE

A. Configuration space for gases, liquids, and simple solids

Before we discuss our central topic, namely, the struc-
ture of configuration space for a system of RCM’s, we
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first consider the structure of configuration space for
matter in the absence of topological constraints. The
reader may wish to refer to the Appendix in which we
briefly summarize the properties of equilibrium states.

For concreteness, consider a single atomic species
whose phase diagram consists of the sequence gas to
liquid to crystal as the temperature is reduced from a
sufficiently high value. We are interested in qualitative
features concerning the structure of configuration space,
and accordingly, the discussion below requires the
infinite-volume limit to be taken. In Sec. II C we shall
contrast these features with those which we expect for a
cross-linked system with topological constraints.

When the system is in either the liquid or the gas
phase, all configurations are accessible and the system is
ergodic. There is a unique translationally invariant equi-
librium state; all correlation functions are isotropic.
There is a special case to be considered, namely, the
liquid-gas coexistence line. If the density is increased at
constant temperature, there comes a point beyond which
the pressure remains constant and a fraction of the sys-
tem is found in the liquid phase. As the pressure is in-
creased further, the fraction of the system which is liquid
increases until eventually the entire system has been con-
verted to the liquid state. Further increase in the density
will be accompanied by an increase in the pressure. In
this two-phase region, the system is in a mixed phase.
There are two translationally invariant extremal mea-
sures, p; and pg, corresponding to the liquid and gas, re-
spectively, and the measure in the two-phase region prp
may be written in the form prp=ap; +(1—a)p;, where
0=<a=1. The measure pyp does not possess the cluster
property, and thus there are large thermodynamic fluc-
tuations, in accord with the physical interpretation of
prp- At liquid-gas coexistence, there is no symmetry
which is spontaneously broken, although ergodicity is
broken.

Now let us assume that the liquid phase crystallizes
below the melting temperature T,,. This transition in-
volves a loss of symmetry, and so ergodicity is broken.
The symmetry which is broken is continuous translation-
al invariance. The resulting crystal is describable in
terms of its center of mass, and the mean positions of all
the atoms relative to the center of mass. The measure
which describes the crystalline state is invariant under a
subgroup of the original symmetry group, corresponding
to discrete translations and rotations. The degeneracy of
the system with respect to the position of the center of
mass of the crystal implies that the configuration space
must be fragmented into an infinite set of equilibrium
states, which are related by global translations. In other
words there is an equivalent set of microstates of the sys-
tem for every possible position of the center of mass. In
addition to the measures corresponding to the crystalline
state, which we shall refer to as lattice-group-invariant
extremal measures, there may be measures which are not
even invariant under the crystal symmetry group. Such
measures may be thought of as corresponding to crystals
with a defect such as a stacking fault, for example, and
have the same free-energy density as the perfect crystal.
The set of microstates contained within the union of all
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the extremal measures is equivalent to those over which
the system is ergodic in the fluid phase. Each individual
extremal measure, however, breaks translational invari-
ance. If we perform a global lattice translation on the
system, the set of microstates in a given lattice-group-
invariant extremal measure o maps in a one-to-one
fashion on to the microstates in another lattice-group-
invariant extremal measure o’'. Lastly, notice that if we
perform thermal averages over the entire set of measures
(i.e., the complete configuration space), the result is
translationally invariant and isotropic.

B. Configuration space for cross-linked macromolecules

Let us now consider the way in which configuration
space can be fragmented for a specific realization of a sys-
tem of cross-linked macromolecules. Notice that the im-
position of cross links does not explicitly break the
translational and rotational symmetry. Suppose that we
are able, at will, to make the macromolecules penetrable
or impenetrable to each other (but otherwise noninteract-
ing) and, furthermore, suppose that we are able to control
the number of cross links per chain N, in the system.

If N, =0, then regardless of whether the chains are pe-
netrable or impenetrable, the system is ergodic and the
equilibrium state is translationally invariant. If N, 30,
then we must consider the impenetrable and penetrable
cases separately. In both cases, the number of degrees of
freedom is reduced by each cross link. For the penetrable
case, all of the configurations, consistent with the con-
straint imposed by the cross links, are available to the
system. For the impenetrable case, however, there is a
further reduction in the number of configurations avail-
able to the system, by virtue of the fact that the system is
trapped within one topology. The topology in which the
system is trapped is determined by the configuration of
the chains at the precise time of formation of the cross
links. Thus the microstates accessible to the system are
neither the complete set, nor the restricted set consistent
with the cross links, but a still smaller set, determined by
both the cross-link positions and the configuration of the
chains at the time of cross linking.

The problem of interest is to compute the properties of
an impenetrable system trapped within a particular topol-
ogy. Such a system can potentially be either solid or
liquid. The set of microstates consistent with a particular
topology is translationally and rotationally invariant, in
the sense that any of these global symmetry operations
acting on any microstate in the set yields another micro-
state in the set. If the system is ergodic over this set, then
it is not solid. On the other hand, for the system to be
solid, then ergodicity must be further reduced beyond the
set of microstates of which the particular topology is
composed, in order that translational symmetry be bro-
ken.

There are two possibilities for the fragmentation of
configuration space in the solid phase. In both cases,
configuration space is broken into sets of topologically
equivalent configurations, each set being translationally
invariant. In the solid phase, each set is decomposed fur-
ther into equilibrium states which are not translationally
invariant.
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In the first and simpler case these equilibrium states
owe their existence to the spontaneous breaking of
translational invariance and, hence, are related by global
symmetry operations. In this picture of the partitioning
of configuration space, a given physical sample of a
rubber would be solid in a unique way (up to global sym-
metry operations); this is analogous to the way that the
ferromagnetic phase of a Heisenberg ferromagnetic is
unique (up to global rotations in order parameter space).
In this case, symmetry-unrelated ergodic regions of
configuration space arise only when one considers the en-
semble of all possible topologies for a fixed set of cross
links.

The second possibility is that each of the sets of topo-
logically equivalent configurations is broken up not into a
single family of symmetry-related equilibrium states, but
into more than one such families. There is no symmetry
relationship between members of different families. Thus,
even within the ergodic regions of configuration space
defined by one topology, there is no unique way for a
RCM to be solid.

In the usual case of simple liquids, the system is com-
pletely ergodic. Even in the liquid phase of RCM’s there
can be topologically inequivalent configurations and,
hence, more than one equilibrium state, none of which
has broken translational symmetry. An order parameter,
such as that described in Sec. III, which only recognizes
equilibrium states with broken translational invariance,
cannot detect the difference between this case and the
completely ergodic case.

III. ORDER PARAMETERS FOR SOLIDS

The purpose of this section is to discuss the difficulties
associated with defining an order parameter for an amor-
phous solid, and to show how these difficulties may be
resolved. We begin by recalling the case of crystalline
solids, where translational invariance is broken, but a
discrete symmetry group, the lattice group, remains.
Then we contrast this case with amorphous solids, where
there is no residual symmetry, and yet an examination of
the density over a sufficiently large region reveals no dis-
tinguished Fourier components. We shall find it con-
venient to use the normalized density

m”(r)=71[~2(5(r—r,»)>” . (3.1

1

Finally, we introduce the concept of a self-overlap, gy
The principle attributes of gy are that (1) it vanishes if
the external equilibrium state o corresponds to a liquid;
(2) it can take on nonzero values for a crystalline or
amorphous solid; and (3) for a crystal it is nonzero when
k and k' satisfy the Bragg condition, whereas for an
amorphous solid gy is zero unless k+k’=0.

A. Crystalline solids

A crystalline solid is a translationally invariant system
whose equilibrium states retain only a discrete subset of
this translational invariance, namely, the lattice group.
Let us consider such a system, with N atoms located at
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positions c; in the equilibrium state o. The atoms have
mean positions (c; )’ about which they fluctuate. The
residual symmetry of the state yields mean atomic posi-
tions which lie on a regular lattice. The Fourier trans-
form of the normalized microscopic density,

1 N
mi=—3 (exp(—ik-;))?,

N 2 (3.2)

transforms like Eq. (1.4) under lattice translations.
Hence, in the thermodynamic limit, m{ vanishes unless
k=G, where G is an reciprocal lattice vector. On the
other hand, for a liquid, which is translationally invari-
ant, mg =0, unless k=0. Thus {m]}] provide a suitable
order parameter for the transition between liquids and
crystals.

B. Equilibrium amorphous solids

A system with a translationally invariant Hamiltonian
is said to be an equilibrium amorphous solid when it is in
an extremal equilibrium state ¢ in which the translational
invariance is completely broken. Although the atoms are
localized and fluctuate about mean positions {c;)’, the
mean positions do not lie on a regular lattice. Thus m7 is
composed of a set of random phase factors, implying that
m{ ~0(1/N'?). In the thermodynamic limit, m{=0
unless k=0, and thus the normalized density is not a
suitable order parameter for distinguishing between
liquid and amorphous-solid states.

The failure of the conventional order parameter leads
us to propose the following order parameter, which we
call the self—overlap'

—ik-c; <e*ik’-c‘>o ) (3.3)

We shall indicate some of its general properties and illus-
trate them with the simple example of an Einstein solid.
Firstly, if o represents a liquid state, then for k,k'+0,
(e ik )9 vanishes, and thus gy also vanishes. Second-
ly, if o represents a crystalline state, then
qﬁl:{:(e*ilvu)a(e—ik’-u)o28k+k"G , (3.4)
G
where u is the displacement of any atom from its equilib-
rium position. Thus gyy. detects the crystalline state, be-
ing the sum of Kronecker & functions, with temperature-
dependent weights. Thirdly, if o represents an amor-
phous state, then

(3.5)

crystalline

gix <dryo -
Hence gy, differentiates between liquids,
solids, and amorphous solids.

For an Einstein model of a d-dimensional amorphous
solid with a mean-square atomic displacement, £°d we ob-

tain the result

0 liquid

_ 2 12y £2 . .
gl = |e WK FKIE S 8 v crystalline solid
G

_ 24 302\2 .
e ~/AKIHEDE amorphous solid .

(3.6)

B0,k +k’

These results explicitly display the way in which the sym-
metries of the state of the system are reflected in the or-
der parameter.

We have seen that it is the random phases associated
with the random atomic positions which render useless
the simple density-order parameter. An analogous prob-
lem occurs in the theory of spin glasses. For example, in
the Ising spin glass, a system of N spins S; =1 are sub-
ject to random interactions. At high temperature, the
system is paramagnetic, but at low temperature, a spin-
glass phase is found. There, the magnetization per unit
volume m? is zero, despite the fact that each spin adopts
a preferred direction

E— S (S;)=0,

r—-l

—2(5)(5);&0

Ill

If all the extremal states {o} are related by global inver-
sion, then ¢ is the Edwards-Anderson order parame-
ter.3

In order to calculate ggy, it is in fact necessary to gen-
eralize the definition of the overlap. Instead of consider-
ing just the self overlap ggZ, we consider the overlap ¢ggZ
between all pairs of states o and o,

= z (e "y(e My

lvl

ik (3.8)

This quantity arises naturally, when one recognizes that
two configuration space averages are required to con-
struct the nonvanishing order parameter gy

C. Cross-linked macromolecules

Although our primary interest is the case of randomly
cross-linked macromolecules, we first consider the case of
regularly cross-linked macromolecules. By this, we mean
a set of macromolecules cross linked periodically along
their arc length. The cross links are separated by an arc
length large compared with the persistence length. We
have in mind a picture of a tennis net of macromolecules,
generalized to three dimensions, cross linked at every
node, as illustrated in Fig. 2. It is plausible that the be-
havior of the system is as follows. Suppose the system is
prepared in a microscopic state which has the same to-
pology as a tennis net. We shall refer to this topology as
the natural topology. The equilibrium state will be a
crystalline solid, in the sense that the equilibrium mean
values of the monomer positions will form the bonds of a
periodic lattice and the mean positions of the cross links
will lie on the vertices of the lattice. In equilibrium the
system will, of course, fluctuate about the mean
configuration, but only to configurations with the regular
topology.

Now consider the set of all microscopic configurations
irrespective of the topology, but still regularly cross
linked. The overwhelming majority of the configurations
will not possess the natural topology. A small fraction of
the configurations may be characterized as having the
natural topology apart from a finite number of isolated
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FIG. 2. Illustration of a regularly cross-linked macromolecu-
lar network.

topological defects, as shown in Fig. 3. (By the term “de-
fect” we mean a local alteration of the topology which re-
sults from the passing of one chain segment through
another, as occurs between Figs. 2 and 3.)

Typical configurations will not be of the form of a net-
work in the natural topology, but with a small number of
defects. Instead, they will be amorphous, with so many
defects that they will not be recognizably crystalline.

If the system is prepared in a typical configuration the
achievement of periodic ordering will be frustrated by the
impenetrability of the chains, and the normalized equilib-
rium density, Eq. (3.2), will vanish. States having a finite
number of defects will have a free energy which is larger
by a finite amount than that of states in the natural topol-
ogy. They will also be microscopically indistinguishable
from states with the natural topology; their self-overlap
will equal the self-overlap of states with the natural topol-
ogy, which will also equal their mutual overlap.

Now consider states whose topology is macroscopically
different from the natural topology. These cannot be
generated by inserting a finite number of defects into the
natural topology and have a free energy which is larger
than that of states with the natural topology by an

FIG. 3. Topological defect in a regularly cross-linked macro-
molecular network.
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amount which diverges in the thermodynamic limit. We
define the normalized Boltzmann weight of the equilibri-
um state o, to be w?, where

_po
W= ——— (3.9)
Se’
and the free energy of o is
9= —InTr, e /. (3.10

The Boltzmann weights of the amorphous states are
negligible compared with those of the natural topology
and those states which are microscopically identical to it.

We now turn to the case of randomly cross-linked ma-
cromolecules with sufficient cross links to cause rigidity.
In this case, there is no counterpart to the unique natural
topology that occurred for the regularly cross-linked
case. For the randomly cross-linked case, there will be at
least one amorphous equilibrium state with the lowest
free energy. There will also be states whose free energy
differs from this by a finite amount. However, in contrast
to the regular case, we conjecture that these states do not
necessarily bear any relation to the minimum energy
states; they need not be generated from any of the states
of lowest energy by a finite number of defects.

For the regular case, all states with nonvanishing
weight can be obtained by inserting a finite number of de-
fects into a state with natural topology; these states are
microscopically identical. In the amorphous case, by
contrast, there are states with nonvanishing weight which
cannot be related by the insertion of a finite number of
defects; these states are microscopically distinct.

Consider a system of N polymer chains, labeled
i=1,...,N. Each chain has arc length L and per-
sistence length /. This means that in the absence of in-
teractions the orientation of the chains persists for an
arclength of order /. Effectively, the total number of de-
grees of freedom is NL /I. A configuration of the system
is described by the positions of the monomers at arc-
length s on each chain, c;(s). The normalized density in
the equilibrium state o is given by

1

g=— 3.11
my NL ( )

g fOLds(exp[—ik-cj(s)]>” .

j=1

If o describes either a liquid state or an amorphous solid
state then my vanishes unless k=0. The self-overlap is
given by

qoe = e ﬁ‘, des<exp[ —ik-c;(s)])°
7 AR :

X (exp[ —ik’-c;(5)])° . (3.12)
If o corresponds to a liquid state and both k and k' are
not equal to zero, then gg2=0. If o corresponds to a
solid, either amorphous or crystalline, then gy will not
vanish. Between them, m{ and g}y distinguish between
liquid, crystalline, and amorphous solid states.

It is also convenient to define the overlap
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1

. N orL . o
qis =1-VZ zlfo ds (exp[ —ik-c;(s)])

j=

X (exp[ —ik'-c;(5)])", (3.13)

which, under the replacement of o by a symmetry-related
counterpart &, transforms as

g3 =exp(—ik-a)ggg,, , (3.14)
where each configuration in & is obtained from a
configuration in ¢ by first translating by a and then rotat-
ing by R. The notation R designates the inverse of R. So
far, we have only introduced overlaps between two equi-
librium states. As we shall see in paper II, these overlaps
are only the lowest in an infinite sequence of overlaps be-
tween any number of equilibrium states whose disorder-
averaged probability distributions emerge from the field-
theoretical approach. Generalizing the two-state over-
laps, we introduce the overlap between m equilibrium
states o0,,...,0,, at nonzero wave vectors ki,...k,,,
defined to be

== 3 [lasem ey

—ik, -c.(s) o
m i )

X (e " (3.15)

As it stands, this overlap is not invariant under the re-
placement of ¢ by a symmetry-related equilibrium state.
Since we would like to classify states into those which are
related by symmetry and those which are not, we shall
eliminate this dependence by using the symmetrized over-
lap

172
2 |qal ,,,,, o, |
q”' ,,,,, o Ry,..., R, 4R k,, ..., R,k
(kyo-. o, Kk, = ,
ERI ,,,,, R, OR k,+ -~ +R_k, .0
(3.16)

where R; are notation matrices for cubic symmetry, and
the quantity is only defined whenever the denominator
does not vanish. The modulus function eliminates the
effect of translations and the summations eliminate the
effect of cubic rotations. We have assumed that the sys-
tem is in a cubic box with periodic boundary conditions.

The symmetrized overlaps {gfy ’k’(} yield two pieces of
information. Firstly, if q?lzk’l is nonzero, then o de-
scribes an equilibrium amorphous solid. Secondly, if
there is any variation in the numerical values of {q‘,’f“ },
then there are necessarily equilibrium states which are
not related by a global symmetry operation. The sym-
metrized overlap and the symmetrized self-overlap enable
us to compare equilibrium states at two levels of detail.
If the configuration in two equilibrium states o and o’
differ by only a finite number of topological defects, then
we refer to the states as being microscopically identical.
With probability 1, any given monomer will fluctuate in
the same way about the same mean position, modulo glo-
bal symmetry operations, in either equilibrium state. For
such states,

a0 =90 =4 - (3.17)

If the states are not microscopically identical, then one
possibility is that they have different symmetrized self-
overlaps. They they correspond to macroscopically ob-
servably different states, and we refer to them as being
macroscopically distinct. A second possibility is that a
pair of states may have identical symmetrized self-
overlaps, which differ from the symmetrized overlap. In
this case, the states are macroscopically identical, al-
though microscopically distinct. Lastly, we note that
there is no a priori necessity for there to be symmetry-
unrelated equilibrium states in an equilibrium amorphous
solid.

We shall now introduce a sequence of probability dis-
tributions, which describe how configuration space is
decomposed into equilibrium states. The primary virtue
of these distributions is that their disorder averages may
be approximately calculated by averages over the entire
ensemble of microscopic configurations consistent with
the cross-link constraints, as shown in Sec. IV.

Define the set of probability distributions for the sym-
metrized overlaps

4 a 1Oy

PR @= 3 w’wmeg =gl ).
Tpenes .

(3.18)

This collection of probability distributions will serve as
the order parameters. Notice that at this stage they have
been defined for a particular realization of cross links.
Furthermore, every microstate of the system consistent
with the cross links is included on the right-hand side of
Eq. (3.18).

Now suppose that we knew these probability distribu-
tions. What would they tell us about the system of
cross-linked macromolecules? There are three possible
cases for us to consider.

(i) Each of the probability distributions is a Dirac
function at the origin. This implies that all the equilibri-
um states (and there may only be one) with nonzero
weight have zero symmetrized overlap and hence are
translationally invariant and liquid. Notice that this case
does not imply that there is only only fully ergodic equi-
librium state. As one might anticipate for the case of a
lightly cross-linked system, a choice of topology might
exist. However, for each topology the system is liquid,
and hence all overlaps vanish.

(ii) Each of the probability distributions is a Dirac §
function, with weight at a nonzero value of the overlap.
In this case, all equilibrium states with nonvanishing
weights have a common value of the symmetrized over-
lap. This implies that they are all related to each other
by symmetry, apart from a finite number of local
differences which would not exhibit themselves in a mac-
roscopic quantity such as an overlap. If we were consid-
ering the crystallization of a simple atomic fluid then
single-peaked sharp distributions are what we would ex-
pect. Even though there may exist extremal equilibrium
states with, for example, domain walls, the infinite in-
crease in free energy due to the inhomogeneity would
lead to vanishing normalized Boltzmann weights and
these states would be completely suppressed from the dis-
tribution. For the simple Einstein solid of Sec. III,
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PR (@=8g—q), (3.19)
g=exp |[—1& 3 Ik /|*| . (3.20)
i=1

(iii) The probability distributions have weight at a
variety of nonzero values of the overlap. This implies
that there are equilibrium states with broken translation-
al symmetry and nonzero Boltzmann weights which are
microscopically distinct from each other. There are, of
course, the symmetry related counterparts of these states
and states which differ from them only by local defects.
Each of the equilibrium states may or may not have the
same value for its self-overlap.

IV. CALCULATION OF THE OVERLAP
DISTRIBUTIONS

As we stated earlier, the two principal techniques for
establishing the existence of broken symmetry—the
|

(2) - o0 < W/B)E 1 < oL
";k’k'l(y)_ 2 w w 20 a! N ilzzl N i

M=

1

N
Q\
o
I

a

X Ods; S 0 3 (e

B= 3 Orx+rw0 -
R,R’

The next step is to use the cluster property of the equi-
librium states to assemble the equilibrium state averages
into a Gibbs average over m copies of the system (i.e.,
averages over all the microscopic configurations of M
identical uncoupled copies of the original system, weight-
ed by the sum of Hamiltonians, one for each copy of the
system). The Gibbs average of a quantity O is given by

(0)=—Trle "0)= S w’(0)°, (4.4)
where the Gibbs partition function is
Z=Tre 4.5)

and Tr includes all configurations. Resumming the ex-
ponential series, and inverting the Laplace transform, we
finally obtain

P (@)=(8(g =Qix )2 (4.6)
1 X L, —ikclo—ik-cis)
12 i i
Bom i 3 Jlase e
where { --- ), denotes a Gibbs average over two in-

dependent copies of the system, with the cross links at
the same arc-length positions in the two copies. A simi-
lar result applies in the general case

PR ((@=(8g = Qi e ) ) m

---------- m

(4.8)
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methods of small fields and of invariant correlation
functions—are doomed to fail for equilibrium amorphous
solids. In Sec. III we have introduced order parameters,
in the form of probability distributions, which detect the
existence of amorphous solid states. Superficially, it
seems that these distributions are no more calculable
than those quantities for which traditional methods fail.
In this section, we shall show how one can approximate
P ., | () from a statistical-mechanical average over

m copies of the entire configuration space. The technique
developed in this section relies heavily on the work of
Parisi on the infinite-range Ising spin glass.'* For simpli-
city, we consider the distribution function P(Qi),k'l defined
in Eq. (3.18). The generalization to higher distributions is
straightforward. For convenience, we work with the in-
tegral transform of P‘{ifk:l (g) defined by

WiRei0)= 7 dg e Py (@) @
Expanding the exponential and inserting the definition of
the symmetrized overlap, we obtain

N N
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Thus we have reduced the problem of calculating the
overlap probability distributions to the problem of per-
forming a Gibbs average over all the microstates of the
system; in fact m such Gibbs averages. We are, of
course, still unable to complete the calculation analytical-
ly, even approximately, because of the presence of the
random cross-linking constraints. However, this form
lends itself to evaluation using Monte Carlo methods; a
calculation is currently in progress. This difficulty is
resolved by the replica method, which we now describe.

The idea of the replica method is to calculate the over-
lap distributions, averaged over the probability distribu-
tion for the locations and number of constraints, by
averaging over the disorder before performing the aver-
age over configuration space. However, this cannot be



1410

done directly, since both the numerator and denominator

in Eq. (4.7) depend on the quenched random constraints.

The denominator in the expression for P([',Z’l) ki is sim-
m

ply Z™. The replica method exploits this observation by
introducing a further factor of Z” =" in both the numera-
tor and denominator of Eq. (4.7), where n is an arbitrary
integer greater than or equal to m. Thus the denomina-
tor becomes Z". If the dependence of the denominator
on the disorder were eliminated, then the disorder aver-
age could be performed. This is achieved by taking the
n—0 limit. Denoting the disorder average by [ --- ],
our expression for the disorder-averaged overlap distribu-
tions becomes

,,,,,,,,,,, (4.11)
The form that these order parameters take, as the mean
number of cross links and the Hamiltonian are varied,
determines the equilibrium properties of the system.
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APPENDIX: BREAKING OF ERGODICITY
AND CONTINUOUS SYMMETRY

Our approach to describing the equilibrium properties
of RCM’s relies on considering the sets of microstates
which the system can explore for given constraints and
values of the parameters in the Hamiltonian. As em-
phasized by Dobrushin, Lanford, Ruelle, and others, in
equilibrium, the physical state of an infinite system can be
described by a probability distribution, or measure, p on
configuration space.’ This measure is usually known as
an equilibrium state. In this appendix, we shall summa-
rize the properties of equilibrium states.

The equilibrium states satisfy a set of equations usually
associated with the names of Dobrushin, Lanford, and
Ruelle, whose physical content is that each subregion of
the system is in local equilibrium with the rest of the sys-
tem. Alternatively, the equilibrium states satisfy a varia-
tional principle, in the infinite-volume (V— o) limit.
Physically, the variational principle requires that, at tem-
perature T, equilibrium states p minimize the free energy
density, f[p], where

Vilpl=Flpl=E[p]—TS[p], (AD
and the energy E and entropy S are given by

E[p]=TrpH (A2)

S[p]=Trplnp . (A3)

For finite simple systems, the equilibrium state is
unique and is just the familiar form
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poce /T, (A4)

For a finite system of cross-linked macromolecules the
equilibrium state is unique only for each set of topologi-
cally equivalent configurations. However, for infinite sys-
tems, the equilibrium state need not be unique.

Now consider systems with a Hamiltonian which is in-
variant under the elements of a symmetry group G. Let
us first discuss the case when there is no spontaneous
symmetry breaking. All of the equilibrium states are G
invariant, and there is always at least one of them. These
equilibrium states form a convex set, which is to say, if p,
and p, are equilibrium states, then the convex sum

p=ap,+(1—a)p,, 0<a<l (AS)

is also a G-invariant equilibrium state. For our purposes,
the most important result about these equilibrium states
is the following: any equilibrium state p can be uniquely
decomposed into a convex sum of extremal equilibrium
states p,:

P=Dapys > a,=1, 1Za,20. (A6)
a a

The extremal equilibrium states have several distinguish-
ing features. Firstly, they are extremal in the sense that
they cannot be written in the form of Eq. (A6). Secondly,
they are disjoint; each microstate of the system lies
within only one extremal state. Thirdly, the extremal
equilibrium states cluster. Clustering is a property of the
correlation functions of the degrees of freedom 1, name-
ly, that

lim [($(x,) - ¥(x,)¢(y, +a) - - ly, +a))?

—

= C(xy) - Px, N (lyy) Py, ) 1=0, (A7)

where ( - -- )? denotes an expectation value calculated
with the measure for the extremal equilibrium state o.
Only the extremal states cluster; a convex sum of ex-
tremal equilibrium states does not possess the cluster
property. Fourthly, extremal G-invariant equilibrium
states all have the same free-energy density. The G-
invariant extremal equilibrium states are called equilibri-
um states, because they have the physical interpretation
that they describe a state of homogeneous equilibrium.
The cluster property guarantees that the equilibrium
states have small fluctuations and so have good thermo-
dynamic behavior.

We now discuss spontaneous symmetry breaking. Sup-
pose that at some value of the parameters in the Hamil-
tonian the system is in an equilibrium state with respect
to G. It may happen that, for a different set of values of
the parameters in the Hamiltonians, the correlation func-
tions are such that the cluster properties of the original
measure have been lost. Then there are no G-invariant
extremal equilibrium states, but there will be extremal
equilibrium states which are invariant under some sub-
group H of G. For this value of the parameters, then, the
system will be found in a state corresponding to one of
the equilibrium states with respect to H. Since the ex-
tremal equilibrium states are disjoint, ergodicity has been
broken. Furthermore, since the equilibrium states are



only invariant under a subgroup of the group of invari-
ances of the Hamiltonian, symmetry has been broken. To
summarize, the symmetry of the Hamiltonian is spon-
taneously broken when the symmetric measure is no
longer extremal; instead each extremal measure is invari-
ant under a small symmetry group.

It follows that the equilibrium states with respect to H
are related by symmetric operations in G/H. Let us clar-
ify what this means in the present context. Two regions
are said to be symmetry related if the application of a
symmetry operation in G /H to all the microstates within
a given ergodic region of configuration space generates all
the microstates within another distinct region of
configuration space. Which symmetry operation in G /H
is actually required depends on which two regions are be-
ing considered.

The loss of the cluster property of the G-invariant equi-
librium states is associated with the acquisition of long
range order. The H-invariant equilibrium states give rise
to a nonzero order parameter, and although the connect-
ed correlation functions cluster, their large-distance be-
havior retains a vestige of the spontaneous symmetry
breaking. A familiar example is the case of the O(3)
Heisenberg model for a system of classical vector spins
S(x) in three dimensions. Above the transition tempera-
ture T,, there is a single translationally invariant and
O(3)-invariant extremal measure, corresponding to the
paramagnetic phase. The magnetization M =(S(x))
vanishes. The connected two-point correlation function
G*(x,y)=(S*x)S*(y)) is isotropic in spin space and
decays exponentially to zero as |[x—y|— . We will
shortly mention the implication that this behavior has for
the spin-wave stiffness, or generalized rigidity of the or-
der parameter M. Below T,., there is a continuum of
translationally invariant and O(2)-invariant extremal
measures, corresponding to the degenerate family of fer-
romagnetic phases. The magnetization is nonzero and
translationally invariant, and its direction in spin space n
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labels the O(2)-invariant equilibrium states. G#*(x,y) is
no longer isotropic, but instead may be separated into
longitudinal and transverse components

GM(x,y)=G(x,y)n*n"+Gr(x,y "' —ntn") . (A8)

As |x—y|— o both G, and G decay to zero. However,
G, decays exponentially, while G decays with a power
law. This power-law decay of the transverse correlation
function is an example of Goldstone’s theorem, which
states that, in general, the spontaneous breaking of a con-
tinuous symmetry leads to long-range transverse correla-
tions.

An important physical consequence of spontaneous
symmetry breaking is the concept of the rigidity of the
other parameter. In the example given above, the system
is said to be rigid because the magnetization resists defor-
mations which locally distort it from its equilibrium
value. The change in the Gibbs free energy 8G due to the
distortion 8M is

8G +0(8M*)

iy |sM[]12  |8ME|?
P Ay Ay

=13 [RK?SM] 1>+ 4 (1+k%6%)|8ME|?]
k

+0(8M* k%), (A9)
where BMﬁ'T are, respectively, the Fourier components of
the longitudinal and transverse parts of the deviation of
the magnetization from its uniform value, A" T are the ei-
genvalues of G%7(x,y), and A4 is a constant. The
coefficient R is known as the spin-wave stiffness. A spa-
tially uniform transverse fluctuation costs no Gibbs free
energy, in contrast to the case for such a longitudinal
fluctuation. Consequently the magnetization will rigidly
rotate under the application of an infinitesimal transverse
field.
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