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	 OverviewDendrite Growth Processes

	 The phase-field-crystal method is a 
new modeling technique that incorpo-
rates the periodic nature of a crystal 
lattice by considering a free energy 
functional that is minimized by periodic 
density fields. This simple approach 
naturally incorporates elastic and plas-
tic deformations and multiple crystal 
orientations and can be used to study a 
host of important material processing 
phenomena, including grain growth, 
dendritic and eutectic solidification, and 
epitaxial growth. This paper reviews the 
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introduction 

	 Many novel applications in engi-
neering require improved strength and 
performance from metal alloys. This is 
increasingly true in the automotive and 
aerospace industries where rising fuel 
costs place a premium on improved 
strength-to-weight ratios. The most 
significant new tools for alloy develop-

ment exploit microstructure patterning at 
the nanoscale, where atomic effects are 
dominant. However, there is still a gap 
in our understanding of how elasticity, 
plasticity, grain boundary interactions, 
and atomic attachment kinetics control 
microstructure and phase selection 
during solidification and solid-state 
transformations. 
	 The “reverse Hall-Petch” effect 
provides an example of the changes in 
mechanical behavior at very small length 
scales. In nanocrystalline materials, the 

Figure 3. A small portion of a simulation of liquid phase epitaxial growth. (a), (b), (c), and (d) correspond to dimensionless times 150, 300, 
450, and 600, respectively. The substrate is highlighted by the darker color and lattice sites near dislocations are marked by small white 
dots. (Reprinted from Reference 42.)
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Figure 1. (a) A tem-
perature-density 
phase diagram indi-
cating an isother-
mal quench. The 
diagram has been 
constructed sym-
metrically around 
the average density 
ρ0 = 0. (b-top) Snap-
shot in the evolution 
of polycrystalline 
solidification using 
the PFC model. 
Grain boundaries 
are highlighted in 
white. (b-bottom) 
Zoom-in of four-
crystal grains and 
their orientations. 
(Reprinted from Ref-
erence 45.) 

Figure 2. A com-
parison of the grain 
boundary energy 
(γ) vs. grain bound-
a r y  m isma tch 
angle (θ) from 
PFC simulations 
and experiments 
on tin,51 lead,51 
and copper.52 The 
quantities γm and 
θm represent the 
values of γ and θ 
at which the γ is 
a maximum. The 
line represents the 
Read–Shockley 
result.50 (Reprinted 
from Reference 
42.) 
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build-up of dislocation networks near 
grain boundaries is precluded by the 
small size of the grains, leading to a 
softening of the material as the grain size 
decreases, rather than the increase typi-
cally seen in larger-grained materials. 
Another example of nanoscale behavior 
influencing material properties arises 
when coherency strains at atomic inter-
faces control non-equilibrium particle 
precipitation, which is relevant to solid 
solution hardening of advanced alloys. 
	 Coherency strains also play a critical 
role in establishing the stability and 
structure of epitaxially grown thin films, 
wherein a few atomic layers of one semi-
conductor are deposited onto another. 
Large strains that emerge due to atomic 
mismatch at the film/substrate interface 
can lead to buckling, roughening, and 
ultimately to incoherent growth when 
dislocations nucleate. The stability and 
control of such epitaxially grown thin 
films is key to semiconductor manufac-
turing. 
	 In these examples and a plethora 
of others, microstructure formation 
and material properties derive from 
an intimate interplay between phase 
transformation kinetics and elastic and 
plastic deformations emerging directly 
from the atomic scale. Modeling these 
processes thus requires a formalism 
that simultaneously addresses both the 
angstrom and micrometer length scales. 
More daunting still is the need for such 
a formalism to self-consistently cross 
the disparate time scales from atomic 
vibrations to heat and mass transfer that 
control most phase transformations. This 
article describes a recently developed 
approach that meets these requirements, 
the phase-field-crystal (PFC) model. 

PREDICTIVE MODELING 
OF MICROSTRUCTURE 

EVOLUTION

Phase-Field Models

	 Computational modeling of micro-
structure evolution in materials engineer-
ing has seen rapid growth in recent years 
through the use of phase-field method-
ology. This formalism simulates the 
dynamics of various fields that charac-
terize the microstructure (e.g., impurity 
concentration, temperature, crystalline 
order, and orientation). Among the most 
extensively studied phenomena using 

Figure 6. A portion of the sample used to examine dislocation glide velocity. The sample is 
made by equilibrating a portion of solid–patterned into a rectangular sample–with its coexisting 
liquid. (Reprinted from Reference 45.)

Figure 5. Strain concentration in a double-notched sample under a uniaxial tension. (a) A 
strain map of the center portion of the sample displayed at the bottom. Boundary atoms are 
highlighted in black. (b) The plot represents a strain profile from the center of the sample into 
the root of the notch. (Reprinted from Reference 45.)

a b

Figure 4. (a) Critical height, Hc, at which a strained epitaxial film nucleates dislocations for 
various film/substrate mismatches. The solid square, empty triangle, and circle are data taken 
from Bolkhovityanov et al.,59 the data for the empty squares are from Rockett and Kiely;60 the 
empty stars (eight- and four-sided) are from Anan et al.,61 and the star is from Ogasawara et 
al.62 (b) Yield stress (σ*) of a polycrystalline solid as a function of grain size. The experimental 
data are from NiP,63 Cu,64–66 Pd,64 and NiW.67 (Reprinted from Reference 42.)
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the phase-field approach are dendritic 
growth in pure and binary alloys,1–6 spi-
nodal decomposition,7,8 order-disorder 
transition kinetics,9–11 and precipitation 
growth.12 In all these phenomena, the 
dynamics of the appropriate field(s) 
are assumed to be driven by dissipative 
minimization of a phenomenological 
free energy functional. 
	 There have been many significant 
advances in phase-field modeling in 
materials science over the last decade. 
Arguably the most important has been 
the development of asymptotic analysis 
techniques that connect the phase-field 
equations with sharp interface models 
of solidification in the computationally 
tractable (“thin interface”) limits.13–17 
These methods have been instrumental 
in making the phase-field method a 
viable tool for quantitative modeling 
of microstructural evolution, especially 
when coupled with adaptive mesh refine-
ment algorithms,18,19 opening up a new 
window to truly multiscale computation 
of microstructure evolution.20–24

	 A limitation of traditional phase-field 
models is that they are formulated in 
terms of fields that are spatially uniform 
in equilibrium. This precludes most 
physical phenomena that arise from the 
periodic symmetries inherent in crystal-
line phases, including elastic and plastic 
deformation, anisotropy, and multiple 
grain orientations. One way around this 
problem has been to couple the traditional 
fields with one or more auxiliary fields 
that describe, for example, the density 
of dislocation,25–29 the continuum stress 
and strain fields,30–32 and the crystal grain 
orientation.33–37 These approaches have 
proven quite useful in various applica-
tions such as polycrystalline solidifica-
tion.28,33–40 Nevertheless, it has proven 
quite challenging to incorporate elasto-
plasticity, diffusive phase transformation 
kinetics, and anisotropic surface energy 
effects into a single, thermodynamically 
consistent model. 

The Phase-Field-Crystal Method

	 Very recently, the PFC method 
emerged as a new extension to the phase-
field formalism.41–45 The PFC formalism 
abandons the meso-scale order param-
eter of the traditional phase-field 
approach in favor of a temporally coarse-
grained atomic probability density 
(APD), or number density. The free 

Figure 7. Two regimes of 
dislocation glide. For high 
strain rates, continuous glide 
is observed, while at lower 
strain rate the dislocation set 
into a stick-slip motion. Inset: 
Dislocation glide velocity vs. 
applied strain rate. (Reprinted 
from Reference 45.)

Figure 8. A snapshot from the simulation of solidification of grains in a large domain, 722 
nm square. The series of enlargements shows an approximately 1 nm × 3 nm segment of 
the grain boundary formed by the intersection of the growing grains.

Figure 9. A snapshot of the nucleation and growth of a bcc polycrystal from a supercooled 
liquid in a system with periodic boundary conditions. In this figure purple corresponds to atomic 
positions with eight neighbors and yellow to lattice positions at surfaces or dislocations. 

Figure 10. The growth of a two-dimensional 
hexagonally symmetric solutal dendrite from 
a supercooled melt. The supersaturation 
was Ω = 0.7 and the average concentration 
Co was in the hyper-eutectic range. 
The color map represents the impurity 
concentration field c(



x , t), with warm 
colors representing high composition and 
blue, low. The inset shows the atomic 
probability density across the interface 
near a dendrite tip. A detailed description 
of the phase diagram for this material is 
given in Reference 49.
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energy functional of a thermodynamic 
system, which is constructed in terms of 
the APD, is minimized by periodic 
atomic density states for solid phases 
and a constant density for a liquid. Peri-
odic density states naturally gives rise 
to elasticity, multiple crystal orientations, 
and the nucleation and motion of dislo-
cations. Diffusive dynamics of the atomic 
density field evolve according to the 
usual dissipative dynamics driven by free 
energy minimization. 
	 The quintessential advantage of the 
PFC method is that it integrates atomic 
vibrations on time scales many orders 
of magnitude longer than those associ-
ated with the Debye frequency 1/ωD ~ 
10

–13s. This allows elastic and plastic 
effects emerging at the atomic scale to 
be self-consistently incorporated on the 
diffusive time scales that govern phase-
transformation kinetics. The study of 
such phenomena using molecular 
dynamics (MD) simulations is prohibi-
tively expensive since MD is constrained 
to evolve at the scale of femtoseconds, 
precluding the study of physics of nano-
structured materials, where the relevant 
length scales are atomic and time scales 
are mesoscopic. 
	 Recent innovations in the phase-field 
crystal methodology have further 
advanced its applicability as a viable tool 
for multiscale modeling materials prop-
erties emergent from the nanoscale. 
These include a recent extension of 
original the PFC dynamics to include 
higher-order time derivatives.45 Moti-
vated by hydrodynamics of solids,45,46 
this dynamical formulation makes it 
possible to simulate “instantaneous” 

elastic relaxation, an extension that is 
important for simulating complex stress 
propagation and externally imposed 
strains.45

	 Another innovation has seen the 
decomposition of the PFC equations of 
motion into a new set of phase and 
amplitude equations47,48 that are ame-
nable to adaptive mesh refinement 
schemes. This extension to the PFC 
formalism has the potential to enable 
simulations of mesoscopic phenomena 
(µm → mm) that are resolved down to 
the atomic scale and still incorporate all 
the physics discussed previously. 
	 More recently still, the PFC formalism 
for pure materials was extended to 
include alloys, in which the dynamics 
of multiple diffusing atomic species can 
be considered.49 This work also showed 
the formal connection between the PFC 
methodology and classical density func-
tional theory. Working in conjunction 
with MD simulations, this connection 
makes it possible to construct PFC 
dynamics for various crystal symmetries 
and materials. 
	 This article presents a brief survey of 
recent simulations using the PFC 
method. The aim is to demonstrate how 
this new modeling paradigm and its 
recent extensions can be used to address 
a wide variety of phenomena in materi-
als science occurring across multiple 
length and time scales, the most impor-
tant of which emerge at the nanoscale 
and propagate up to the micro-and mac-
roscale. All the technical details of the 
methodology and implementations can 
be found in the references provided in 
the text and figures. 

APPLICATIONS OF PHASE-
FIELD-CRYSTAL MODELS 

Non-Equilibrium Phenomena in 
Pure Materials

	 Figure 1 shows the phase diagram of 
the simple free energy corresponding to 
a pure material.42 The y axis (r) corre-
sponds to a scaled temperature and the 
horizontal axis a scaled average density. 
The phase diagram contains coexistence 
between one liquid and two periodic 
density phases, one of which is a two-
dimensional hexagonal-close-packed 
(HCP) phase. A quench from liquid into 
the HCP phase gives rise to nucleation 
and growth of nanocrystalline grains of 
multiple orientations, which impinge to 
form grain boundaries. The measured 
grain boundary energies per unit length 
for such a polycrystalline sample are 
consistent with the usual Read-Shockley 
form.38,41,42,50 A comparison of the grain 
boundary energy from the PFC model, 
the Read-Shockley equation, and several 
experiments are shown in Figure 2. 
	 In addition to correctly modeling 
grain-boundary energy the original PFC 
model was used to study liquid phase 
epitaxial growth, the reverse Hall–Petch 
effect in nanocrystalline materials, grain 
growth, and fracture. An example simu-
lation of liquid phase epitaxial growth 
is displayed in Figure 3. This figure 
shows the initial buckling of the interface 
as predicted by R.J. Asaro and W.A. 
Tiller53 and M. Grinfeld54–56 and the 
eventual nucleation of dislocations. 
These simulations were used to study 
the critical height, H

c
, at which disloca-

tions nucleate as a function of film/sub-
strate lattice mismatch, ∈.41,42 The results 
were consistent with many experiments 
and the functional form proposed by J.W. 
Matthews and A.E. Blakeslee57,58 (i.e., 
H

c
 =(A + B log(H

c
))/ε), as shown in 

Figure 4a.
	 Figure 4b summarizes the results of 
a study of the yield strength of nanocrys-
talline material. In the simulations 
nanocrystalline materials were first 
generated by heterogenous nucleation. 
The samples were then pulled until 
plastic deformations occurred and the 
yield stress, σ∗was measured. Consistent 
with the reverse Hall-Petch effect, the 
yield stress decreased as the inverse 
square root of the grain size. 

Figure 11. The growth of 
a eutectic colony from a 
supercooled melt. The grey-
scale in the main portion 
of the figure shows the 
concentration field c(



x, t). 
In the insets, the grey-scale 
shows the atomic density field 
corresponding to the small 
portion of the main figure 
indicated by the white box. 
(Reprinted from Reference 
49.)
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“Quasi-Phonons” and Rapid 
Strain Relaxation

	 The original PFC formulation does 
not allow for the appropriate separation 
of times scales required to emulate 
“instantaneous” elastic relaxation in a 
solid sample. An extension of this model 
(dubbed the modified PFC model 
(MPFC)) developed in Reference 45 
includes the ability to relax strains in 
topologically complex samples much 
faster than the time scales required for 
diffusion, yet still orders of magnitude 
slower than those of real phonon relax-
ation times. Indeed, the main idea is to 
emulate rapid elastic relaxation without 
having to simulate real phonon time 
scales, which can be done far more 
effectively with MD. 
	 The properties of rapid strain relax-
ation inherent in the MPFC model are 
demonstrated with a simulation of uni-
axial tension on a notched sample, 
illustrated in Figure 5. Strain in the 
sample accumulates appropriately near 
the notches, as expected from linear 
elasticity theory. In treating the case of 
a double-notched plate, the stress con-
centration for this geometry is K

t
 	

= σ σyy yy
max / 0 =1.8.68 This demonstrates that 

the MPFC model is capable of capturing 
continuum-scale behavior, even though 
it evolves at the atomic scale. 
	 The MPFC model can also be used to 
examine the dynamics of individual 
dislocations. Figure 6 shows the top part 
of the crystal initially containing N atoms 
and the bottom part N+1. After the 
sample equilibrated an edge dislocation 
formed and a constant shear strain rate 
was applied. The time-averaged disloca-
tion glide velocity υ  was found to be a 
linear function of the strain rate 

γ , 
consistent with classical dislocation 
theory, which predicts that υ  = γ /(ρ

d
b), 

where ρ
d
 is the dislocation density and 

b is the magnitude of the Burger’s 
vector. 
	 Computing the average strain in the 
crystal of Figure 6 as a function of time 
for different strain rates reveals two 
regimes of dislocation glide, as shown 
in Figure 7. The first is characterized by 
continuous glide (observed at large 

γ ) 
and the second by a stick-slip gliding of 
the dislocation at low γ . In both cases 
the applied plastic strain was relieved by 
the motion of the dislocation, and the 

time-averaged strain remained con-
stant. 

Reformulation for Efficient 
Computation

	 One of the limitations of the PFC 
methodology is that it is an inherently 
atomic-scale model. As such it suffers 
from the same system size limitations 
as traditional MD. In order to apply the 
PFC formalism to larger-scale micro-
structure problems in materials science, 
it is essential to develop numerically 
efficient algorithms that enable multiple 
length scales to be simulated effi-
ciently. 
	 One such approach has been formu-
lated in References 47 and 48, where it 
was recognized that most of the impor-
tant dynamics during microstructure 
formation evolve on wavelengths much 
longer than the atomic scale, except those 
occurring near topological defects. 
Although these nanoscale phenomena 
comprise only a small fraction of the 
total system volume, the problem is not 
directly amenable to adaptive mesh 
refinement because the density field is 
periodic at the atomic scale. In the 
approach of References 47 and 48, the 
PFC dynamics for the atomic density are 
reformulated in terms of the amplitude 
and phase of the density field, rather than 
the density field itself, because the former 
vary on length scales much greater than 
the atomic spacing except near topo-
logical defects. The PFC dynamics of 
the density field are thus re-expressed 
as commensurate dynamics for the phase 
and amplitudes in terms of which the 
APD is expanded. Exploiting this sepa-
ration of length scales the phase and 
amplitude equations can be solved using 
a new adaptive mesh refinement algo-
rithm,69 thus enabling a great increase in 
the system sizes that can be simulated. 
After solving for the amplitude and 
phase, the APD is easily reconstructed. 
This approach thus provides a type of 
reversible coarse graining for PFC 
dynamics. 
	 Figure 8 shows a snapshot in time in 
the evolution of a few grains in a pure 
material, simulated using this method. 
The nominal size of the domain is 722 
nm square. The figure shows the grid, 
clearly demonstrating the dynamic 
adaptation to the growing crystals. The 
series of enlargements of the grain 

boundary region, leading finally to the 
reconstructed atomic scale density field 
in the lower right, illustrate the multiscale 
nature of the simulation. A portion of 
the low angle boundary with its geo-
metrically necessary dislocations is 
reconstructed in the lower right hand 
corner. 

Extension to Three Dimensions

	 It is straightforward to cast the PFC 
model in any dimension simply by chang-
ing the form of the operator in the free 
energy density function that controls 
spatial gradients (i.e., G(∇2)).41,42,49 
Figure 9 shows a simulation of three-
dimensional (3-D) body-centered cubic 
(bcc) crystal grains growing into an 
undercooled melt. In these simulations 
the grains were nucleated heteroge-
neously. As shown in Figure 9, small 
crystallites grow until they impinge to 
form a 3-D nanocrystal. This simulation 
contains approximately 400,000 lattice 
sites.

Binary Alloys

Solidification 

	 The PFC methodology has recently 
been extended to the study of polycrys-
talline solidification in alloys.49 Tradi-
tional phase-field models of solidifica-
tion are typically unable to self-consis-
tently combine bulk elastic and plastic 
effects with phase transformation kinet-
ics, multiple crystal orientations, and 
surface tension anisotropy. Moreover, 
previous approaches have incorporated 
certain aspects, such as surface tension 
anisotropy, phenomenologically. In the 
PFC formalism, these features arise 
naturally from classical density func-
tional theory.49

	 Figure 10 shows a simulation of an 
isothermally solidified solutal dendrite 
with sixfold hexagonal symmetry. The 
material corresponds to a binary alloy 
forming a symmetric eutectic phase 
diagram.49 The inset shows the atomic 
probability density near one of the den-
drite tips. The decay of the density 
fluctuations into the liquid in the inset 
of Figure 10 defines the atomic-scale 
sold-liquid interface. It is expected that 
the fundamental connection of the den-
sity field to interatomic potentials—
through density functional theory—can 
also help elucidate the mechanisms of 
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solute drag and solute trapping,70 cap-
tured only phenomenologically with 
traditional phase-field models.71,72

	 Figure 11 illustrates the growth of a 
eutectic colony from an undercooled 
melt. The simulation corresponds to the 
same binary alloy system used to simu-
late the data of Figure 10. The gray scale 
corresponds to the two solvus composi-
tions for the chosen undercooling. The 
inset shows the atomic probability den-
sity, which gives rise to coherency strains 
when the lattice constant is mismatched 
in the two phases. This will subsequently 
influence the spacing selection in the 
microstructure.49

Spinodal Decomposition

	 Spinodal decomposition has long been 
used as an important strengthening 
mechanism in metal alloys. A topic of 
intense investigation in the experimental 
and theoretical literature has been the 
role of dislocations in domain coarsen-
ing. It has recently been shown73,74 that 
coherent strains that form at domain 
boundaries can lead to large strains, 
which lead to intermediate-time coarsen-
ing dynamics slower than the usual t1/3 
growth law. These strains can be relaxed 
with the flow of mobile dislocations that 
move toward domain boundaries and 
lead to an asymptotic speed up of domain 
coarsening. A scaling analysis of this 
behavior73 has shown these results to be 
consistent with the sparse experimental 
data available in the literature.75–78

	 Figure 12 shows the simulation of a 
temperature quench below the spinodal 
point of a binary alloy using the alloy 
PFC model of Reference 49. Simulations 
began with a homogenous liquid phase 
at the spinodal concentration. The liquid 
first solidified into a polycrystalline solid 
(alpha) phase, which subsequently phase 
separated as the temperature was lowered 
below the spinodal. Figure 12 shows the 
concentration and density fields for four 
time sequences during the spinodal 
decomposition process. The dots in the 
figures denote the locations of dislocation 
cores. Other parameters for the simula-
tion are given in Reference 49. The 
spinodal coarsening rate corresponding 
to the data of Figure 12 exhibits an early 
and intermediate time regime that is 
slower that its traditional t1/3

 
behavior, 

while at late times it asymptotically 
approaches  t1/3 (Figure 13).

Figure 14. A dis locat ion 
migrates toward a coherent 
phase boundary, thus relaxing 
mismatch strain. An 800 × 800 
(units of ∆x) portion of the actual 
simulation domain is shown. The 
data show four time frames in 
the motion of the dislocation. 
Parameters of the simulation are 
the same as in Figure 12. 

Figure 13. The inverse of 
the mean wave vector of 
the (circularly averaged) 
2-D structure factor of the 
concentration field (R) vs. 
time (t) corresponding to 
the simulation in Figure 
12. Results are shown for 
two values of the atomic 
mismatch η = RB/RA.

a b

c d
Figure 12. Four time sequences in the evolution of the concentration field (red-blue) 
superimposed on the corresponding density field (the latter can be resolved by amplifying 
the on-line version). Dislocations are labeled by a square on the dislocation core surrounded 
by a circle. The time sequence (a)–(d) corresponds to t = 12,000, 24,000, 60,000, and 
288,000 (arbitrary units), respectively. The system size is 1,024∆x × 1,024∆x, where ∆x is 
equal to 1/4 of the lattice constant. The atomic radius (RA) of species A is 25 percent larger 
than that of species B (RB). (Reprinted from Reference 49.)
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	 The simulations in Figure 12 contain 
both compositional domain boundaries 
and grain boundaries of different orien-
tations. As a result, the observed disloca-
tion motion is affected by elastic strain 
energy due to phase separation and 
curvature driven grain boundary motion. 
To better isolate the effect of phase 
separation on dislocations, Figure 14 
demonstrates dislocation motion near a 
coherent interface in the alloy. As in 
Reference 73, coherent strain energy 
built up due to compositional differences 
in the two phases drives the dislocation 
toward the compositional boundary. 

Diffusion Couple

	 A recent extension to the PFC model 
also permits the modeling of persistent 
vacancies, and differentiation of indi-
vidual species. Figure 15 shows a zoom-
in of a snapshot in time from a simulation 
of diffusion in a periodic array of stripes 
of two different phases. Notice that dif-
fusion takes place predominantly along 
grain boundaries in the simulation. By 
adding noise to the PFC equations, the 
effect of temperature was also incorpo-
rated. By extracting concentration data 
from the simulation and comparing it 
with the exact solution for a diffusion 
couple, the effective diffusion coefficient 
can be measured. Figure 16 shows a 
typical result, indicating that the diffu-
sion process in the PFC model is inher-
ently thermally activated when thermal 
fluctuations are added to the governing 
equations. 

conclusion 

	 The PFC methodology represents a 
new paradigm for modeling materials 
behavior. It provides a continuum-scale 
representation of the atomic density field 
that evolves on diffusive time scales. 
This opens up a wide variety of phenom-
ena for analysis that are not approachable 
using previous techniques. Specifically, 
MD simulations are limited to far smaller 
time scales, while phase-field methods 
are limited to microscopic length scales 
and only incorporate atomic-scale 
parameters effectively (i.e., phenomeno-
logically). Furthermore, most of the 
hybrid atomic/continuum models have 
to make limiting assumptions about 
interactions at the intersection of the two 
descriptions. 
	 The use of advanced computing algo-

rithms will soon lend the PFC methodol-
ogy to efficient 3-D simulations. This 
will enable more detailed studies of 
multiple crystal structures and a more 
systematic examination of alloy systems. 
Some of this work has already begun to 
appear in the literature and at confer-
ences. This new modeling formalism 
also has great potential to model prob-
lems in physical metallurgy, including 
interaction of multiple dislocations, 
interactions of dislocations with solute 
fields, solidification, and a wide variety 
of other applications. The next few years 
should bring an exciting array of appli-
cations using the PFC method. 
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Figure 16. The effective diffusion coefficient 
obtained by fitting the data of Figure 15 to an 
exact solution.

Figure 15. A time sequence from the simulation of diffusion in a binary alloy, showing 
the densities of A (orange) and B (blue). The initial condition is shown on the left, and all 
boundaries are periodic. The final panel shows a magnification of the boxed region in the 
second panel, where one can clearly see the preferential diffusion along grain boundaries 
and the persistence of vacancies.
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