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We study the dynamics of a two-dimensional system with complex conserved order parameter, follow-
ing a deep quench. In accordance with a recent theoretical prediction, we observe an effective value of
the dynamical exponent at late times of $=0.245+0.010. While interesting dynamical effects were no-
ticed in the study of the equal-time correlation functions, no evidence of multiscaling behavior was
found. A correspondence between the quenched dynamics of this system in two dimensions and the dy-
namics of roughening of crystal-vapor interfaces is pointed out. We also study the dynamics in one di-

mension and find that ¢=0.18.

PACS number(s): 64.60.Ht, 67.40.Vs, 64.60.Cn, 64.60.My

I. INTRODUCTION

Scaling phenomena are often observed during the ap-
proach to equilibrium [1]. The classical example is spino-
dal decomposition of a binary alloy, where the system
proceeds to its final state of two-phase coexistence
through the development of a pattern characterized by a
single time-dependent length scale A. It has been found
that A varies with time ¢ according to A(t)~1%, where the
dynamical exponent ¢ =1 for the case of a conserved or-
der parameter and ¢ =1 for the case of a nonconserved
order parameter [2,3]. These results do not seem to de-
pend upon the dimension D of the system, above its lower
critical dimension. Furthermore, the order-parameter
dynamical scattering function is found to obey a scaling
law

S(k,t)=MtPD(kA1)) , (1.1)

where ®(x) is referred to as a scaling function. Consider-
able analytical and numerical work has recently being de-
voted to the study of relaxation dynamics in systems with
a continuous symmetry [4—13]. Previously, we investi-
gated the relaxation dynamics of a system with a noncon-
served complex (i.e., two-component, n =2) order param-
eter in two [8] and three dimensions [9], in order to ad-
dress the issue of the effect of the continuous symmetry of
the order parameter [O(2)] and the associated topological
defects (vortices) on the relaxation process. We have also
extended our investigation, introducing a vector gauge
field in our model, to consider the case of the ordering
dynamics of a charged system (i.e., a superconductor
[10].

In this paper we study the dynamics of a two-
dimensional system with complex conserved order pa-
rameter following a deep quench. There is considerable
theoretical interest in systems with continuous symmetry
(n > 1) and conserved dynamics because, in accordance
with a recent theoretical prediction [5,6], the growth ex-
ponent ¢ is expected to be 4 rather than 1, as found in
systems with conserved dynamics and discrete symmetry
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(n =1). Furthermore, Coniglio and Zannetti [7] have
reconsidered the quenched dynamics of the spherical
model [O(n = )] and, while their results for the noncon-
served case agree with previous findings, they point out
the existence of two competing length scales in the con-
served case associated, respectively, with the wave vector
of the peak position (k,, ~¢~!/#) and with the peak width
(k,~[t/In(t)]~'"*) of the scattering function [7]. This
violates ordinary dynamical scaling although the numeri-
cal corrections might not be easy to ascertain in the usual
rescaling plot. The most dramatic change from ordinary
scaling, though, is that, asymptotically, the different com-
ponents of the scattering function S (k,#) have different
rescaling exponents

S(t,k)"" [M(z)k;_[)k(z, ]d>(k/km) ,
where ¢(x)=1—(x2—1)%. The authors term this
phenomenon multiscaling, since it involves infinitely
many growth exponents, and they suggest it might be a
generic feature of any system whose asymptotic evolution
is controlled by a pair of lengths, both diverging although
in a “marginally” different way. In a recent work on the
O(n) models with conserved order parameter, Bray and
Humayun [14] have argued that multiscaling is asymptot-
ically (t+— oo) satisfied only for n = . If we take the
asymptotic limit before the n — oo limit, ordinary scaling
is recovered. It is therefore important to try to under-
stand what relevance this might have for systems with n
finite. In particular, Bray and Humayun’s argument
leaves open the possibility that for large values of n one
might still be able to observe multiscaling-type behavior
at intermediate times [14].

In the present numerical study, we observe an effective
value of the dynamical exponent at late times of
¢=0.245+0.010, which confirms Bray’s theoretical pre-
diction [5]. As in the conserved scalar case [15] we do
not find convincing evidence for multiscaling, although
the study of the correlation functions exhibits a number
of interesting dynamical effects. Systems that, in contrast
to the present one, cannot support stable defects may be a

(1.2)
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more appropriate testing ground for (asymptotic or tran-
sient) multiscaling.

Apart from its theoretical significance, the system here
investigated has intrinsic physical interest because of the
relation between its ordering dynamics and the roughen-
ing dynamics of crystal-vapor interfaces, which we pro-
pose in Sec. VI. This may lead to a direct experimental
test of the theoretical predictions.

The organization of this paper is as follows. In Sec. II
we describe how the conservation constraint is imposed
in the cell dynamical system (CDS) version of our model.
The time dependence of the ordering process is discussed
in Sec. II1. Section IV considers the evidence for dynami-
cal scaling, while the question of multiscaling is directly
addressed in Sec. V. In Sec. VI we introduce a
correspondence between our model, in two dimensions,
and the solid on solid (SOS) model of a vapor-crystal in-
terface and discuss possible experimental implications of
our results. Section VII is devoted to an illustration of
the ordering dynamics of a one-dimensional system. We
summarize our conclusions in Sec. VIII.

II. MODEL

We consider a complex conserved order-parameter
field on a L X L lattice in two dimensions. The evolution
of the order-parameter field W(r,z)=X(r,z)+iY(r,t) is
governed by the same phenomenological equation
(Cahn-Hilliard equation) as in the case of a system with
discrete symmetry:

AW(r,1) _

2
EY MV

(2.1)

OF(W(r,t))
oV*(r,t)

where M is a kinetic coefficient, assumed to be indepen-
dent of ¥, and

IVW(r,)|?—a|¥(r,t)]?

F{W(r,n)}= [d*

+§]W(r,t)l‘* (2.2)

The coefficients @ and b are positive after the quench.
We performed the simulations using the cell-dynamics
scheme [16]. In this scheme we can, in principle, choose
different length scales for the isotropic Laplacian averag-
ing and the range of the conservation constraint. In
practice, we have limited both the isotropic averaging
and the conservation constraint to nearest-neighbor
((NN)) and next-nearest-neighbor ((NNN)) sites (m).
To implement the dynamics of the system, we first evolve
the components of the order parameter, at site n and time
step ¢, as in the nonconserved case [8]:

X'(n,t+1)= A4 tanh[R(n,?)][X(n,¢)/R(n,t)]
+C[«X(n,2)» —X(n,1)],
Y'(n,t+1)= A tanh[R(n,?)][Y(n,z)/R(n,t)]
+C[KY(n,2)))—Y(n,1)],
where R (n,t)=|W¥(n,t¢)| and

(2.3)
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(m,1)

(nth= 3 B

(NN)

ﬂ—(“g’” + 3 (2.4)

(NNN)

Here A4 gives a measure of the depth of the quench and C
controls the coupling strength of the cells. We then im-
pose a local conservation constraint on the intermediate
values X'(n,t+1) and Y'(n,z+1) of each separate com-
ponent:

X(n,t+1)=X(n,t)=(X (n,t +1)—X(n,1))) ,
Y(n,t+1)=Y(n,)—{Y'(n,t+1)—Y(n,2))) ,

where (( - - - )) is defined as in Eq. (2.4). For our simula-
tions, we apply periodic boundary conditions and choose
A=1.3 and C=0.5. Random initial conditions were
also chosen, as in the nonconserved case, and the same
topological considerations discussed in Ref. [8] apply
here. Since, even in the presence of conservation, the
lowest-energy state of the system is vortex-free, the order-
ing process proceeds through vortex-pair annihilation.
Qualitatively, we observe that at early times the density
of vortices is over one order of magnitude higher than in
the nonconserved case and that at least in the absence of
noise, finite systems are very likely to “freeze” in meta-
stable states at late times, as we have observed in systems
of small size (L =32). The freezing, we suggest, is caused
by the presence of a great number of local minima of the
system energy functional that satisfies the global conser-
vation constraint ‘

[ d*W(r,t)=const , (2.6)

where, for random initial conditions, const=~0. For sys-
tems of the size used in this work (L =256), we do not see
any sign of freezing in the time range considered
(100 <t <208 100).

III. DYNAMICS AND POWER-LAW BEHAVIOR

We now turn to a quantitative discussion of the dy-
namics. There are several a priori independent charac-
teristic length scales in the system. The first two moments

(k, and k,) of S(k,t), the circularly averaged time-
dependent scattering function [17],

[ edk k™S (k,t)
© [rdk k™IS (k1)

k., (1)

, m=12, (3.1)

define two characteristic length scales A, (?)
=L /[27k,,(¢)], m =1,2. Alternatively, we can use the
average intervortex spacing defined as d(¢)=L /V' N(t),
where N (2) is the number of vortices remaining at time 7.
Finally, as a characteristic length associated with the
real-space correlation function of the order parameter

(W*(r,1)W(0,1))
(W*(0,t)¥(0,1))
we use its first zero ry(¢), which is the shortest length that
satisfies the relation C(ry(¢),¢)=0. As shown in Fig. 1,

our data for ry(¢) and A,(¢) are consistent with an asymp-
totic power-law behavior A(z)~¢%24%0010  There is a

C(rt)=

’
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FIG. 1. Graphs of A} vs ¢ (a) and log(7o) vs logo(?) (b). A
straight line is drawn for comparison in (a), where statistical
fluctuations are also shown whenever larger than the symbol
size. The slope of the straight line in (b) is 0.25. Statistical aver-
ages were taken over 40 initial conditions.

slight difference between the length scales associated with
the first and second moment of the scattering function:
A,(2) is better fitted by [t /In(£)]'/4, suggesting the possi-
ble presence of a second, somewhat slower, length scale
in the system (Fig. 2). It should be stressed, however,
that an unambiguous determination of a systematic loga-
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FIG. 2. Comparison of A vs ¢ (a) and A} vs [¢/log.(2)] (b). A
straight line is drawn for comparison in (b). Statistical averages
were taken over 40 initial conditions and statistical fluctuations
are shown whenever larger than the symbol size.
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rithmic correction to the power-law behavior is beyond
the “resolving power” of the present numerical data and
any interpretation of this result in terms of multiscaling
should be taken with caution (cf. the scaling analysis of
the scattering function below). Bray has suggested that
the scaling form for the real-space correlation function
explicitly depends on the equilibrium modulus M of the
order parameter as [6]

Clr,t)=M2T(r(M?/t)1/*%) .

Identifying M with the time-dependent spatial average of
|W(n,t)|, we have also tried to fit the data rescaling time
as t /{W*(t)¥(1)). Although the high density of vortices
makes this correction significant at early times, it does
not appreciably modify the overall time behavior of the
system and it cannot explain the difference in time depen-
dence of the different length scales.

Note that the clear-cut distinction between the values
and statistical properties of the first and second moment
of the scattering function, which is typical of noncon-
served systems [8], does not apply to the conserved case.
This is because the main contributions to the integrals of
the different moments come from finite K components of
the scattering function rather than £ =0.

IV. DYNAMICAL SCALING

The scaling of the scattering function presents some in-
teresting features. We have tried to rescale it using both
its first and second moment. This is of interest because of
the slight difference, noted above, in the time dependence
of the two associated length scales. As shown in Fig. 3,
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FIG. 3. Comparison of two possible rescalings for the
scattering function S (k,1), using k; (a) and k, (b). The lines are
linear interpolations of the data points taken on 256X256 lat-
tices at 1100 (solid line), 4600 (dashed line), 19 100 (chain-dotted
line), 78 100 (chain-dashed line), and 208 100 (dotted line) time
steps. We averaged over 40 initial conditions.
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we find that the first moment gives the best overall agree-
ment, but it is worth noticing that while k | seems to ac-
curately describe the evolution of the peak position of the
scattering function, k, appears to give a more accurate
representation of the increase in the peak height. This is
reminiscent of the behavior found in the n = « case, due
to the presence of two (logarithmically) different length
scales [7]. Here, however, the wavelength associated with
the peak position (m), A,,(¢t)=27/k,,(t), increases faster
than the rescaling length for the peak height, while the
opposite is true in the n = oo case. This trend holds true
for all the curves shown in Fig. 3, except the one corre-
sponding to the latest time considered. Looking at the
unscaled data (Fig. 4), it is clear that, at this late time, the
peak half-width of the scattering function is comparable
with the circular-averaging “bin” in k space, so that it is
possible that finite-size effects are masking the exact loca-
tion and height of the peak. '
Looking at the log-log plot of the rescaled scattering
function, Fig. 4, E%(I)S(k,t)=<1>(x), we see that at small
x=k/k <1 it satisfies Yeung’s inequality [18],
W(x) < x* while for x > 1, it appears to approach asymp-
totically x ~%. This last trend is not as well defined here
as in the nonconserved case, but we suggest that this is
due to the specific features that the conservation law im-
poses on the scattering function. Shinozaki and Oono
[19], in particular, noticed a hump (at x =3) in the log-
log plot of the scattering function for the conserved sca-
lar case in three dimensions: the same effect might also
be present here, although our data are not as definite in
this regard. In any case, all of the “dynamical structure”
of the rescaled scattering function, that is, the features
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FIG. 4. We give here the unscaled data for the scattering
function S(k,t) (a) and the log-log plot of the same data res-
caled with k; (b). In (b), we show, for comparison two lines
representing ~(k /k,)* and ~(k/k;)”* power-law behavior.
Here we have adopted the same symbols and conventions of
Fig. 3.
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that depend on the conservation law, should be confined
to values of x of order unity or smaller, while dynamical
scaling should asymptotically extend to x >>1. In this re-
gion, the dominant factor should then be the local
configuration of the order parameter, which only depends
on the symmetry (the defect topology) and the static bal-
ance of the elastic energy. We expect therefore that the
universal function should asymptotically decay as x *, due
to the vortex-field configuration. This expectation is
borne out by the small y =r/r,(t) behavior of the res-
caled real-space correlation function C(r,t)=T(y(?))
~1—yY¥, where ry(t) is the position of the first zero of
C(r,t) and ¥=1.610.05 (see inset of Fig. 5), as in the
nonconserved case [8,9]. Recent analytic work by Bray
and Puri [12] and, independently, Toyoki and Liu and
Mazenko [13], appears to confirm the presence of an
anomaly for (nonconserved) systems with n =2 (D > 1).
They report that the exponential is non-Gaussian due to
a logarithmic correction and, in the small x limit, Toyoki
finds

I(x)=1—[In(2)—1—1In(x)]x?,

which is numerically close to =~1—x"¢ at a representa-
tive short distance, as shown in Fig. 1 of Ref. [13(a)]. A
corresponding logarithmic correction is found in the
r—0 limit of the correlation function of an isolated vor-
tex configuration, confirming the principal role of defects
in the origin of this anomalous behavior. As shown in
Fig. 5, the data for the order-parameter correlation func-
tion appear to collapse onto a universal curve over virtu-
ally the entire time range considered, showing that this
function is rather insensitive to the finite-size and possible
transient effects (see below) we have observed in other
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FIG. 5. Demonstration of dynamical scaling for

C(r,t)=I(r/ry,5(2)), where r,,,(t) is the half-width of C(r,z).
Here we have adopted the same symbols and conventions of
Fig. 3. Inset is a log-log plot of 1 —I'(x) in the limit of small x.
The diagonal of the inset square has a slope of 1.6.
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correlation functions. 2500 Fy—
Considering now the behavior of the real-space correla- 2000

tion functions of the vortices we find remarkable -

differences with respect to the results obtained in the non- = 1500 t=1100

conserved case. In particular, here we observe a dynami- &

cal asymmetry between the radial correlation function of g 1000 1~ 4600

vortices of equal sign Cn,,ypp(r,t), that, as can be seen in 500 """*-"*-"“*-;—l-g-lb-o fffff

Fig. 6, shows a small but systematic deviation from scal- N T 193100 ]

ing, and the correlation function of vortices of opposite
sign C,, ,,(r,t) where no such deviation is detectable
(Fig. 7), at least in the main peak. The presence of a de-
veloping peak in C,, ,,(7,t) is in sharp contrast with the
monotonic behavior found in the nonconserved case (Fig.
8 of Ref. [8]). We also note here the presence in both
functions of a well-defined secondary peak, while no
secondary peak was visible in the nonconserved case
(Figs. 8 and 9 of Ref. [8]).

A full appreciation of the features in the correlation
functions of the vortices would require a detailed under-
standing of how the conservation of the order parameter
affects the “‘effective” interaction of a vortex-antivortex
pair. This is feasible within the framework of the defect-
dynamics approach [20], but we have not attempted this
task here.

We can summarize the main results that have emerged
from the analysis of the correlation functions as follows.
(i) The vortex-field configurations at short distance are in-
sensitive to the dynamical changes introduced by the con-
servation law, as shown by the fact that the small-r be-
havior of the correlation function of the order parameter
is identical in the conserved and nonconserved case. (ii)

2000 (a) unscaled data
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FIG. 6. Demonstration of dynamical scaling for

Corpp(1,)=(n(0,)n(r,)+p(0,£)p(r,t)), where n and p are the
(time-dependent) local densities of negative and positive vor-
tices, respectively. N (z) is the total number of vortices in the
system at time ¢ and d (t)=L /V'N(t). The data were taken on
256 X256 lattices at 1100 (solid line), 4600 (dashed line), 19 100
(chain-dotted line), and 99 100 (dotted line) time step. We aver-
aged over 60 initial conditions.
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FIG. 7. Demonstration of dynamical scaling for
Coipon ={n(0,0)p(r,t)+p(0,)n(r,t)). Here we have adopted
the same symbols and conventions of Fig. 6.

The correlation functions of the vortices are a very sensi-
tive probe of these same dynamical effects, as indicated
by the significant differences in spatial dependence and
scaling properties (pointed out above) between the con-
served and nonconserved cases.

V. MULTISCALING

The question of multiscaling was addressed only in-
directly in the previous section. Although evidence of
possible corrections to scaling was pointed out, this, by
itself, is not strong or consistent enough to justify the
dismissal of the dynamical scaling hypothesis. The
difficulty of finding numerical evidence for multiscaling
behavior was already pointed out by Coniglio and Zan-
netti in their original paper [7]. They suggested a
different plotting of the scattering function data that
directly probes the multiscaling hypothesis: the idea
that, asymptotically, the time evolution of each (k) com-
ponent S (k,t) of the scattering function is characterized
by a different growth exponent ¢(k /k,, ), where k,, is the
position of the peak maximum. In the thermodynamic
limit, where k is the position of the peak maximum. In
the thermodynamic limit, where k is a continuum vari-
able, there are therefore infinitely many scaling exponents
¢(x) (multiscaling). To find these exponents for a D-
dimensional system, we need to plot

In[k 2(1)S(k,,(¢)x,t)] versus In[27/k,, (1)], (5.1)

at constant x =k /k,,. This relation follows immediately
from Eq. (1.2) if we ignore the (logarithmic) difference be-
tween k,, and k, (the peak width of the scattering func-
tion). The slope D¢(x) of this relation is expected to be a
constant [¢(x)=1] if the dynamical scaling relation is
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satisfied while ¢(x)=1—(x2—1)? in the O(n = =) (spher-
ical) model with the conserved order parameter studied
by Coniglio and Zannetti [7].

We have performed the multiscaling analysis with the
identification k,,(¢)=k(¢). The numerical results are
shown in Fig. 8, where a comparison is made with the an-
alytic form found for n = o. We remark that the range
of values (at constant x) shown in the figure does not
represent statistical fluctuations, which should be super-
imposed to all data points. Rather, it expresses an esti-
mate of the systematic errors involved in trying to evalu-
ate the slope of Eq. (5.1) for values of x outside the im-
mediate neighborhood of x =1, where only one value for
the slope is given. The reported midrange values try, in
all cases, to give an estimate of the overall slope, but we
note that the more reliable values, for x > 1, are given by
the lower-range points, since they are associated with the
late-time asymptotes. We also observe strong finite-size
effects for x =0.02.

There is a clear discrepancy between the results of the
numerical study (n =2), which are roughly consistent
with ¢(x)=const, and the analytic results (n = o), which
exhibit a strong variation with x. Thus we may conclude
that ordinary scaling rather than multiscaling seems to
describe the asymptotic behavior of our system. Our re-
sults are in fact similar to the results obtained for the sca-
lar case (n =1) in three dimensions [15]. The absence of
sharp domain boundaries in the n =2 case, in contrast to
the scalar case, does not seem to significantly effect the
asymptotic scaling behavior of our system. This result is
consistent with the argument put forward recently by
Bray and Humayun [14] that conventional scaling holds
asymptotically for all finite n.

Regarding future directions of work, we would like to
make here a more general comment. As we have seen in
the previous section, the existence of topological defects
with extended field configurations creates ‘“configura-
tional” constraints on the short rescaled-length behavior
of the system and, correspondingly, severely reduces the
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FIG. 8. Here we compare the analytic result for n = o (solid
line) and the numerical results for n =2. We give the best esti-
mates of the slope of Eq. (5.1) as a function of x, using the entire
time range 100 <t <208 100 (X). Whenever there is a significant
change of slope over this time range, we also give an estimate of
the early-time (100 < ¢ < 10000, o) and late-time
(20000 < ¢ <200000, O) slopes).
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phase space available to its evolution: we can give a fairly
accurate description of the evolution of the system using
only the positions of the vortices. This delicate interplay
between symmetry constraints and dynamics and the pos-
sibility of long transients associated with the existence of
several competing length scales makes it, in principle,
particularly difficult to ascertain (asymptotic or transient)
multiscaling behavior in our system. To avoid some of
these difficulties, it would be worthwhile to study the re-
laxational behavior of systems with conserved dynamics
that cannot support stable topological defects (n > D).

VI. PROPOSED EXPERIMENTAL REALIZATION

Although we do not know if any physical system with
a complex (n =2) conserved order parameter, it may be
possible, in the spirit of universality, to apply some of the
results of this chapter to the roughening dynamics of
crystal-vapor interfaces [21]. The starting point of our
considerations is that the equilibrium statistical mechan-
ics of both the discrete Gaussian model of roughening (in
D =3) and the XY model have an exact D =2 Coulomb
gas representation [22]. This permits us to identify the
roughening transitions of the crystal interface model with
the vortex-unbinding transition of the XY model and es-
tablishes a correspondence between the static equilibrium
properties of the two models. Note that in this mapping
the temperature of the XY model (Tyy) corresponds to
the inverse temperature of the crystal (T .. ~1/Tyy) so
that the rough (high-temperature) phase of the crystal-
vapor interface is associated with the bound (low-
temperature) phase of the XY model, and both of them
correspond to the screened (low-temperature) phase of
the Coulomb gas. One may object that the two models
are not exactly identical, since the Coulomb gas represen-
tation of the crystal-vapor interface contains, in princi-
ple, charges of any integer value g, while in XY model
only the charges with |g|=1 are (energetically) stable.
We expect, however, that only charges with |g|=1 are
relevant at the transition since, as we decrease the tem-
perature in the XY model (or as we increase the tempera-
ture in the crystal interface model), the |q|=1 charges
are the last to bind, allowing the formation of the
screened phase. Using renormalization-group arguments,
the relation between the discrete Gaussian model and the
D =2 Coulomb gas can be extended to more general SOS
(solid-on-solid) models of the crystal-vapor interface [22].

We can now try to extend this correspondence to in-
clude the dynamical properties of the roughening transi-
tion after a ““‘quench” in the high-temperature phase [23].
A crucial element to be considered is now the conserva-
tion of the order parameter, which can be identified with
the mean-square deviation of the interface profile from its
average position. We can envision two basic mechanisms
for the growth of the interfacial fluctuations: evaporation
condensation at the surface of the crystal, which we sup-
pose to be in local equilibrium with its vapor phase, and
surface diffusion along the solid-vapor interface. The first
mechanism (evaporation condensation) will lead to a non-
conserved dynamics for the order parameter, while sur-
face diffusion satisfies a local conservation law, which we
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can express as a continuity equation for the mass current
at the interface [24].

These considerations suggest that the relaxational dy-
namics of conserved order parameter and that of a crys-
tal surface, in the regime where surface diffusion is dom-
inant, may be in the same dynamic universality class:
they have the same symmetries and the equilibrium be-
havior is identical. For this mapping to apply to the re-
laxational dynamics, we would not only need to demon-
strate that the dynamics is controlled by a
renormalization-group fixed point (presumably a zero-
temperature fixed point such as that which Bray con-
sidered), but also show explicitly that there are no other
hydrodynamic modes relevant at this fixed point for the
relaxational dynamics of a crystal surface. This is beyond
the scope of the present work, but should certainly be in-
vestigated in the future. It is natural to extend this analo-
gy to the nonconserved complex order-parameter dynam-
ics, which should therefore correspond with the relaxa-
tional dynamics of a crystal surface, in the regime when
evaporation condensation is dominant.

This hypothesis implies that there are two different
dynamical exponents ¢ for the growth of fluctuations in
the rough phase: when the growth is due to evaporation
condensation we expect ¢=, and when the dominant
mechanism is surface diffusion we expect ¢=1. Since
both mechanisms are bound to be present in any real
physical system, one may think that evaporation conden-
sation (leading to the faster growth) will always dominate
the asymptotic regime, but the crucial question, experi-
mentally, is when the crossover occurs.

The formation of thermal grooves (~0.1-1.0 um in
depth) during polycrystal sintering offers one example of
the competition between these two mechanisms [25]. In
this process, interfacial fluctuations nucleate at surface
grain boundaries and lead to smooth self-similar interface
profiles (grooves) whose characteristic length grows in
time. This is of course quite different from the case of
roughening, which does not depend on heterogeneous nu-
cleation and only leads to statistically self-similar pat-
terns. These differences, however, may not be as impor-
tant as the role played by the conservation law in the dy-
namics of the system, and we can also think of the forma-
tion of thermal ‘“‘grooves” as an intermediate stage in the
roughening process.

For our purposes, the most interesting aspect of the
growth process of thermal grooves is the range of experi-
mental situations available. Depending on the material
and annealing procedure chosen, the contribution of sur-
face diffusion may be ignored from the first few minutes
after the quench or, at the opposite extreme, it may dom-
inate the process for hours or even days. It is worthwhile
to notice that surface diffusion leads, at least in this case,
to a t!/* growth law and evaporation condensation to a
t17? law [25], in agreement with the proposed correspon-
dence and with our numerical results for the O(2) model.

Mullins considered the relaxation dynamics of macro-
scopic perturbations (>10 um) on solid surfaces [26].
Above the roughening temperature, he found that
sinusoidal perturbations of wavelength A decay exponen-
tially (keeping their shape) with characteristic times pro-
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portional to A% and A* when evaporation condensation or,
respectively, surface diffusion is the controlling mecha-
nism. These results were obtained within a linearized hy-
drodynamic theory, so that the decay of any initial sur-
face configuration reduces to the decay of its Fourier
components. If the decay time (7) of the sinusoidal com-
ponent of wave length A is 7~A", only components with
A>t1/" will survive after a time #: i.e., A(z)~2!/" is the
characteristic size of smooth regions at time ¢.

Beside evaporation condensation and surface diffusion,
transport through the bulk offers another possible mecha-
nism for surface dynamics [26]. This is quite different
from the previous two, however, because it subordinates
the dynamics of the surface to the (conserved) dynamics
of the bulk. It is not too surprising, therefore, that when
the dynamics is controlled by bulk diffusion, a sinusoidal
surface of wavelength A decays exponentially, above the
roughening temperature, with a characteristic time pro-
portional to A3.

The prediction of a + exponent for the roughening dy-
namics in the presence of conservation should be con-
trasted with a previous proposal by Villain [27]. Using a
microscopic model of the smoothening process of a crys-
talline surface after a quench below the roughening tem-
perature (the inverse process to the roughening dynamics
considered above), he finds that if the process is dominat-
ed by surface diffusion, the linear dimension (R) of
smooth domains grows a R(t)~t'/3. To reconcile the
two predictions, one should assume that there is a
dynamical asymmetry between the smoothing and
roughening processes. While this is not obvious for con-
served dynamics, since in this case the two processes are
both controlled by long-range surface diffusion, such an
asymmetry is certainly present in the nonconserved case.
After rapidly raising the temperature into the disordered
phase of a nonconserved system (crystal smoothing when
evaporation condensation is dominant), the growth of
“disorder” (smooth surfaces) should be much faster than
any power law because in this case, nearest-neighbor in-
teractions are completely ineffective and there is no more
distinction between global and local equilibrium: i.e., the
relaxation is controlled by the local dynamics (local cell
dynamics in the CDS scheme).

To make clear the importance of crystalline order for
the previous results on roughening dynamics, it is worth
mentioning the corresponding results for fluids. For a
D =3 fluid (D =2 interface) the “roughening” tempera-
ture is T=0, that is, the width of the liquid-vapor inter-
face diverges (in the thermodynamic limit) for any finite
temperature, and the growth of the order parameter
(mean-square deviation of the interface profile) is predict-
ed to be ~V'In(¢) for both the conserved and conserved
case [28].

VII. ONE-DIMENSIONAL SIMULATIONS

We have performed one-dimensional simulations of the
quenched dynamics of a conserved complex order param-
eter on a lattice of size L =4096. The corresponding
CDS equations are formally identical to the ones used in
two dimensions, except that the Laplacian averaging and
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the conservation constraint now affects only the two
nearest neighbors. In these simulations we have used
A=1.3 and C=0.25 [cf. Egs. (2.3)=(2.5)]. A linear sta-
bility analysis (see Appendix) shows in fact that for
A=1.3 the upper limit of linear stability of the CDS
model in one dimension is C=0.27. For values of C
(=0.4) a numerical instability occurs, while at intermedi-
ate values, such as C=0.3, the algorithm appears stable,
but a progressive slowing down of the ordering dynamics
is noticed in the longer simulations: a possible indication
that short-wave structures (a sign of weak instability) are
developing in the system, interfering with the formation
of large scale patterns. We should point out that in one
dimension there are no localized defects in the system,
but because of periodic boundary conditions (PBC), there
is a conserved winding number N, ~V'L associated with
the initial conditions. In fact, the algebraic sum of the
phase differences (Af) between nearest-neighbor vectors
on a lattice loop (PBC) is a multiple of 27 and becomes,
asymptotically, a constant [29]. This means that the or-
der parameter cannot be completely untwisted, so that
the effective size of the system is L .g~L /N, ~V'L, the
period of the maximally ordered state compatible with
the conservation of N,. In the case studied, this would
correspond to L 4=~64. At the end of the present simula-
tions, after 3X 10° time steps, the typical size of the or-
dered domains, as measured from the first zero of the
order-parameter correlation function, is A=7, so that we
do not expect finite-size effects to be dominant.

To monitor the growth of order in the system, we have
used the first moment of the scattering function [k(¢)]
and the first zero of the real-space correlation function of
the order parameter [r,(¢)]. The results were obtained
averaging over 20 initial conditions. As shown in Fig. 9,
we find for both length scales A ~¢%13+¥0-01  This result
seems incompatible with a ¢=1 exponent, as suggested
by Bray for higher dimensional systems, but leaves open
the possibility of a { or slightly smaller rational ex-
ponent. Newman, Bray, and Moore [30] have shown that
the one-dimensional system with complex nonconserved
order parameter is special due to the linearity of its equa-
tions of motion (when written in terms of the phase vari-
able), so that we should not expect Bray’s general
renormalization-group argument [5,6] (which predicts
¢=1) to apply to the conserved version of the same sys-
tem. At present, we do not know of any firm theoretical
predictions for the case considered.

No systematic attempt was made to study the dynami-
cal scaling of the correlation functions in this case. Nev-
ertheless, we have observed a significant time dependence
(increase) of the first minimum of the rescaled order-
parameter correlation function C(r,t)=I(r/ry(t)) up to
at least 4 X 10* time steps. This contrasts with the fast
convergence to a universal curve observed in two dimen-
sions, but a comparison with the two-dimensional case
must take into account not only the different growth ex-
ponents ¢, but also the different values of C used in the
two cases. In the time range considered, the slow dynam-
ics allows us to probe the x=r/ry(¢)—0 limit of
INx)=~1—x¥% only up to x=>0.2. Here we find
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FIG. 9. Graphs of (k,)™>°vs ¢ (a) and r§° vs t (b). Statistical
averages were taken over 20 initial conditions.

1=1.94£0.05, but there are indications that ¥ has not
yet attained its limit value. This result, which is compati-
ble with a Gaussian behavior of the correlation function
at small x, confirms that the result ¥y=~1.6, obtained in
two-dimensional systems with both conserved and non-
conserved dynamics (see above and Ref. [8]), is in fact
due only to the presence of vortices.

VIII. CONCLUSIONS

We have presented the results of a numerical study of
the coarsening dynamics of a two-dimensional system
with a complex (n =2) conserved order parameter. We
observe an effective value of the dynamical exponent
¢=0.245+0.010 consistent with the value of + predicted
by Bray using renormalization-group arguments [5,6].
The correlation function of the order parameter satisfies
dynamical scaling from early times and shows an anoma-
lous short-distance behavior identical to the one observed
in the nonconserved case. We observe a dynamical asym-
metry between the correlation function of vortices of
equal sign, that, in the time range considered, show a
small but systematic deviation from scaling and the
correlation function of vortices of opposite sign, where no
such deviation is detectable.

We have considered both ordinary dynamical scaling
and multiscaling for the scattering function of the order
parameter. Despite some scattering of the data, our re-
sults appear to be consistent with ordinary scaling and to
exclude multiscaling, similar to the results obtained in the
conserved scalar (n =1) case. This indicates that the ab-
sence of sharply defined domain walls does not
significantly affect the asymptotic scaling behavior of the
system. This result is also consistent with the recent
theoretical argument by Bray and Humayun [14] that
conventional scaling holds asymptotically for all finite n.
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We propose a correspondence between the quenched
dynamics of our system and the dynamics of roughening
of a crystal-vapor interface, when surface diffusion is the
dominant growth mechanism. This correspondence can
be extended to the nonconserved case. Finally, some as-
pects of the one-dimensional system relaxation dynamics
are discussed and the reduced stability of the CDS model
in this case is pointed out.
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APPENDIX

Linear stability of the CDS algorithm in D =1

We consider here the linear stability of the one-
dimensional CDS algorithm around a uniform solution
¥y, corresponding to a stable fixed point of the cell dy-
namics

Y(n,t +1)= A tanh[¢(n,t)]=F(Y(n,t)) , (A1)

where 9 is the modulus of the order parameter
W(n,t)=X(n,t)+iY(n,t), n is a lattice site, and 4 is a
control parameter. Initially, we will ignore the vector
character of the order parameter, since ‘“‘angular” dis-
placements turn out to lead to weaker instabilities than
modulations of the spin “length” (see below).

Following closely the analogous calculation by Oono
and Puri [31], we start from the (scalar) CDS algorithm
for the nonconserved order parameter

Yt +1,n)=F((n,))+C[P(n,t) N —P(n,)],  (A2)
where C is a second control parameter and, in D =1,
CPn, )N =L[p(n +1,0)+p(n —1,1)] . (A3)

Expanding Eq. (A2) around ¢, [=F(4,)] and keeping
only the linear terms in 8(n,t) [=¢(n,t)—1),], we obtain
A’ =,

&(n,t+1)= 1

8(n,t)+C[(8(n,t)» —8(n,t)],

(A4)

or, taking the Fourier transform,
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8k,t+1)= 8(k,t)+C[cos(k)—1]8(k,t) . (A5)

A*— Yo
A
The algorithm is unstable if [8(k,z+1)|>8(k,t)| for
some k, and, as we increase C (at fixed A4), the first mode

to go unstable is k =7 (alternating pattern). This occurs
when

A=y,

1 (A6)

—1> 2C ,

so that the nonconserved algorithm is linearly unstable if

A’ =y

C>0.5+
24

(A7)

We can now use the &(n,t +1) [=68'(n,t)] for the non-
conserved case; calculated in Eq. (A4), as an element of
the corresponding equation for the conserved algorithm

S8(n,t +1)=8(n,t)— (8 (n,t)—8(n,t)) , (A8)
or, taking the Fourier transform,
Slkye+1) _ A=ty
5(k.0) y [1—cos(k)]
+C{2cos(k)—1—[cos(k)]?} +cos(k) .
(A9)

Setting again k=1, we obtain that the algorithm be-
comes unstable when

20A4%—1,)
—1>—%—4C—1 , (A10)
A
or, equivalently,
A=y,
c>—= All
24 ( )

If we choose 4=1.3 in Eq. (Al), then ¥3,=0.9777 and
the instability occurs when C > 0.2824.

Considering now the effect of angular displacements,
we can assume, without loss of generality, that the uni-
form solution 9 lies initially in the direction of the X
component. In the linear approximation, this component
will be unaffected by a small angular perturbation, while
the new Y component (corresponding to the perturbation
) satisfies equations similar to Eqs. (A4) and (A8), except
that we need to substitute the factor (42—1,)/ 4 with 1.
Therefore, we obtain that the nonconserved algorithm is
linearly stable against angular perturbations when C <1
(independently of A), while the angular stability of the
conserved algorithm requires C <0.5. For 4 =1.3, the
value used in the simulations, these constraints are weak-
er than the ones obtained above (treating the order pa-
rameter as a scalar), and can therefore be safely ignored.
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