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Dynamics of phase separation in block copolymer melts
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We consider the partial differential equation which describes phase separation in a block copoly-
mer melt. We construct numerically the periodic solution which minimizes the free energy. The
lamellar thickness of the final equilibrium pattern is found to scale with the molecular weight as a
power law XL -N . The exponent 9 takes the value —,

' in the weak-segregation regime and —, in the

strong-segregation regime. We propose a scaling theory of the dynamics, from which we obtain
8=2/, where P is the scaling exponent in spinodal decomposition, in agreement with a conjecture
by Oono and Bahiana [Phys. Rev. Lett. 61, 1109 (1988)]. Lastly, we also study the pattern formed

by propagating fronts. The selection of the unique velocity of the front and of the wavelength of the
pattern behind the front agrees well with the marginal-stability theory.

I. INTRODUCTION

When a homogeneous binary system in its high-
temperature stable phase is quenched rapidly below its
critical temperature, phase separation occurs. The sys-
tem will eventually phase separate into its two stable
states through either spinodal decomposition or nu-
cleation. In spinodal decomposition, after the system is
quenched, initial microscopic fluctuations grow in magni-
tude and develop a pattern with a single characteristic
length scale 1(t). It has been established that in the late
stages of phase separation, the variation of the length
scale with time obeys a power law, 1(t)- t ~. Consequent-
ly, the scattering form factor also adopts a universal scal-
ing form. ' These scaling laws are now well established,
and have been extensively studied by both real and com-
puter experiments, as well as analytical calculations. The
value of the exponent P depends on whether or not the
order parameter, which in a binary alloy is taken to be
the density difference between the two components, is
conserved. In the conserved case, there is strong evi-
dence that the exponent P= —,', while in the nonconserved
case, it is believed that tb= —,'. ' These results do not ap-
pear to depend on the dimensionality of the system.

In a block copolymer (BCP) melt, the phase separation
process proceeds differently. A block copolymer is a
linear chain molecule consisting of two covalently bonded
monomer units A and B. In the copolymer melt above
the critical temperature T„A and B mix. Below T„
when the two sequences are incompatible with each oth-
er, the copolymer melt undergoes phase separation.
However, spinodal decomposition cannot occur because
the two monomer sequences are chemica11y bonded, and
thus cannot separate indefinitely. As a result, the phase
separation occurs on a mesoscopic scale where banded
microdomains of A-rich and B-rich regions emerge in the
final equilibrium state.

Experimentally, ordered periodic lamellar, cylindrical
or spherical structures have been observed. The period
A,l of the lamellar structure is found to scale as a power

law with the polymerization index N, i.e., kL-N . In
the so-called weak-segregation regime, where the thick-
ness g of the interface between the A-rich and 8-rich
phase is comparable to kL, the exponent 0„=—,', while in

the strong-segregation regime, where g ((XL, 0, = —', .

Ohta and Kawasaki have studied this system using a
variational method. They minimized the Landau free en-
ergy given by Leibler, and by assuming a certain form
for the trial order parameter, they obtained the exponents
mentioned above. Oono and Shiwa later proposed to
model the BCP system by a computationally efficient cell
dynamical system method, which models the time evolu-
tion of the system on a discrete space-time lattice by in-
jective map dynamics. In two dimensions, the cell
dynamical system approach has been pursued by Oono
and Bahiana, who confirm that the weak-segregation ex-
ponent 0 =

—,'. Unfortunately, they cannot reach the
more interesting strong-segregation regime, being limited
by the huge computation time requirement. However,
they argue, by dimensional analysis, that the —,

' strong-
segregation exponent is exact and, moreover, that the
BCP exponent 8 is related to the spinodal exponent P
through the relation 0=2/.

The purpose of this paper is to analyze pattern forma-
tion in block copolymer melts from the more traditional
formulation using partial differential equations. The
dynamical equation describing phase separation in block
copolymer melts is a modification of the Cahn-Hilliard
equation. We show that this equation possesses a family
of periodic lamellar states. By rninirnizing the Lyapunov
free-energy functional we are able to select a state with
minimum free energy which physically corresponds to
the lamellar pattern observed in block copolymer experi-
ments. We confirm the scaling relation A, L —N and
demonstrate the crossover from a weak-segregation ex-
ponent of 0 =

—,
' to a strong-segregation exponent 0, = 3.

A scaling form for the length scale as a function of time
and polymerization index is also proposed that leads nat-
urally to the conclusion 0=2/. This work is described in
Sec. II of this paper.
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These considerations apply when the system reaches
thermodynamic equilibrium. In practice, this might take
a long time to attain, and so we also discuss how lamellar
states can be formed far from equilibrium, behind a front
propagating into the thermodynamically unstable state.
Apart from its intrinsic experimental relevance, this
mechanism for pattern formation is of interest because
the linearized BCP equation can be cast in the same form
as the linearized Swift-Hohenberg equation, ' which
models Rayleigh-Benard convection. " Our numerical
simulations of front propagation show that the speed and
characteristic wavelength of the front are the same in
both cases, and are correctly predicted by the marginal-
stability hypothesis, ' even though the Swift-Hohenberg
and the block copolymer equations have different non-
linear terms. This work is described in Sec. III.

/=0 more stable than the 1(1&0 state, in the absence of a
spatial gradient. A consequence is the existence of a
periodic equilibrium pattern which minimizes the free en-
ergy. The singular nature of this additional term can be
seen by making a change of scale r'=e'' r, t'=et. Equa-
tion (2. 1) becomes

(2.2)

where we have omitted primes and without loss of gen-
erality set L, r, p, to 1 and f =

—,
' for simplicity. The singu-

lar nature of the e term arises because it is the coefficient
of the highest derivative in Eq. (2.2).

Equation (2.2) can be derived from a Ginzburg-Landau
free energy, using the phenomenological time-dependent
Ginzburg-Landau equation for a conserved order param-
eter

II. LAMELLAR PATTERN SELECTION
IN EQUILIBRIUM

A. Modeling and equilibrium states

Bg(r, t) V2 5F [ p(r, t) ]
'dt 5$(r, t)

where

(2.3)

The dynamics of phase separation in a block copoly-
mer melt is described by the partial differential equation
in space r and time t:

Bt
=LV ( rQ+pQ —V1()—e(—Q —1+2f), (2.1)

F[(fj =—f —(V1() — + dr
V v 2 2 4

+ f f G(r, r')g(r, t)P(r', t)dr dr',
v v

(2.4)
where f E(0, 1) is the molecular weight ratio of the A
monomer. g(r, t) is the scalar order parameter chosen to
be (1 f)p„fp—~, where p„—and p~ are reduced local
monomer densities. 1(j is identically zero in the high-
temperature homogeneous phase and nonzero in the
low-temperature phase-separated phase. L is the mobili-
ty and p is a positive phenomenological constant. ~ is a
phenomenological parameter characterizing 3 -,8-
monomer interaction. Below some critical temperature
T„~ becomes positive and rnonomers tend to phase
separate. Later we will see that ~ is related to the Flory-
Huggins parameter. The polymerization index N enters
the equation through the small parameter e, which is pro-
portional to N . In this paper, we will mainly report on
the case of 1:1 even block copolymers where f =

—,'. The
case of uneven length f& ,' will be mention—ed briefly. We
will refer to Eq. (2.1) as the BCP equation below. In prin-
ciple, there is also a stochastic contribution which should
be added to Eq. (2. 1) to ensure that thermal equilibrium
can be attained as t ~~.

Setting @=0 in Eq. (2.1) we recover the well-known
Cahn-Hilliard equation. In one dimension, the Cahn-
Hilliard equation admits a one-parameter continuous
family of steady-state periodic solutions, and a limiting
nonperiodic tanh-like solution. None of these periodic
solutions are minima of the free energy and thus are not
admissible as t ~ ~. Instead, the asymptotic state is the
nonperiodic tanh-like solution which attains the global
minimum of the free energy.

Equation (2.1) is in some sense the simplest
modification of the Cah-Hilliard equation which de-
scribes the formation of lamellar patterns. As we shall
show, adding the term proportional to e makes the state

and G is the Green's function for Laplace's equation

V' G(r, r')= —6(r —r'), (2.5)

where po is the monomer number density and s (f) is a
constant of order unity. The second term in F represents
the long-range interaction of P(r) due to the connectivity
of different chemical sequences in a copolymer chain. It
is the presence of both short-range and long-range in-
teractions which allows the existence of equilibrium
periodic states.

We note also that F j g) acts as a Lyapunov functional,
since

BF[f(r,t)j ~
at

Since we are primarily interested in modeling the
quasi-one-dimensional periodic lamellar patterns ob-
served in BCP experiments, it suffices to focus on a one-
dimensional version of Eq. (2.2). As we show below, for
0 (E ~ —,', Eq. (2.2) has a one-parameter continuous family
of periodic steady-state solutions. The experimentally
observed lamellar pattern corresponds to the one with the
lowest free energy.

with appropriate boundary conditions. The free-energy
equation (2.4) is essentially the effective Hamiltonian first
derived by Leibler and discussed by Ohta and Kawasaki
for a block copolymer system. We can relate parameter ~
in Eq. (2.1) to the Flory-Huggins parameter y through

&=gf ( 1 f )poX
2s(f)
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We now discuss the periodic solutions of Eq. (2.2) in
detail. These solutions emerge as the homogeneous /=0
solution of Eq. (2.2) loses its stability. Consider
infinitesimal perturbations of the form e '+'"" around the
/=0 state. The linear dispersion relation is given by

l2

(a)
t I -~o-

(b)

o.a-
IIO -o.a-

t I
I

I 4

Iio too @so 30050 loo

co( k )= ek—+ k 1—. (2.6)
-0.0 .

The /=0 state becomes linearly unstable when 0 (e( —,'.
Meanwhile, periodic solutions appear with wavelength
A, =2m/k bounded by A. E [A2, A. , ], where

A, , ~=&2m(1+&1 4e)'~— (2.7} 6—

The neutral stability curve, obtained by setting
co(k, 2 ) =0 in the dispersion relation, is plotted in Fig. l.

To find the periodic solutions numerically; an arbitrary
A, is chosen first and Eq. (2.2) is evenly discretized over
length [O, A, /2]. Equation (2.2) is then iterated using
Newton's relaxation algorithm (IMsL routine BvpFD) with
boundary conditions dg(r)Idr =d f(r)!dr =0 at
r =O, A, /2. We usually start the iteration from an initial
profile g(r)=cos(2n. r/A, ), and convergence to the final
states is found to be rapid. We verified that the final state
is independent of the exact form of the initial conditions.
If a solution exists for a particular A, , it is reached quite
eSciently and accurately. We normally use -250 grid
points in the discretization to ensure a relative accuracy
of 10 in g.

For each eH (0, —,
' ), we indeed obtain a periodic solu-

tion for all A, lying within the neutral stability boundaries.
The amplitude of the solution increases from zero as we
move inward from the neutral stability curves, and at-
tains a maximum somewhere between the two curves. At
a given A., the profile of the solution is cosine-like for
large e and rather square-wave-like for small e (Fig. 1, in-
set).

I

0
1

6
—lA4

lo l2

and choosing G(r r')= —~r r'~/2—, Eq.—(2.4) can be
written in terms of integrals over a half period A, /2:

'2

FIG. 1. Lamellar thickness A, L of the final equilibrium pat-
tern as a function of e. The chain-dashed line is the neutral sta-
bility curve; the dashed line, the wavelength selected by propa-
gating fronts. Solid lines have slopes 0.263 and 0.325. Insets are
order parameter profiles for (a) a=0.02 and (b) e= 1.0X 10

B. Pattern selection by free-energy minimization

The periodic solution with lowest free energy can be
found explicitly from Eq. (2.4). Using the symmetry and
conservation properties of f(r),

f P(r)dr=0, f(r)=P(r+A, }=/( r), —
0

f f ~r —r'~g(r)g(r')dr dr' . (2.8)

Special symmetry properties of the f =
—,
' even block

copolymer case allow the further reduction of Eq. (2.8) to
integrals over —,

' of a period,

'2
4 ~~4 «lt, 2 «1 i.z4 ii4'& + ,'0 d& —f —f I&

—&'I+r +r' ——P(r)g(r')dr dr' .
o 2 dr ' '

A, o o 2
(2.9)

We evaluate Eq. (2.9) numerically with the previously
found steady states using IMSL interpolation and integra-
tion routines BS2IN and BS2IG. For a given e, all steady
states are found to have negative free energies, i.e., they
are more stable than the homogeneous /=0 state. We
then minimize F& with respect to A, . We find that F& at-
tains its minimum value at a single wavelength

p* & [&2,k&]. Finally, returning to unscaled variables, the
lamellar thickness A.L is given by A,L =e '

A, *.
In Fig. 1 is shown the log-log plot of equilibrium lamel-

lar thickness A,L as a function of e. Also included in the
figure are the neutral stability curve and a curve giving
the lamellar thickness obtained from the propagating
front mechanism discussed in Sec. III. The figure shows
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that A.L(e) does indeed obey a power law. For e&0.02,
O. 263+0.O14' f r E (0 02 A

—0.325+0. 08

Since e ~N, these results imply the power-law scaling
of A.L with polymerization index N as A,I -N, where in
the weak-segregation regime 0 =0.526+0.028; in the
strong-segregation regime 0, =0.650+0.016. Our results
agree with results from Ohta and Kawasaki's variational
calculations and Oono and Bahiana's numerical or di-
mensional analysis.

We have also done calculations for f& ,'. In th—is case,
the periodic steady states correspond roughly to the cy-
lindrical or spherical domains observed in uneven block
copolymer phase separations. The same scaling ex-
ponents 0 =

—,
' and 0, =—', are found.

C. Scaling hypothesis for block copolymer phase separation

The block copolymer scaling exponents are reminiscent
of the asymptotic growth exponents in spinoda1 decom-
position. In veiw of the similarity between the block
copolymer and the Cahn-Hilliard equations, it is tempt-
ing to seek a connection between the two sets of scaling
laws. Specifically, the weak- and strong-segregation re-
gimes may be counterparts of the early and late stages of
spinodal decomposition, respectively. Recently, Oono
and Bahiana argued that the relationship 8=2/ should
hold. Here P and 0 are defined by l(t)-t~, A.L-N .
Their arguments are based on the dimensional analysis of
the equation of motion of the interface. Results from
Sec. II B also seem to support this conclusion.

We now show that the same conclusion can be drawn
automatically from a scaling hypothesis for the charac-
teristic length scale of the system. We conjecture that for
the block copolymer system, an asymptotic scaling form
holds at large t and small e for the typical length scale of
the system I ( t, e },

diffusion-dominated spinodal growth and that the
strong-segregation regime corresponds to late-stage spi-
nodal decomposition, as suggested by the results from
Sec. II B, Eq. (2.13) gives that 8=2/ and y = l.

To test if the scaling form Eq. (2.10) is indeed true, we
need to study the time-dependent behavior of the BCP
equation. Unfortunately, direct time-dependent simula-
tions of the BCP equation suffer from the same difficulties
as direct simulations of the Cahn-Hilliard equation: they
are highly time consuming. The only time-dependent
study of the BCP system is that performed by Oono and
Bahiana using a computationally efficient two-
dimensional cell dynamical system (CDS) approach.
Here we use data from the CDS approach in an attempt
to check the validity of the scaling hypothesis.

In Fig. 2 we show a graph of l(t, e) jl„versus te
( y = 1 ) on a log-lot plot. The data points are for
0.002» e ~0.035. %'e observe from Fig. 2 that all data
points fall nicely on a single universal curve. The curve
goes to a constant at large te, which is consistent with
Eq. (2.11a). The scaling ansatz, Eq. (2. 11b), requires the
curve to approach a straight line with slope 0/2 as
te~O. We see clearly this tendency in Fig. 2 even
though more data for small e are needed to verify the
scaling hypothesis convincingly. For the current e value,
we are still in the weak-segregation regime. Supposedly,
as @~0, the slope will eventually approach 0/2 =

—,'.
Our choice of I in Fig. 2 needs some explanation.

For 0.006 ~ e ~ 0.035, simulations converge relatively
quickly to the final l . However, for smaller e(0.006,
due to the finite-size effect, only early time data are avail-

I I l I I I I 1

1(t,e)=e ~~'F(to~), (2.10)

where the universal scaling function F (x) satisfies the fol-
lowing properties:

F(x)~const as x~+ ~ (2.11a)

and

F(x)-x ~ as x ~0 . (2. 11b)

=l(t~ oo, )=econst e -N (2. 12}

On the other hand, for large time t, the limit e~O gives
the spinodal asymptotic scaling

In the simulations of Ref. 9, I(t, e) is determined from the
wave number at which the spatial Fourier transform of
the order parameter has the 1argest weight.

We assume O, y)0. For a given small e, taking the
limit t~+ ~ in Eq. (2.10) recovers the lamellar thick-
ness scaling

O

O

lO

log)0(t e)

I
I
I
I

,I SIOpe = I/3
I
I
I

I
I
I
I
I
I
I
I

I
I 0

I
I

I
I

I
I

I
I
I
I

I
I I a s s s i a I

lao KP

(2.13)

Thus 0=2@/. If we assume that the weak-segregation
regime in block copolymer corresponds to the surface

FIG. 2. Scaling of the characteristic length scale from time-
dependent cell-dynamical-system simulations. 1(t,e)/I „vs te
in a log-log plot. Data points range from @=0.002 to 0.035.
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able. We write Eq. (2.12) as I„-E;this scaling is well
established for 0.006 ~ e (0.035 with o. =0.254+0.005.
For this range of e, 1(t,E)/l „ is a universal function of tE
with o -0.259. For e(0.006, we simply adjusted v in
order that the data would fall on the same universal
curve as the data for 0.006~a(0.035. The value of cr

we used was -0.263. Note that this is still much smaller
than —,', implying that the data are still in the weak-
segregation limit.

To summarize, we have proposed a form for the scal-
ing of the dominant length scale, which is supported by
cell-dynamical-system time-dependent simulations. Fur-
ther time-dependent study of the strong segregation re-
gime is required to verify the scaling hypothesis convinc-
ingly.

III. PROPERTIES OF PROPAGATING FRONTS

In this section we study the properties of propagating
fronts traveling into the unstable state. When an initially
structureless system is rapidly quenched into the homo-
geneous unstable state and then perturbed locally at some
point, the subsequent time evolution is dominated by the
motion of a propagating wave front traveling into the un-
stable state, usually moving with uniform velocity and a
well-defined wavelength. This dynamical pattern-
selection mechanism has been studied recently' ' and
has been observed in several systems, e.g. , in the Taylor-
Couette column' and in Rayleigh-Benard convection. "

Our study of the propagating fronts for the block copo-
lymer system is motivated by the observation that the
BCP equation is very similar to the Swift-Hohenberg
equation, ' which is a model describing cellular pattern
formation in Rayleigh-Benard convection. The Swift-
Hohenberg equation can be written as

The same c'(e), k'(e) are expected for both the Swift-
Hohenberg and the block copolymer equations, since
they share the same linear dispersion relation. This is
given by

( 1 +6a 2)3/2
c*(e)=4a(1+8a ), k*(e)=

&2(1+8a )

where

a =(&6/12)[&1+6(1 4e—) 1]—'

Excellent agreement has been shown' for the Swift-
Hohenberg equation between the numerically calculated
c*,k* values and those given by the margina1-stability
theory. It is natural to ask how well, if at all, the
marginal-stability theory applies to the BCP equation
where the nonlinearity is somewhat stronger than that of
the Swift-Hohenberg equation.

We integrate Eq. (2.1) numerically in one dimension
for a system size —500, using the Crank-Nicholson
scheme. The system is initially in the unstable /=0
state. We trigger a localized perturbation near the origin
and monitor disturbances growing into the unstable state.
The boundary conditions are d f /dr =d gldr =0 at two
ends. c * and k * are measured after the front is
sufficiently far away from the initial transients and extra-
polation to zero grid spacing is performed to give the
final result.

In Fig. 3 we plot the numerically calculated velocity as
a function of e; the solid line in the graph is the predic-

5.0
(b)

2.5—

Vg Vf —ef— — (3.1) s,
I

200 400

where EH[0, —,']. The only di6'erence between Eqs. (3.1)

and (2.1) is the nonlinear g term.
The marginal-stability theory' ' (MST) has been very

successful in studying propagating fronts in many model
equations, including the Swift-Hohenberg equation. It is
based on a linear stability analysis of the leading edge of
the front in the comoving frame of the front. It predicts
a unique velocity c * and wave number k * for the front:

l.5
Q
tD)

I.O

Recu(k ) dco(k)

Imk
™

dk

k* =Im[co(k )/c" +ik ] .

den(k)
dk

(3.2a)

(3.2b)

0.5

where co(k)= —k +k —e and k is the fastest growing
mode in the comoving frame of the front. In the simplest
form of the marginal-stability theory, only linear proper-
ties of the model equation matter. Note that, in general,
the wave number k* is not the one that minimizes the
Lyapunov functional.

0 0.05
I

O. IO
I

O. I5
I

0.20 0.25

FIG. 3. Front velocity selection c*(e). Solid line is the pre-
diction of the marginal-stability theory. Typical patterns of
propagating fronts are shown in insets. (a) @=0.025, Si —75; (b)
@=0.1, Sf —100.



4810 FONG LIU AND NIGEL GOLDENFELD 39

tion of the marginal-stability theory. Very good agree-
ment with the theory can be seen over the whole parame-
ter range. However, the spatial pattern looks quite
diAerent from that in the Swift-Hohenberg equation. A
typical spatial profile consists roughly of two parts (Fig.
3, inset). The first part immediately behind the front con-
sists of regular periodic oscillations of well-defined local
wavelength. This "front region" is similar to the front in
the Swift-Hohenberg equation. Its size Sf shrinks as e
decreases. Behind this region follows a much more irreg-
ular "tail region. " The order parameter

fluctuates

strongly both in amplitude and periodicity. The irregu-
larity is a result of both transients and inherited non-
linearity, most prominently the latter.

We have measured the local wave numbers of the spa-
tial profile. At @=0.025, we find in the front region
k =0.82+0.08, which agrees with the marginal-stability
prediction k*=0.761 within numerical accuracy. It is
well separated from k;„=0.381, which minimizes the
free energy. The uncertainty in k here is due mostly to
the finite size of the front, since 6k-2~/Sf. At the
above e value Sf -75 and therefore 5k -0.08. Thus we
are unable to distinguish this k from the fastest growing
mode k=0. 831. In the tail region the average wave
number is found to be -0.44, which is very close to k

We expect that propagating fronts are observable in
real copolymer experiments, especially in the weak-
segregation regime, where the front size Sf is relatively
large. Due to the complex entanglements of polymer

chains, the dynamics is slow, which may assist in the de-
tailed study of various stages of the phase separation pro-
cess.

To conclude, we have studied a one-dimensional model
of the block copolymer phase separation. We demon-
strate the existence of a power law scaling of the lamellar
thickness with the polymerization index. The scaling ex-
ponents are calculated accurately, which supports the
previous variational and dimension-analytical results.
We have shown that a relation between block copolymer
scaling exponents and spinodal decomposition exponents
proposed by Oono and Bahiana follows naturally from a
scaling form of the typical length scale. Results from
Sec. III show that the block copolymer is yet another sys-
tem where the propagation pattern-selection mechanism
is at work and agrees well with the marginal-stability
theory.
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