
Simple viscous flows: From boundary layers to the renormalization
group

John Veysey II and Nigel Goldenfeld

Department of Physics, University of Illinois at Urbana-Champaign,
1110 W. Green Street, Urbana, Illinios 61801, USA

�Published 13 July 2007�

The seemingly simple problem of determining the drag on a body moving through a very viscous fluid
has, for over 150 years, been a source of theoretical confusion, mathematical paradoxes, and
experimental artifacts, primarily arising from the complex boundary layer structure of the flow near
the body and at infinity. The extensive experimental and theoretical literature on this problem is
reviewed, with special emphasis on the logical relationship between different approaches. The survey
begins with the development of matched asymptotic expansions, and concludes with a discussion of
perturbative renormalization-group techniques, adapted from quantum field theory to differential
equations. The renormalization-group calculations lead to a new prediction for the drag coefficient,
one which can both reproduce and surpass the results of matched asymptotics.
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I. INTRODUCTION TO LOW R FLOW

A. Overview

In 1851, shortly after writing down the Navier-Stokes
equations, Sir George Gabriel Stokes turned his atten-
tion to what modern researchers might refer to as “the
hydrogen atom” of fluid mechanics: the determination
of the drag on a sphere or an infinite cylinder moving at
fixed speed in a highly viscous fluid �Stokes, 1851�. Just

REVIEWS OF MODERN PHYSICS, VOLUME 79, JULY–SEPTEMBER 2007

0034-6861/2007/79�3�/883�45� ©2007 The American Physical Society883

http://dx.doi.org/10.1103/RevModPhys.79.883


as the quantum theory of the hydrogen atom entailed
enormous mathematical difficulties, ultimately leading
to the development of quantum field theory, the prob-
lem posed by Stokes has turned out to be much harder
than anyone could reasonably have expected: it took
over 100 years to obtain a justifiable lowest-order ap-
proximate solution, and that achievement required the
invention of a new branch of applied mathematics,
matched asymptotic expansions. And just as the fine
structure of the hydrogen atom’s spectral lines eventu-
ally required renormalization theory to resolve the prob-
lems of “infinities” arising in the theory, so too is Stokes’
problem plagued by divergences that are, to a physicist,
most naturally resolved by renormalization-group
theory �Feynman, 1948; Schwinger, 1948; Tomonaga,
1948; Stuckelberg and Petermann, 1953; Gell-Mann and
Low, 1954; Wilson, 1971a, 1971b, 1983; Chen et al.,
1996�.

In order to appreciate the fundamental difficulty of
such problems, and to expose the similarity with familiar
problems in quantum electrodynamics, we need to ex-
plain how perturbation theory is used in fluid dynamics.
Every flow that is governed by the Navier-Stokes equa-
tions only �i.e., the transport of passive scalars, such as
temperature, is not considered; there are no rotating
frames of reference or other complications� is governed
by a single dimensionless parameter, known as the Rey-
nolds number, which we designate as R. The Reynolds
number is a dimensionless number made up of a charac-
teristic length scale L, a characteristic velocity of the
flow U, and the kinematic viscosity ��� /�, where � is
the viscosity and � is the density of the fluid. In the
problems at hand, defined precisely below, the velocity
scale is the input fluid velocity at infinity u� and the
length scale is the radius a of the body immersed in the
fluid. Then the Reynolds number is given by

R �
u�a

�
. �1�

The Reynolds number is frequently interpreted as the
ratio of the inertial to viscous terms in the Navier-Stokes
equations. For very viscous flows R→0, and so we an-
ticipate that a sensible way to proceed is perturbation
theory in R about the problems with infinite viscosity,
i.e., R=0. In this respect, the unwary reader might re-
gard this as an example similar to quantum electrody-
namics, where the small parameter is the fine-structure
constant. However, as we show in detail below, there is a
qualitative difference between a flow with R=0 and a
flow with R→0. The fundamental reason is that by vir-
tue of the circular or spherical geometry the ratio of
inertial to viscous forces in the Navier-Stokes equations
is not a constant everywhere in space: it varies as a func-
tion of radial distance r from the body, scaling as
O�Rr /a�. Thus when R=0, this term is everywhere zero;
but for any nonzero R, as r /a→� the ratio of inertial to
viscous forces becomes arbitrarily large. Thus inertial
forces cannot legitimately be regarded as negligible with
respect to viscous forces everywhere: the basic premise
of perturbation theory is not valid.

Perturbation theory has to somehow express, or mani-
fest, this fact, and it registers its objection by generating
divergent terms in its expansion. These divergences are
not physical, but are perturbation theory’s way of indi-
cating that the zeroth order solution—the point about
which perturbation theory proceeds—is not a correct
starting point. The reader might wonder if the precise
nature of the breakdown of perturbation theory, signi-
fied by the divergences, can be used to deduce what
starting point would be a valid one. The answer is yes:
this procedure is known as the perturbative renormaliza-
tion group �RG�, and we devote a significant fraction of
this article to expounding this strategy. As most readers
will know, renormalization �Feynman, 1948; Schwinger,
1948; Tomonaga, 1948� and renormalization-group
�Stuckelberg and Petermann, 1953; Gell-Mann and Low,
1954; Wilson, 1971a, 1971b, 1983� techniques in quantum
field theories have been stunningly successful. In the
most well-controlled case, that of quantum electrody-
namics, the smallness of the fine-structure constant al-
lows agreement of perturbative calculations with high-
precision measurements to 12 significant figures
�Gabrielse et al., 2006�. Do corresponding techniques
work as well in low Reynolds fluid dynamics, where one
wishes to calculate and measure the drag CD �defined
precisely below�? Note that in this case it is the func-
tional form in R for the drag that is of interest, rather
than the drag at one particular value of R, so the mea-
sure of success is rather more involved. Nevertheless, we
show that calculations can be compared with experi-
ments, but there too will require careful interpretation.

Historically a different strategy was followed, leading
to a set of techniques known generically as singular per-
turbation theory, in particular encompassing boundary
layer theory and the method of matched asymptotic ex-
pansions. We explain these techniques, developed by
mathematicians starting in the 1950s, and show their
connection with renormalization-group methods.

Although the calculational techniques of matched
asymptotic expansions are widely regarded as represent-
ing a systematically firm footing, their best results apply
only to an infinitesimally small Reynolds number. As
shown in Fig. 1, large deviations between theory and
experiment for R�0.5 demonstrate the need for theo-
retical predictions which are more robust for small but

FIG. 1. �Color online� Comparing experiment with state of the
art theoretical predictions for a sphere �Tritton, 1959; Jayawe-
era and Mason, 1965� �right� and a cylinder �Maxworthy, 1965;
Le Clair and Hamielec, 1970; Dennis and Walker, 1971� �left�.
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noninfinitesimal Reynolds numbers. Ian Proudman,
who, in a tour de force helped obtain the first matched
asymptotics result for a sphere �Proudman and Pearson,
1957�, expressed it this way: “It is therefore particularly
disappointing that the numerical ‘convergence’ of the
expansion is so poor” �Chester and Breach, 1969�. In
spite of its failings, Proudman’s solution was the first
mathematically rigorous one for flow past a sphere; all
preceding theoretical efforts were worse.

Further complicating matters, the literature surround-
ing these problems is rife with “paradoxes,” revisions, ad
hoc justifications, disagreements over attribution, myste-
rious factors of two, conflicting terminology, nonstand-
ard definitions, and language barriers. Even a recent ar-
ticle attempting to resolve this quagmire �Lindgren,
1999� contains an inaccuracy regarding publication dates
and scientific priority. This tortured history has left a
wake of experiments and numerical calculations which
are of widely varying quality, although they can appear
to agree when not examined closely. For example, it
turns out that the finite size of experimental systems has
a dramatic effect on measurements and simulations, a
problem not appreciated by early workers.

Although in principle the matched asymptotics results
can be systematically extended by working to higher or-
der, this is not practical. The complexity of the govern-
ing equations prohibits further improvement. We show
here that techniques based on the renormalization group
ameliorate some of the technical difficulties, and result
in a more accurate drag coefficient at small but nonin-
finitesimal Reynolds numbers. Given the historical im-
portance of the techniques developed to solve these
problems, we hope that our solutions will be of general
methodological interest.

We anticipate that some readers will be fluid dynami-
cists interested in assessing the potential value of
renormalization-group techniques. We hope that this
community sees that our use of the renormalization
group is quite distinct from applications to stochastic
problems, such as turbulence, and can serve a different
purpose. Some readers may be physicists with a field
theoretic background, encountering fluid problems for
the first time, perhaps in unconventional settings, such
as heavy-ion collisions and QCD �Ackermann et al.,
2001; Csernai et al., 2005, 2006; Heniz, 2005; Baier et al.,
2006; Hirano and Gyulassy, 2006� or two-dimensional
�2D� electron gases �Stone, 1990; Eaves, 1998�. We hope
that this review will expose them to the mathematical
richness of even the simplest flow settings, and introduce
a familiar conceptual tool in a nontraditional context.

This review has two main purposes. The first purpose
is to attempt a review and synthesis of the literature,
sufficiently detailed that the subtle differences between
different approaches are exposed, and can be evaluated
by the reader. This is especially important, because this
is one of those problems so detested by students, in
which there are a myriad of ways to achieve the right
answer for the wrong reasons. This article highlights all
of these.

A second purpose is to review the use of
renormalization-group techniques in the context of sin-
gular perturbation theory, as applied to low Reynolds
number flows. These techniques generate a nontrivial
estimate for the functional form of CD�R� that can be
sensibly used at moderate values of R�O�1�, not just
infinitesimal values of R. As R→0, these new results
reduce to those previously obtained by matched
asymptotic expansions, in particular, accounting for the
nature of the mathematical singularities that must be
assumed to be present for the asymptotic matching pro-
cedure to work.

Renormalization-group techniques were originally de-
veloped in the 1950s to extend and improve the pertur-
bation theory for quantum electrodynamics. During the
late 1960s and 1970s, renormalization-group techniques
famously found application in the problem of phase
transitions �Widom, 1963; Kadanoff, 1966; Wilson,
1971a�. During the 1990s, renormalization-group tech-
niques were developed for ordinary and partial differen-
tial equations, at first for the analysis of nonequilibrium
�but deterministic� problems which exhibited anomalous
scaling exponents �Goldenfeld et al., 1990; Chen et al.,
1991� and subsequently for the related problem of
traveling-wave selection �Chen, Goldenfeld, Oono, and
Paquette, 1994; Chen et al., 1994a; Chen and Golden-
feld, 1995�. The most recent significant development of
the renormalization group—and the one that concerns
us here—was application to singular perturbation prob-
lems �Chen et al., 1994b, 1996�. The scope of the work of
Chen et al. �1996� encompasses boundary layer theory,
matched asymptotic expansions, multiple scales analysis,
WKB theory, and reductive perturbation theory for spa-
tially extended dynamical systems. We do not review
these developments here, but focus only on the issues
arising in the highly pathological singularities character-
istic of low Reynolds number flows. For a pedagogical
introduction to renormalization-group techniques, we
refer the reader to the work of Goldenfeld �1992�, in
particular Chap. 10 which explains the connection be-
tween anomalous dimensions in field theory and similar-
ity solutions of partial differential equations. We men-
tion also that the RG techniques discussed here have
been the subject of rigorous analysis �Bricmont et al.,
1994; Bricmont and Kupiainen, 1995; Moise et al., 1998;
Moise and Temam, 2000; Ziane, 2000; Moise and Ziane,
2001; Blomker et al., 2002; Wirosoetisno et al., 2002; Lan
and Lin, 2004; Petcu et al., 2005� in other contexts of
fluid dynamics, and have found application in cavitation
�Josserand, 1999� and cosmological fluid dynamics �Igu-
chi et al., 1998; Nambu and Yamaguchi, 1999; Nambu,
2000, 2002; Belinchon et al., 2002�.

This review is organized as follows. After precisely
posing the mathematical problem, we review all prior
theoretical and experimental results. We identify the five
calculations and measurements which are accurate
enough, and which extend to a sufficiently small Rey-
nolds number, to be useful for evaluating theoretical
predictions. Furthermore, we review the history of all
theoretical contributions, and present the methodologies
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and approximations behind previous solutions. In doing
so, we eliminate prior confusion over chronology and
attribution. We conclude by comparing the best experi-
mental results with our new, RG-based, theoretical pre-
diction. This exercise makes the shortcomings that
Proudman lamented clear.

B. Mathematical formulation

The goal of these calculations is to determine the drag
force exerted on a sphere and on an infinite cylinder by
steady, incompressible, viscous flows. The actual physical
problem concerns a body moving at constant velocity in
an infinite fluid, where the fluid is at rest in the labora-
tory frame. In practice, it is more convenient to analyze
the problem using an inertial frame moving with the
fixed body, an approach which is entirely equivalent.1

Flow past a sphere or circle is shown schematically in
Fig. 2. The body has a characteristic length scale, chosen
to be the radius �a�, and it is immersed in uniform
stream of fluid. At large distances, the undisturbed fluid
moves with velocity u��.

The quantities shown in Table I characterize the prob-
lem. We assume incompressible flow, so �=const. The
continuity equation and the time-independent Navier-
Stokes equations govern steady-state, incompressible
flow,

� · u� = 0, �2�

�u� · �u� � = −
�p

�
+ ��2u� . �3�

These equations must be solved subject to two boundary
conditions, given by Eq. �4�. First, the no-slip conditions
are imposed on the surface of the fixed body �Eq. �4a��.
Second, the flow must be a uniform stream far from the
body �Eq. �4b��. To calculate the pressure, one also
needs to specify an appropriate boundary condition �Eq.

�4c��, although as a matter of practice this is immaterial,
as only pressure differences matter when calculating the
drag coefficient:

u� �r�� = 0 r� � �surface of fixed body� , �4a�

lim
	r�	→�

u� �r�� = u��, �4b�

lim
	r�	→�

p�r�� = p�. �4c�

It is convenient to analyze the problem using nondi-
mensional quantities, which are defined in Table II.
When using dimensionless variables, the governing
equations assume the forms given by Eqs. �5� and �6�,
where we have introduced the Reynolds number R
= 	u�� 	a /� and denoted scaled quantities by an asterisk,

�* · u�* = 0, �5�

R�u�* · �*�u�* = − �*p* + �*2u�*. �6�

The boundary conditions also transform, and will later
be given separately for both the sphere and cylinder
�Eqs. �14� and �10��. Henceforth, the * will be omitted
from our notation, except when dimensional quantities
are explicitly introduced. It is useful to eliminate pres-
sure from Eq. �6� by taking the curl and using the iden-
tity ���p=0, leading to

�u� · ���� � u� � − ��� � u� � · u� � =
1

R
�2�� � u� � . �7�

1Nearly all workers, beginning with Stokes �1851�, use this
approach, which Lindgren �1999� refers to as the “steady” flow
problem.

TABLE I. Quantities needed to characterize low R flow past a
rigid body.

Quantity Description

r� Coordinate vector

u� �r�� Velocity field
� Fluid density
p�r�� Pressure
� Kinematic viscosity
a Characteristic length of fixed body
u�� Uniform stream velocity

TABLE II. Dimensionless variables.

Dimensionless quantity Definition

r�* r� /a

u�*�r�� u� �r�� / 	u��	
p*�r�� a p�r�� /�� 	u��	

�� * a ��

FIG. 2. �Color online� Schematic for flow past a sphere or
cylinder.
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1. Flow past a cylinder

For the problem of the infinite cylinder, it is natural to
use cylindrical coordinates r�= �r ,� ,z�. We examine the
problem where the uniform flow is in the x̂ direction �see
Fig. 2�. We look for 2D solutions, which satisfy �zu� =0.

Since the problem is two dimensional, one may reduce
the set of governing equations �Eqs. �5� and �6� to
a single equation involving a scalar quantity, the La-
grangian stream function, usually denoted 	�r ,��. It is
defined by2

ur =
1

r

�	

��
, u� = −

�	

�r
, uz = 0. �8�

This definition guarantees that Eq. �5� will be satisfied
�Goldstein, 1929�. Substituting the stream function into
Eq. �7�, one obtains the governing equation �Eq. �9��.
Here we follow the compact notation of Proudmand and
Pearson �Proudman and Pearson, 1957; Hinch, 1991�,

�r
4	�r,�� = −

R

r

��	,�r
2�

��r,��
, �9�

where

�r
2 �

�2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 .

The boundary conditions which fix u� �r�� �Eqs. �4a� and
�4b�� also determine 	�r ,�� up to an irrelevant additive
constant.3 The boundary conditions expressed in terms
of stream functions are given by

	�r = 1,�� = 0, �10a�


 �	�r,��
�r



r=1

= 0, �10b�

lim
r→�

	�r,��
r

= sin��� . �10c�

To calculate the drag on a cylinder, we must first solve
Eq. �9� subject to the boundary conditions given by Eq.
�10�.

2. Flow past a sphere

To study flow past a sphere, we use spherical coordi-
nates r�= �r ,� ,
�. We take the uniform flow to be in the ẑ
direction. Consequently, we are interested in solutions
which are independent of 
, because there can be no
circulation about the ẑ axis.

Since the problem has axial symmetry, one can use the
Stokes stream function �or Stokes current function� to
reduce Eqs. �5� and �6� to a single equation. This stream
function is defined through the following relations:

vr =
1

r2sin �
	�, v� = −

1

r sin �
	r, v
 = 0. �11�

These definitions guarantee that Eq. �5� will be satisfied.
Substituting Eq. �11� into Eq. �7�, one obtains the follow-
ing governing equation for 	�r ,�� �Proudman and Pear-
son, 1957�:

D4	 = R� 1

r2

��	,D2	�
��r,��

+
2

r2D2	L	� . �12�

In this equation,

� � cos � ,

D2 �
�2

�r2 +
1 − �2

r2

�2

��2 ,

L �
�

1 − �2

�

�r
+

1

r

�

��
. �13�

Here we follow the notation of Proudman and Pearson
�1957�. Others, such as Van Dyke �1975� and Hinch
�1991�, write their stream function equations in an
equivalent, albeit less compact, notation.

As in the case of the cylinder, the boundary conditions
which fix u� �r�� �Eqs. �4a� and �4b�� determine 	 up to an
irrelevant additive constant. The transformed boundary
conditions are given by

	�r = 1,�� = 0, �14a�


 �	�r,��
�r



r=1

= 0, �14b�

lim
r→�

	�r,��
r2 =

1
2

�1 − �2� . �14c�

In this paper, we obtain approximate solutions for Eq.
�9� �subject to Eq. �10��, and Eq. �12� �subject to Eq.
�14��. These solutions are then used to calculate drag
coefficients, which we compare to experimental results.

3. Calculating the drag coefficient

Once the Navier-Stokes equations have been solved,
and the stream function is known, calculating the drag
coefficient CD is a mechanical procedure. We follow the
methodology described by Chester and Breach �1969�.
This analysis is consistent with the work done by Kaplun
�1957� and Proudman and Pearson �1957�, although
these authors do not detail their calculations.

This methodology is significantly different from that
employed by others, such as Tomotika �Oseen, 1910; To-
motika and Aoi, 1950�. Tomotika calculates CD approxi-
mately, based on a linearized calculation of pressure. Al-
though these approximations are consistent with
approximations inherent in their solution of the Navier-
Stokes equations, they are inadequate for the purposes
of obtaining a systematic approximation to any desired
order of accuracy.

2Although many prefer to solve the vector equations, we fol-
low Proudman and Pearson �1957�.

3The constant is irrelevant because it vanishes when the de-
rivatives are taken in Eq. �8�.
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Calculating the drag on the body begins by determin-
ing the force exerted on the body by the moving fluid.
Using dimensional variables, the force per unit area is
given by �Landau and Lifschitz, 1999�

Pi = − �iknk. �15�

Here �ik is the stress tensor and n� is a unit vector normal
to the surface. For an incompressible fluid, the stress
tensor takes the form �Landau and Lifschitz, 1999�

�ik = − p
ik + �� �vi

�xk
+

�vk

�xi
� . �16�

� is the dynamic viscosity, related to the kinematic vis-
cosity by �=��. The total force is found by integrating
Eq. �15� over the surface of the solid body. We now use
these relations to derive an explicit formula, expressed
in terms of stream functions, for both the sphere and the
cylinder.

a. Cylinder

In the case of the cylinder, the components of the ve-
locity field are given through the definition of the La-
grangian stream function �Eq. �8��. Symmetry requires
that the net force on the cylinder must be in the same
direction as the uniform stream. Because the uniform
stream is in the x̂ direction, it follows from Eqs. �15� and
�16� that the force4 on the cylinder per unit length is
given by

Fx̂ = 
 ��rr cos � − �r� sin ��ds

= ��
0

2�

��rr cos � − �r� sin ��rd��
r=a

= ��
0

2� ��− p + 2�
�vr

�r
�cos �

− ��1

r

�vr

��
+

�v�

�r
−

v�

r
�sin ��rd��

r=a

. �17�

The drag coefficient for an infinite cylinder is defined
as CD=FNet/� 	u��	2a. Note that authors �see, e.g., Lager-
strom et al. �1967� and Tritton �1959�� who define the
Reynolds number based on diameter nonetheless use
the same definition of CD, which is based on the radius.
For this problem, FNet=Fx̂, as given by Eq. �17�. Intro-
ducing the dimensionless variables defined in Table II
into Eq. �17�, and combining this with the definition of
CD, we obtain

Fx̂ =
�	u��	2a

R ��
0

2� ��− p�r,�� + 2
�ur

�r
�cos �

− �1

r

�ur

��
+

�u�

�r
−

u�

r
�sin ��rd��

r=1

, �18�

CD =
1

R��0

2� ��− p�r,�� + 2
�ur

�r
�cos �

− �1

r

�ur

��
+

�u�

�r
−

u�

r
�sin ��rd��

r=1

. �19�

To evaluate these expressions, we must first derive
p�r ,�� from the stream function. The pressure can be
determined to within an irrelevant additive constant by

integrating the �̂ component of the Navier-Stokes equa-
tions �Eq. �6�� �Chester and Breach, 1969; Landau and
Lifschitz, 1999�. The constant is irrelevant because, in
Eq. �19�, �0

2�C cos �d�=0. Note that all gradient terms
involving z vanish by construction,

p�r,�� = r� �− R��u� · ��u� +
uru�

r
�

+ �2u� +
2

r2

�ur

��
−

u�

r2 �d� . �20�

Given a solution for the stream function 	, the set of
dimensionless equations �8�, �19�, and �20� uniquely de-
termine CD for a cylinder. However, because the velocity
field satisfies no-slip boundary conditions, these general
formulas often simplify considerably.

For instance, consider the class of stream functions
which meets the boundary conditions �Eq. �10�� and can
be expressed as a Fourier sine series: 	�r ,��
=�n=1

� fn�r�sin n�. Using the boundary conditions it can
be shown that, for these stream functions, Eq. �19� re-
duces to the simple expression given by

CD = −
�

R
� d3

dr3 f1�r��
r=1

. �21�

b. Sphere

The procedure for calculating CD in the case of the
sphere is nearly identical to that for the cylinder. The
components of the velocity field are given through the
definition of Stokes stream function �Eq. �11��. As be-
fore, symmetry requires that any net force on the cylin-
der must be in the direction of the uniform stream, in
this case the ẑ direction.

From Eq. �15�, the net force on the sphere is given by

Fẑ = 
 ��rr cos � − �r� sin ��ds

= 2���
0

�

��rr cos � − �r� sin ��r2sin �d��
r=a

. �22�

For the sphere, the drag coefficient is defined as CD

�FNet/� 	u��	2a2. Often the drag coefficient is given in
terms of the Stokes drag, DS�6�� 	u�� 	a�
=6�� 	u��	2a2 /R. In these terms, CD=FNet6� /DSR. If
FNet=DS, CD=6� /R, which is the famous result of
Stokes �1851�.

Not all authors follow Stokes’ original definition of
CD. For instance, Goldstein �1929, 1965� and Liebster

4The form of �ik in cylindrical coordinates is given in Landau
and Lifschitz �1999�.
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�1927; Liebster and Schiller, 1924� defined CD using a
factor based on cross-sectional areas: CD

Goldstein=CD2/�.
These authors also defined R using the diameter of the
sphere rather than the radius. Dennis defined CD simi-
larly to Goldstein, but without the factor of 2: CD

Dennis

=CD /� �Dennis and Walker, 1971�.
Using the form of Eq. �16� given by Landau and Lif-

schitz �1999�, introducing the dimensionless variables de-
fined in Table II into Eq. �22�, and combining this with
the definition of CD we obtain

Fẑ =
Ds

3 ��0

� ��− p�r,�� + 2
�ur

�r
�cos �

− �1

r

�ur

��
+

�u�

�r
−

u�

r
� sin ��r2sin �d��

r=1

, �23�

CD =
2�

R ��
0

� ��− p�r,�� + 2
�ur

�r
�cos �

− �1

r

�ur

��
+

�u�

�r
−

u�

r
�sin ��r2sin �d��

r=1

. �24�

As with the cylinder, the pressure can be determined
to within an irrelevant additive constant by integrating

the �̂ component of the Navier-Stokes equations �Eq.
�6�� �Chester and Breach, 1969; Landau and Lifschitz,
1999�. Note that gradient terms involving 
 must vanish,

p�r,�� = r� �− R��u� · ��u� +
uru�

r
�

+ �2u� +
2

r2

�ur

��
−

u�

r2sin �2�d� . �25�

Given a solution for the stream function 	, the set of
dimensionless equations �11�, �24�, and �25� uniquely de-
termine CD for a sphere.

As with the cylinder, the imposition of no-slip bound-
ary conditions considerably simplifies these general for-
mulas. In particular, consider stream functions of the
form 	�r ,��=�n=1

� fn�r�Qn�cos ��, where Qn�x� is defined
as in Eq. �46�. If these stream functions satisfy the
boundary conditions, the drag is given by

CD =
2�

3R
�− 2f1��r� + f1��r��r=1. �26�

4. A subtle point

When applicable, Eqs. �21� and �26� are the most con-
venient way to calculate the drag given a stream func-
tion. They simply require differentiation of a single an-
gular term’s radial coefficient. However, they only apply
to functions that can be expressed as a series of har-
monic functions. Moreover, for these simple formulas to
apply, the series expansions must meet the boundary
conditions exactly. This requirement implies that each of
the functions fi�r� independently meets the boundary
conditions.

The goal of our work is to derive and understand ap-
proximate solutions to the Navier-Stokes’ equations.
These approximate solutions generally will not satisfy
the boundary conditions exactly. What—if any—
applicability do Eqs. �21� and �26� have if the stream
function does not exactly meet the boundary conditions?

In some rare cases, the stream function of interest can
be expressed in a convenient closed form. In these cases,
it is natural to calculate the drag coefficient using the full
set of equations. However, we show that the solution to
these problems is generally only expressible as a series
in harmonic functions. In these cases, it actually prefer-
able to use the simplified equations �21� and �26�.

First, these equations reflect the essential symmetry of
the problem, the symmetry imposed by uniform flow.
Equations �21� and �26� explicitly demonstrate that,
given an exact solution, only the lowest harmonic will
matter: Only terms which have the same angular depen-
dence as the uniform stream will contribute to the drag.
By utilizing the simplified formula for CD as opposed to
the general procedure, we effectively discard contribu-
tions from higher harmonics. This is exactly what we
want, since these contributions are artifacts of our ap-
proximations, and would not be present in an exact so-
lution.

The contributions from inaccuracies in how the lowest
harmonic meets the boundary conditions are more
subtle. As long as the boundary conditions are satisfied
to the accuracy of the overall approximation, it does not
matter whether one uses the full-blown or simplified
drag formula. The drag coefficients will agree to within
the accuracy of the original approximation.

In general, we use the simplified formula. This is the
approach taken explicitly by many matched asymptotic
workers �Chester and Breach, 1969; Skinner, 1975� and
implicitly by other workers �Proudman and Pearson,
1957; Van Dyke, 1975�. It should be noted that these
workers only use the portion5 of their solutions which
can exactly meet the assumptions of the simplified drag
formula. However, as subsequently discussed, this is an
oversimplification.

II. HISTORY OF LOW R FLOW STUDIES

A. Experiments and numerical calculations

Theoretical attempts to determine the drag by solving
the Navier-Stokes equations have been paralleled by an
equally intricate set of experiments. In the case of the
sphere, experiments usually measured the terminal ve-
locity of small falling spheres in a homogeneous fluid. In
the case of the cylinder, workers measured the force ex-
erted on thin wires or fibers immersed in a uniformly
flowing viscous fluid.

These experiments, while simple in concept, were dif-
ficult undertakings. The regime of interest necessitates

5To be precise, they use only the Stokes’ expansion, rather
than a uniform expansion.
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some combination of small objects, slow motion, and
viscous fluid. Precise measurements are not easy, and
neither is ensuring that the experiment actually exam-
ines the same quantities that the theory predicts. All
theoretical drag coefficients concern objects in an infi-
nite fluid, which asymptotically tends to a uniform
stream. Any real drag coefficient measurements must
take care to avoid affects due to the finite size of the
experiment. Due to the wide variety of results reported
in the literature, we found it necessary to make a com-
plete survey, as presented in this section.

1. Measuring the drag on a sphere

As mentioned, experiments measuring the drag on a
sphere at low Reynolds number were intertwined with
theoretical developments. Early experiments, which es-
sentially confirmed Stokes’ law as a reasonable approxi-
mation, include those of Allen �1900�, Arnold �1911�,
Williams �1915�, and Wieselsberger �1922�.

The next round of experiments were done in the
1920s, motivated by the theoretical advances begun by
Oseen �1910�. These experimentalists included
Schmeidel �1928� and Liebster �1927; Liebster and
Schiller, 1924�. The results of Allen, Liebster, and Ar-
nold were analyzed, collated, and averaged by Castle-
man �1925�, whose paper is often cited as a summary of
prior experiments. The state of affairs after this work is
well summarized in plots given by Goldstein �1965, p.
16�, and Perry �1950�. Figure 3 shows Goldstein’s plot,
digitized and reexpressed in terms of the conventional
definitions of CD and R.

Figure 3 shows the experimental data at this point,
prior to the next theoretical development, matched
asymptotics. Although the experimental data seem to
paint a consistent portrait of the function CD�R�, in re-
ality they are not good enough to discriminate between
different theoretical predictions.

Finite geometries cause the most significant experi-
mental errors for these measurements �Maxworthy,
1965; Tritton, 1988; Lindgren, 1999�. Tritton notes that
“the container diameter must be more than one hundred
times the sphere diameter for the error to be less than 2

percent,” and Lindgren estimates that a ratio of 50 be-
tween the container and sphere diameters will result in a
4% change in drag force.

In 1961, Fidleris et al. experimentally studied the ef-
fects of finite container size on drag coefficient measure-
ments �Fidleris and Whitmore, 1961�. They concluded
that there were significant finite-size effects in previous
experiments, but also proposed corrections to compen-
sate for earlier experimental limitations. Lindgren �1999�
also conducted some related experiments.

Maxworthy also realized this problem, and undertook
experiments which could be used to evaluate the more
precise predictions of matched asymptotics theories. In
his own words:

“From the data plotted in Goldstein or Perry, it
would appear that the presently available data is
sufficient to accurately answer any reasonable
question. However, when the data is plotted ‘cor-
rectly’; that is, the drag is non-dimensionalized
with respect to the Stokes drag, startling inaccu-
racies appear. It is in fact impossible to be sure of
the drag to better than ±20% … The difficulties
faced by previous investigators seemed to be
mainly due to an inability to accurately compen-
sate for wall effects” �Maxworthy, 1965�.

Maxworthy refined the falling sphere technique to
produce the best experimental measurements yet—2%
error. He also proposed a new way of plotting the data,
which removes the R−1 divergence in Eq. �24� �as R→0�.
His approach makes clear the failings of earlier mea-
surements, as can be seen in Fig. 4, where the drag mea-
surements are normalized by the Stokes drag, CD

Stokes

=6� /R.
In Maxworthy’s apparatus, the container diameter is

over 700 times the sphere diameter, and does not con-
tribute significantly to experimental error, which he es-
timates at better than 2%. Note that the data in Fig. 4
are digitized from his paper, as raw data are not avail-
able.

FIG. 3. �Color online� Early measurements of the drag on a
sphere �Goldstein, 1965�. FIG. 4. �Color online� Maxworthy’s accurate measurements of

the drag on a sphere �Maxworthy, 1965� contrasted with previ-
ous experiments �Goldstein, 1965�.
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This problem also attracted the attention of atmo-
spheric scientists, who realized its significance in cloud
physics, where “cloud drops may well be approximated
by rigid spheres” �Pruppacher and Le Clair, 1970�. In a
series of papers �e.g., Pruppacher and Steinberger, 1968;
Bear and Pruppacher, 1969; Le Clair and Hamielec,
1970; Pruppacher and Le Clair, 1970�, Pruppacher and
others undertook numerical and experimental studies of
the drag on the sphere. They were motivated by many of
the same reasons as Maxworthy, because his experi-
ments covered only Reynolds numbers between 0.4 and
11, and because “Maxworthy’s experimental setup and
procedure left considerable room for improvement”
�Pruppacher and Steinberger, 1968�.

Their results included over 220 measurements, which
they binned and averaged. They presented their results
in the form of a set of linear fits. Adopting Maxworthy’s
normalization, we collate and summarize their findings
as follows:

CD
R

6�
− 1 = �0.102�2R�0.955 0.005 � R � 1.0

0.115�2R�0.802 1.0 � R � 20

0.189�2R�0.632 20 � R � 200.

�27�

Unfortunately, one of their later papers includes the
following footnote �in our notation�: “At R�1 the most
recent values of CDR /6�−1 �Pruppacher, 1969� tended
to be somewhat higher than those of Pruppacher and
Steinberger” �Le Clair and Hamielec, 1970�. Their sub-
sequent papers plot these unpublished data as “experi-
mental scatter.” As the unpublished data are in much
better agreement with both Maxworthy’s measurements
and their own numerical analysis �Le Clair and
Hamielec, 1970�, it makes us question the accuracy of
the results given in Eq. �27�.

There are many other numerical calculations of the
drag coefficient for a sphere, including Kawaguti �1950�,
Jenson �1959�, Hamielec et al. �1967�, Rimon and Cheng
�1969�, Le Clair and Hamielec �1970�, Pruppacher and
Le Clair �1970�, and Dennis and Walker �1971�. Most of
these results are not useful either because of large errors
�e.g., Jenson� or because they study ranges of Reynolds
number which do not include R�1. Many numerical
studies examine only a few �or even just a single� Rey-
nolds numbers. For the purposes of comparing theoret-
ical predictions of CD at low Reynolds number, only
Dennis and Walker �1971� and Le Clair and Hamielec
�1970� have useful calculations. Both of these reported
tabulated results which are in very good agreement with
both each other and Maxworthy; at R=0.5, the three sets
of results agree to within 1% in CD, and to within 10%
in the transformed variable, CDR /6�−1. The agreement
is even better for R�0.5.

Figure 5 shows all relevant experimental and numeri-
cal results for the drag on a sphere. Note the clear dis-
agreement between Pruppacher’s results �Eq. �27�� and
all other results for R�1—including Le Clair and Prup-
pacher’s numerical results �Le Clair and Hamielec,
1970�. This can be clearly seen in the inset graph. Al-

though Pruppacher’s experiment results do agree very
well with other data for larger values of R �R�20�, we
will disregard them for the purposes of evaluating theo-
retical predictions at low Reynolds number.

It should also be noted that there is a community of
researchers interested in sedimentation and settling ve-
locities who have studied the drag on a sphere. In a
contribution to this literature, Brown reviews all the au-
thors discussed here, as he tabulates CD for R�5000
�Brown and Lawler, 2003�. His report addresses a larger
range of Reynolds numbers and he summarizes a num-
ber of experiments not treated here. His methodology is
to apply the Fidleris’ correction �Fidleris and Whitmore,
1961� to previous experiments where tabulated experi-
mental data were published.6 While this yields a reason-
ably well-behaved drag coefficient for a wide range of
Reynolds numbers, it is not particularly useful for our
purposes, as less accurate work obfuscates the results of
the most precise experiments near R=0. It also does not
include numerical work or important results which are
only available graphically �see, e.g., Maxworthy �1965��.

2. Measuring the drag on a cylinder

Experiments designed to measure the drag on an infi-
nite cylinder in a uniform fluid came later than those for
spheres. In addition to being a more difficult
experiment—theoretical calculations assume the cylin-
der is infinite—there were no theoretical predictions to
test before Lamb’s result in 1911 �Lamb, 1911�.

In 1914, Relf conducted the first experiments �Relf,
1914�. These looked at the force exerted on long wires in
a fluid. Relf measured the drag down to a Reynolds
number of about 10. In 1921, Wieselberger measured the
drag at still lower Reynods number, reaching R=2.11 by

6Brown incorrectly reports Dennis’ work �Dennis and
Walker, 1971� as experimental.

FIG. 5. �Color online� Summary of experimental and numeri-
cal studies of CD for a sphere �Maxworthy, 1965; Le Clair and
Hamielec, 1970; Dennis and Walker, 1971�.
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looking at the deflection of a weight suspended on a
wire in an air stream �Wieselsberger, 1921�.

These experiments, combined with others �Linke,
1931; Goldstein, 1965� at higher Reynolds number, char-
acterize the drag over a range of Reynolds numbers �see
Goldstein, p. 15�. However, they do not probe truly
small Reynolds numbers �R�1�, and are of little use for
evaluating theories which are only valid in that range.
Curiously, there are no shortage of claims otherwise,
such as Lamb, who says “The formula is stated to be in
good agreement with experiment for sufficiently small
values of U�a /�; see Wieselsberger” �Lamb, 1932�.

In 1933, Thom measured the “pressure drag,” extend-
ing observations down to R=1.75. Thom also notes that
this Reynolds number is still too high to compare with
calculations: “Actually, Lamb’s solution only applies to
values of R less than those shown, in fact to values much
less than unity, but evidently in most cases the experi-
mental results are converging with them” �Thom, 1933�.

In 1946, White undertook a series of measurements,
which were flawed due to wall effects �White, 1946�. The
first high quality experiments which measured the drag
at low Reynolds number were done by Finn �1953�. His
results, available only in graphical form, are reproduced
in Fig. 7. While vastly superior to any previous results,
there is considerable scatter in Finn’s measurements,
and they have largely been surpassed by later experi-
ments.

Tritton, in 1959, conducted experiments which
reached a Reynolds number of R=0.2, and also filled in
some gaps in the R−CD curve �Tritton, 1959�. Tritton
estimates his accuracy at ±6%, and compares his results
favorably to previous work, commenting that, “Probably
the lowest R points of the other workers were stretching
their techniques a little beyond their limits.” Tritton is
also the first to give a discussion of systematic errors.7

Tritton’s results are shown in Fig. 6. All of his data are
available in tabular form.

Maxworthy improved plots of the drag on a sphere
�Fig. 3�, by arguing that the leading divergence must be
removed to better compare experiments and predictions
�Fig. 4�. This same criticism applies to plots of the drag
on a cylinder. In the case of the cylinder, CD goes as R−1

�with logarithmic corrections� as R→0 �Eq. �19��. This
means we ought to plot CDR /4�. This function tends to
zero as R→0, so it is not necessary to plot CDR /4�−1,
as in the case of the sphere. Figure 7 shows both Finn’s
and Tritton’s data replotted with the leading divergence
removed.

In 1965, Jayaweera and Mason �1965� undertook drag
measurements of the drag on very long �but finite�
cylinders. At very low Reynolds number �R�0.135�,
their data are available in tabular form. At higher Rey-
nolds number, they had to be digitized. Their data, plot-
ted with the leading divergence removed, are also shown
in Fig. 7.

The agreement among these experiments is excellent.
Henceforth, Finn’s data will not be plotted, as they ex-
hibit larger experimental variations, and are surpassed
by the experiments of Jayaweera and Tritton. Jayawe-
era’s data exhibit the least scatter, and may be slightly
better than Tritton’s. However, both experiments have
comparable, large ratios of cylinder length to width �the
principle source of experimental error�, and there is no a
priori reason to favor one experimental design over the
other. We consider these two experiments to be equiva-
lent for the purposes of evaluating theoretical predic-
tions.

As with the sphere, there are numerical calculations
including Thom �1933�, Allen and Southwell �1955�,
Apelt �1961�, Dennis and Shimshoni �1965�, Kawaguti
and Jain �1966�, Underwood �1969�, Son and Hanratty
�1969�. Of these, most treat only a few Reynolds num-
bers, none of which are sufficiently small. Others, such

7Tritton does caution that his measurements may be nega-
tively biased at higher Reynolds number �R�30�.

FIG. 6. �Color online� Tritton’s measurements of the drag on a
cylinder �Tritton, 1959�.

FIG. 7. �Color online� Summary of measurements of the drag
on a cylinder �Finn, 1953; Jayaweera and Mason, 1965; Tritton,
1959�.
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as Allen and Dennis, have had their results subsequently
questioned �Underwood, 1969�. The only applicable
studies are by Kawaguti and Jain �1966�, and Under-
wood �1969�. Kawaguti has a calculation only for R
=0.5, and is omitted. Underwood’s results are in prin-
ciple important and useful, but are only available in a
coarse plot, which cannot be digitized with sufficient ac-
curacy. Consequently, no numerical results will be used
for evaluating analytical predictions.

There are many different experimental and numerical
drag coefficient measurements. We will subsequently use
only the best as benchmarks for evaluating the perfor-
mance of theoretical predictions. In the case of the
sphere, the experimental measurements of Maxworthy
�1965� as well as the numerical calculations of Dennis
and Walker �1971� and Le Clair and Hamielec �1970� all
extend to sufficiently small R and possess sufficient ac-
curacy. For the cylinder the experiments of both Tritton
�1959� and Jayaweera and Mason �1965� are both excel-
lent. Although they exhibit small differences, we cannot
judge either to be superior, and we will compare both
with theoretical results.

B. Theoretical history

Since these problems were posed by Stokes in 1851,
there have been many attempts to solve them. All of
these methods involve approximations, which are not al-
ways rigorous �or even explicitly stated�. There is also
considerable historical confusion over contributions and
attribution.8 Here we review and summarize the sub-
stantial contributions to the literature, focusing on what
approximations are used, both in deriving governing
equations and in their subsequent solution. We discuss
the validity and utility of important results. Finally, we
emphasize methodological shortcomings and how they
have been surmounted.

1. Stokes and paradoxes

In the first paper on the subject, Stokes approximated
R=0 in Eq. �6� and solved the resulting equation �a
problem equivalent to solving Eq. �12� with R=0�
�Stokes, 1851�. After applying the boundary conditions
�Eq. �14��, his solution is given in terms of a stream func-
tion by

	�r,�� =
1
4
�2r2 − 3r +

1

r
��1 − �2� . �28�

By substituting 	�r ,�� into Eqs. �11�, �24�, and �25� �or
by using Eq. �26��, we reproduce the famous result of
Stokes, given by

CD =
6�

R
. �29�

Stokes also tackled the two-dimensional cylinder
problem in a similar fashion, but could not obtain a so-
lution. The reason for his failure can be seen by setting
R=0 in Eq. �9� and attempting a direct solution. Enforc-
ing the sin � angular dependence results in a solution of
the form 	�r ,��= �C1r3+C2r ln r+C3r+C4 /r�sin �. Here
Ci are integration constants. No choice of Ci will meet
the boundary conditions �10�, as this solution cannot
match the uniform flow at large r. The best one can do is
to set C1=0, resulting in a partial solution:

	�r,�� = C�2r ln r − r +
1

r
�sin � . �30�

Nonetheless, this solution is not a description of fluid
flow which is valid everywhere. Moreover, due to the
indeterminable constant C, Eq. �30� cannot be used to
estimate the drag on the cylinder.

A more elegant way to see that no solution may exist
is through dimensional analysis �Happel and Brenner,
1973; Landau and Lifschitz, 1999�. The force per unit
length may only depend on the cylinder radius, fluid vis-
cosity, fluid density, and uniform stream velocity. These
quantities are given in Table III, with M denoting a unit
of mass, T a unit of time, and L a unit of length. From
these quantities, one may form two dimensionless
groups �Buckingham, 1914�: �0=R= 	u�� 	a /�, �1

=FNet/�� 	u��	. Buckingham’s � theorem �Buckingham,
1914� then tells us that

�0 = F�R� . �31�

If we make the assumption that the problem does not
depend on R, as Stokes did, then we obtain �1=const,
from where

FNet � ��	u��	 . �32�

However, Eq. �32� does not depend on the cylinder
radius a. This is physically absurd, and demonstrates
that Stokes’ assumptions cannot yield a solution. The
explanation is that when we take the R→0 limit in Eq.
�31�, we made the incorrect assumption that F�R� tended
toward a finite, nonzero limit. This is an example of in-
complete similarity, or similarity of the second kind �in

8For an explanation of confusion over early work, see
Lindgren �1999�. Proudman and Pearson �1957� also begin
their article with an insightful, nuanced discussion, although
there are some errors �Lindgren, 1999�.

TABLE III. Dimensional analysis of Stokes’ problem.

Quantity Description Dimensions

FNet Net force per unit length MT−2

� Kinematic viscosity L2T−1

a Cylinder radius L

� Fluid density ML−3

	u��	 Uniform stream speed LT−1
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the Reynolds number� �Barenblatt, 1996�. Note that the
problem of flow past a sphere involves force, not force
per unit length, and therefore is not subject to the same
analysis.

Stokes incorrectly took this nonexistence of a solution
to mean that steady-state flow past an infinite cylinder
could not exist. This problem, which is known as Stokes’
paradox, has been shown to occur with any unbounded
two-dimensional flow �Krakowski and Charnes, 1953�.
But such flows really do exist, and this mathematical
problem has since been resolved by the recognition of
the existence of boundary layers.

In 1888, Whitehead attempted to find higher approxi-
mations for flow past a sphere, ones which would be
valid for small but non-negligible Reynolds numbers
�Whitehead, 1888�. He used Stokes’ solution �Eq. �28��
to approximate viscous contributions �the left-hand side
of Eq. �12��, aiming to iteratively obtain higher approxi-
mations for the inertial terms. In principle, this approach
can be repeated indefinitely, always using a linear gov-
erning equation to obtain higher-order approximations.
Unfortunately, Whitehead found that his next order so-
lution could not meet all boundary conditions �Eq. �14��,
because he could not match the uniform stream at infin-
ity �Van Dyke, 1975�. These difficulties are analogous to
the problems encountered in Stokes’ analysis of the in-
finite cylinder.

Whitehead’s approach is equivalent to a perturbative
expansion in the Reynolds number, an approach which
is “never valid in problems of uniform streaming”
�Proudman and Pearson, 1957�. This mathematical diffi-
culty is common to all three-dimensional uniform flow
problems, and is known as Whitehead’s paradox. White-
head thought this was due to discontinuities in the flow
field �a “dead-water wake”�, but this is incorrect, and his
“paradox” has also since been resolved �Van Dyke,
1975�.

2. Oseen’s equation

a. Introduction

In 1893, Rayleigh pointed out that Stokes’ solution
would be uniformly applicable if certain inertial forces
were included, and noted that the ratio of those inertial
forces to the viscous forces which Stokes considered
could be used to estimate the accuracy of Stokes’ ap-
proximations �Lord Rayleigh, 1893�.

Building on these ideas in 1910, Oseen proposed an
ad hoc approximation to the Navier-Stokes equations
which resolved both paradoxes. His linearized equations
�the Oseen equations� attempted to deal with the fact
that the equations governing Stokes’ perturbative ex-
pansion are invalid at large 	r�	, where they neglect im-
portant inertial terms. In addition to Oseen, a number of

workers have applied his equations to a wide variety of
problems, including both the cylinder and sphere.9

Oseen’s governing equation arises independently in
several different contexts. Oseen derived the equation in
an attempt to obtain an approximate equation which de-
scribes the flow everywhere. In modern terminology, he
sought a governing equation whose solution is a uni-
formly valid approximation to the Navier-Stokes equa-
tions. Whether he succeeded is a matter of some debate.
The short answer is “yes, he succeeded, but he got
lucky.”

This story is further complicated by historical confu-
sion. Oseen’s equations “are valid but for the wrong rea-
son” �Lindgren, 1999�; Oseen originally objected to
working in the inertial frame where the solid body is at
rest, and therefore undertook calculations in the rest
frame of uniform stream. This complication is over-
looked largely because many subsequent workers have
only understood Oseen’s intricate three paper analysis
through the lens of Lamb’s later work �Lamb, 1911�.
Lamb—in addition to writing in English—presents a
clearer, “shorter way of arriving at his �Oseen’s� results,”
which he characterizes as “somewhat long and intricate”
�Lamb, 1911�.

In 1913 Noether, using both Rayleigh’s and Oseen’s
ideas, analyzed the problem using stream functions
�Noether, 1913�. Noether’s paper prompted criticisms
from Oseen, who then revisited his own work. A few
months later, Oseen published another paper, which in-
cluded a new result for CD �Eq. �39�� �Oseen, 1913�. Bur-
gess also explains the development of Oseen’s equation,
and presents a clear derivation of Oseen’s principal re-
sults, particularly of Oseen’s new formula for CD �Bur-
gess, 1916�.

Lindgren offers a detailed discussion of these histori-
cal developments �Lindgren, 1999�. However, he incor-
rectly reports Noether’s publication date as 1911, rather
than 1913. As a result, he incorrectly concludes that No-
ether’s work was independent of Oseen’s, and contra-
dicts claims made by Burgess �1916�.

Although the theoretical justification for Oseen’s ap-
proximations is tenuous, its success at resolving the
paradoxes of both Stokes and Whitehead led to wide-
spread use. Oseen’s equation has been fruitfully substi-
tuted for the Navier-Stokes equations in a broad array of
low Reynolds number problems. Happel and Brenner
described its application to many problems in the dy-
namics of small particles where interactions can be ne-
glected �Happel and Brenner, 1973�. Many workers have
tried to explain the utility and unexpected accuracy of
Oseen’s governing equations.

Finally, the Oseen equation, as a partial differential
equation, arises both in matched asymptotic calculations

9Lamb �1932� solved the Oseen equations for the cylinder
approximately, as Oseen �1910� did for the sphere. The Oseen
equations have been solved exactly for a cylinder by Faxén
�1927�, as well as by Tomotika and Aoi �1950�, and those for
the sphere were solved exactly by Goldstein �1929�.
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and in our work. In these cases, however, its genesis and
interpretation are entirely different, and the similarity is
purely formal. Due to its ubiquity and historical signifi-
cance, we now discuss both Oseen’s equation and its
many different solutions in detail.

b. Why Stokes’ approximation breaks down

Oseen solved the paradoxes of Stokes and Whitehead
by using Rayleigh’s insight: compare the magnitude of
inertial and viscous forces �Lord Rayleigh, 1893; Oseen,
1910�. Stokes and Whitehead had completely neglected
inertial terms in the Navier-Stokes equations, working in
the regime where the Reynolds number is insignificantly
small �so-called “creeping flow”�. However, this assump-
tion can only be valid near the surface of the fixed body.
It is never valid everywhere.

To explain why, we follow here the spirit of Lamb’s
analysis, presenting Oseen’s conclusions “under a
slightly different form” �Lamb, 1911�.

Consider first the case of the sphere. We estimate the
magnitude of the neglected inertial terms by using
Stokes’ solution �Eq. �28��. Substituting this result into
the right-hand side of Eq. �12�, we see that the dominant
inertial components are convective accelerations arising
from the nonlinear terms in Eq. �12�. These terms reflect
interactions between the uniform stream and perturba-
tions described by Eq. �28�. For large values of 	r�	, these
terms are of O�Rr−2�.

Estimating the magnitude of the relevant viscous
forces is somewhat trickier. If we substitute Eq. �28� into
the left-hand side of Eq. �12�, the left-hand side vanishes
identically. To learn anything, we must consider the
terms individually. There are two kinds of terms which
arise far from the sphere. First, there are components
due solely to the uniform stream. These are of O�r−2�.
However, the uniform stream satisfies Eq. �12� indepen-
dently, without the new contributions in Stokes’ solu-
tion. Mathematically, this means that all terms of O�r−2�
necessarily cancel amongst themselves.10 We are inter-
ested in the magnitude of the remaining terms, pertur-
bations which result from the other components of
Stokes’ solution. These viscous terms �i.e., the ��

4 term in
Eq. �12�� are of O�r−3� as r→�.

Combining these two results, the ratio of inertial to
viscous terms in the r→� limit is given by

inertial
viscous

= O�Rr� . �33�

This ratio is small near the body �r is small� and justifies
neglecting inertial terms in that regime. However,
Stokes’ implicit assumption that inertial terms are every-
where small compared to viscous terms breaks down
when Rr�O�1�, and the two kinds of forces are of the
same magnitude. In this regime, Stokes’ solution is not

valid, and therefore cannot be used to estimate the iner-
tial terms �as Whitehead had done�. Technically speak-
ing, Stokes’ approximations break down because of a
singularity at infinity, an indication that this is a singular
perturbation in the Reynolds number. As Oseen pointed
out, this is the genesis of Whitehead’s “paradox.”

What does this analysis tell us about the utility of
Stokes’ solution? Different opinions can be found in the
literature. Happel, for instance, claims that it “is not uni-
formly valid” �Happel and Brenner, 1973�, while Proud-
man asserts “Stokes’ solution is therefore actually a uni-
form approximation to the total velocity distribution”
�Proudman and Pearson, 1957�. By a uniform approxi-
mation, we mean that the approximation asymptotically
approaches the exact solution as the Reynolds’ number
goes to zero �Kaplun and Lagerstrom, 1957�; see Sec.
II.C for further discussion.

Proudman and Pearson clarify their comment by not-
ing that although Stokes’ solution is a uniform approxi-
mation to the total velocity distribution, it does not ad-
equately characterize the perturbation to the uniform
stream, or the derivatives of the velocity. This is a salient
point, for the calculations leading to Eq. �33� examine
components of the Navier-Stokes equations, not the ve-
locity field itself. These components are forces—
derivatives of velocity.

However, Proudman and Pearson offer no proof that
Stokes’ solution is actually a uniform approximation,
and their claim that it is “a valid approximation to many
bulk properties of the flow, such as the resistance”
�Proudman and Pearson, 1957� goes unsupported. In fact
any calculation of the drag necessitates utilizing deriva-
tives of the velocity field, so their argument is inconsis-
tent.

We are forced to conclude that Stokes’ solution is not
a uniformly valid approximation, and that his celebrated
result, Eq. �29�, is the fortuitous result of uncontrolled
approximations. Remarkably, Stokes’ drag formula is in
fact the correct zeroth-order approximation, as can be
shown using either matched asymptotics or the Oseen
equation. This coincidence is essentially due to the fact
that the drag is determined by the velocity field and its
derivatives at the surface of the sphere, where r=1, and
Eq. �33� is O�R1�. The drag coefficient calculation uses
Stokes’ solution in the regime where his assumptions are
the most valid.

A similar analysis affords insight into the origin of
Stokes’ paradox in the problem of the cylinder. Al-
though we have seen previously that Stokes’ approach
must fail for both algebraic and dimensional consider-
ations, examining the ratio between inertial and viscous
forces highlights the physical inconsistencies in his as-
sumptions.

We can use the incomplete solution given by Eq. �30�
to estimate the relative contributions of inertial and vis-
cous forces in Eq. �9�. More specifically, we examine the
behavior of these forces at large values of r. Substituting
Eq. �30� into the right-hand side of Eq. �9�, we find that
the inertial forces are O�RC2 ln r /r2� as r→�.

10Van Dyke �1975� does not treat this issue in detail, and we
recommend Proudman and Pearson �1957� or Happel and
Brenner �1973� for a more careful discussion.
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We estimate the viscous forces as in the case of the
sphere, again ignoring contributions due solely to the
uniform stream. The result is that the viscous forces are
O�C ln r /r3�.11 Combining the two estimates, we obtain
the result

inertial
viscous

= O�Rr� . �34�

This result demonstrates that the paradoxes of Stokes
and Whitehead are the result of the same failures in
Stokes’ uncontrolled approximation. Far from the solid
body, there is a regime where it is incorrect to assume
that the inertial terms are negligible in comparison to
viscous terms. Although these approximations happened
to lead to a solution in the case of the sphere, Stokes’
approach is invalid and technically inconsistent in both
problems.

c. How Oseen resolved the paradoxes

Not only did Oseen identify the physical origin for the
breakdowns in previous approximations, but also discov-
ered a solution �Oseen, 1910�. As explained above, the
problems arise far from the solid body, when inertial
terms are no longer negligible. However, in this region
�r�1�, the flow field is nearly a uniform stream—it is
almost unperturbed by the solid body. Oseen’s inspira-
tion was to replace the inertial terms with linearized ap-
proximations far from the body. Mathematically, the
fluid velocity u� in Eq. �6� is replaced by the quantity
u��+u� , where u� represents the perturbation to the uni-
form stream, and is considered to be small. Neglecting
terms of O�	u� 	2�, the viscous forces of the Navier-Stokes
equation—R�u� ·�u� �—are approximated by R�u�� ·�u� �.

This results in Oseen’s equation:

R�u�� · �u� � = − �p + �2u� . �35�

The left-hand side of this equation is negligible in the
region where Stokes’ solution applies. One way to see
this is by explicitly substituting Eq. �28� or Eq. �30� into
the left-hand side of Eq. �35�. The result is of O�R�. This
can also be done self-consistently with any of the solu-
tions of Eq. �35�; it can thereby be explicitly shown that
the left-hand side can only become important when
r�1, and the ratios in Eqs. �33� and �34� are of O�1�.

Coupled with the continuity equation �Eq. �5��, and
the usual boundary conditions the Oseen equation de-
termines the flow field everywhere. The beautiful thing
about Oseen’s equation is that it is linear, and conse-
quently is solvable in a wide range of geometries. In
terms of stream functions, the Oseen equation for a
sphere takes on the form given by, with the boundary
conditions still given by Eq. �14�,

D4	 = R�1 − �2

r

�

��
+ �

�

�r
�D2	�r,�� . �36�

Here D is defined as in Eq. �12�.
For the cylinder, where the boundary conditions are

given by Eq. �10�, Oseen’s equation takes the form

�r
4	�r,�� = R�cos���

�

�r
−

sin���
r

�

��
��r

2	�r,�� . �37�

Here, � is defined as in Eq. �9�. This equation takes on a
particularly simple form in Cartesian coordinates �where
x=r cos ��: ��2−R�x��2	�r ,��=0.

A few historical remarks must be made. First, Oseen
and Noether were motivated to refine Stokes’ work and
include inertial terms because they objected to the
analysis being done in the rest frame of the solid body.
While their conclusions are valid, there is nothing wrong
with solving the problem in any inertial frame. Second,
Oseen made no use of stream functions; the above equa-
tions summarize results from several workers, particu-
larly Lamb.

There are many solutions to Oseen’s equations, apply-
ing to different geometries and configurations, including
some exact solutions. However, for any useful calcula-
tions, such as CD, even the exact solutions need to be
compromised with approximations. There have been
many years of discussions about how to properly inter-
pret Oseen’s approximations, and how to understand the
limitations of both his approach and concomitant solu-
tions. Before embarking on this analysis, we summarize
the important solutions to Eqs. �36� and �37�.

d. A plethora of solutions

Oseen himself provided the first solution to Eq. �36�,
solving it exactly for flow past a sphere �Oseen, 1910�.
Equation �38� reproduces this result in terms of stream
functions, a formula first given by Lamb �1932�,

	�r,�� =
1
4
�2r2 +

1

r
�sin2 �

−
3

2R
�1 + cos ���1 − e−�1/2�Rr�1−cos ��� . �38�

This solution is reasonably behaved everywhere, and
may be used to obtain Oseen’s improved approximation
for the drag coefficient �Eq. �39��,

This solution is reasonably behaved everywhere, and
may be used to obtain Oseen’s improved approximation
for the drag coefficient �Eq. �39��.

CD =
6�

R
�1 +

3
8

R� + O�R2� . �39�

Oseen obtained this prediction for CD after the
prompting of Noether, and only presented it in a later
paper �Oseen, 1913�. Burgess also obtained this result
�Burgess, 1916�. Oseen’s work was hailed as a resolution
to Whitehead’s paradox. While it did resolve the para-
doxes �e.g., he explained how to deal with inertial
terms�, and his solution is uniformly valid, it does not

11This result disagrees with the results of Proudman and Pear-
son �1957� and Van Dyke �1975�, who calculated that the ratio
of inertial to viscous forces �Rr ln r. However, both results
lead to the same conclusions.
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posses sufficient accuracy to justify the 3
8R term in Eq.

�39�. What Oseen really did was to rigorously derive the
leading order term, proving the validity of Stokes’ result
�Eq. �29��. Remarkably, his new term is also correct. This
is a coincidence which will be carefully considered later.

This solution �Eq. �38�� is exact in the sense that it
satisfies Eq. �36�. However, it does not exactly meet the
boundary conditions �Eq. �14�� at the surface of the
sphere. It satisfies those requirements only approxi-
mately, to O�R1�. This can readily be seen by expanding
Eq. �38� about r=1:

	�r,�� =
1
4
�2r2 − 3r +

1

r
�sin2 � + O�R1� . �40�

Up to O�R� this is simply Stokes’ solution �Eq. �28��,
which vanishes identically at r=1. The new terms fail to
satisfy the boundary conditions at the surface, but are
higher order in R. Thus Oseen’s solution is an exact so-
lution to an approximate governing equation which sat-
isfies boundary conditions approximately. Implications
of this confounding hierarchy of approximations will be
discussed below.

Lamb contributed a simplified method for both deriv-
ing and solving Oseen’s equation �Lamb, 1911�. His for-
mulation was fruitfully used by later workers �e.g.,
Faxén, 1927; Goldstein, 1929; Tomotika and Aoi, 1950�,
and Lamb himself used it both to reproduce Oseen’s
results and to obtain the first result for the drag on an
infinite cylinder.

Lamb’s basic solution for flow around an infinite cyl-
inder appears in a number of guises. His original solu-
tion was given in terms of velocity components, and re-
lied on expansions of modified Bessel functions which
kept only the most important terms in the series. This
truncation results in a solution �Eq. �41�� which only ap-
proximately satisfies the governing equations �Eq. �37��,
and is only valid near the surface,

ux = 1 + 
�� −
1
2

+ ln
rR

4
+

1
2

�r2 − 1�
�2

�x2 ln r� , �41a�

uy =



2
�r2 − 1�

�2

�x � y
ln r , �41b�

uz = 0. �41c�

In this equation, 
= � 1
2 −�−ln R /4�−1.

Note that, although it only approximately satisfies
Oseen’s governing equation, this result satisfies the
boundary conditions �Eq. �4�� exactly. Lamb used his so-
lution to derive the first result �Eq. �42�� for the drag on
an infinite cylinder, ending Stokes’ paradox:

CD =
4�

R
�
� . �42�

In his own words, “…Stokes was led to the conclusion
that steady motion is impossible. It will appear that
when the inertia terms are partially taken into
account…that a definite value for the resistance is ob-

tained” �Lamb, 1911�. As with all analysis based on the
ad hoc Oseen equation, it is difficult to quantify either
the accuracy or the limitations of Lamb’s result.

Many formulate alternate expressions of Lamb’s solu-
tion by retaining the modified Bessel functions rather
than replacing them with expansions valid for small R
and r. This form is given as follows, and is related to the
incomplete form given by Van Dyke �1975, p. 162�:12

ux = 1 + 
�x2

r4 −
1

2r2 +
2x

Rr2 − eRx/2K0�Rr

2
�

−
x

r
eRx/2K1�Rr

2
�� , �43a�

uy = 
�xy

r4 +
2y

Rr2 −
y

r
eRx/2K1�Rr

2
�� , �43b�

uz = 0. �43c�

Here In and Kn are modified Bessel functions.
In contrast to Eq. �41�, this solution is an exact solu-

tion to Oseen’s equation �Eq. �37��, but only meets the
boundary conditions to first approximation. In particu-
lar, it breaks down for harmonics other than sin �.
Whether Eq. �41� or �43� is preferred is a matter of some
debate, and ultimately depends on the problem one is
trying to solve.

Some prefer expressions like Eq. �43�, which are writ-
ten in terms of u� . Unlike the solutions for the stream
function, these results can be written in closed form.
This motivation is somewhat misguided, as applying the
boundary conditions nonetheless requires a series ex-
pansion.

In terms of stream functions Eq. �43� transforms into
�Proudman and Pearson, 1957�

	�r,�� = �r +



2r
�sin � − �

n=1

�



n�Rr

2
� r sin n�

n
. �44�

Here


n�x� = 2K1�x�In�x� + K0�x��In+1�x� + In−1�x�� .

This result is most easily derived as a special case of
Tomotika’s general solution �Eq. �49�� �Tomotika and
Aoi, 1950�, although Proudman et al. intimated that it
can also be directly derived from Lamb’s solution �Eq.
�43�� �Proudman and Pearson, 1957�.

Bairstow et al. were the first to retain Bessel functions
while solving Oseen’s equation for flow past a cylinder
�Bairstow and Cave, 1923�. They followed Lamb’s ap-
proach, but endeavored to extend it to larger Reynolds
numbers, and obtained the drag coefficient given below.
When expanded near R=0, this solution reproduces
Lamb’s result for CD �Eq. �42��. It can also be obtained
from Tomotika’s more general solution �Eq. �49��,

12Note that Van Dyke incorrectly attributes this result to
Oseen, rather than to Lamb.
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CD =
4�

R�I0�R/2�K0�R/2� + I1�R/2�K1�R/2��
. �45�

Bairstow also made extensive comparisons between ex-
perimental measurements of CD and theoretical predic-
tions �Relf, 1914�. He concluded, “For the moment it
would appear that the maximum use has been made of
Oseen’s approximation to the equations of viscous fluid
motion.”

At this point, the “paradoxes” were “resolved” but by
an approximate governing equation which had been
solved approximately. This unsatisfactory state of affairs
was summarized by Lamb in the last edition of his book:
“…even if we accept the equations as adequate the
boundary-conditions have only been approximately sat-
isfied” �Lamb, 1932�. His comment was prompted
largely by Faxén, who initiated the next theoretical de-
velopment, exact solutions to Oseen’s approximate gov-
erning equation �Eq. �35�� which also exactly satisfy the
boundary conditions.

Beginning with his thesis and spanning a number of
papers Faxén systematically investigated the application
of boundary conditions to solutions of Oseen’s equations
�Faxén, 1921, 1923�. Faxén initially studied low Rey-
nolds number flow around a sphere, and he began by
reexamining Oseen’s analysis. He derived a formula for
CD which differed from Oseen’s accepted result �Eq.
�39��. Faxén realized that this was due to differences in
the application of approximate boundary conditions;
within the limitations of their respective analyses, the
results actually agreed.

Faxén next solved Oseen’s equation �Eq. �36��, but in
bounded, finite spaces where the boundary conditions
could be satisfied exactly. He initially studied flow near
infinite parallel planes, but ultimately focused on flow
around a sphere within a cylinder of finite radius. He
aimed to calculate the drag force in a finite geometry,
and then take the limit of that solution as the radius of
the cylinder tends to infinity.

Unfortunately, in the low Reynolds number limit, the
problem involves incomplete similarity, and it is incor-
rect to assume that solutions will be well behaved �e.g.,
tend to a finite value� as the boundary conditions are
moved to infinity.

The drag force which Faxén calculated involved a
number of undetermined coefficients, so he also calcu-
lated it using solutions to Stokes’ governing equations.
This solution also has unknown coefficients, which he
then calculated numerically. Arguing that the two solu-
tions ought to be the same, he matched coefficients be-
tween the two results, substituted the numerical coeffi-
cients, and thereby arrived at a drag force based on the
Oseen governing equation.

This work is noteworthy for two reasons. First, the
matching of coefficients between solutions derived from
the two different governing equations is prescient, fore-
shadowing the development of matched asymptotics 30
years later. Second, Faxén ultimately concluded that
Oseen’s “improvement” �Eq. �39�� on Stokes’ drag coef-
ficient �Eq. �29�� is invalid �Faxén, 1923�. Faxén’s analysis

demonstrates that—when properly solved—Oseen’s
equation yields the same drag coefficient as Stokes’,
without any additional terms �Lindgren, 1999�.

Studies by Bohlin and Haberman concurred with
Faxén’s conclusions �Haberman and Saure, 1958; Bohlin,
1960; Lindgren, 1999�. It is not surprising that his results
rejected Oseen’s new term �3R /8�. We previously ex-
plained that Oseen’s analysis, although it eliminates the
paradoxes, does not possess sufficient accuracy to justify
more than the lowest-order term in Eq. �39�.

However, Faxén’s results suffer from problems. First,
they cannot be systematically used to obtain better ap-
proximations. Second, Faxén actually solves the prob-
lem for bounded flow, with the boundary conditions pre-
scribed by finite geometries. He uses a limiting
procedure to extend his solutions to unbounded flow
�with boundary conditions imposed on the uniform
stream only at infinity, as in Eq. �4��. In problems like
this, which involve incomplete similarity, it is preferable
to work directly in the infinite domain.

Faxén’s meticulous devotion to properly applying
boundary conditions culminated in the first complete so-
lution to Eq. �37�. In 1927, he published a general solu-
tion for flow around an infinite cylinder which could ex-
actly satisfy arbitrary boundary conditions �Faxén,
1927�. Unfortunately, Faxén’s solution contains an infi-
nite number of undetermined integration constants, and
approximations must be used to determine these con-
stants. Although this destroys the “exact” nature of the
solution, these approximations can be made in a con-
trolled, systematic fashion—an improvement over the
earlier results of Lamb and Oseen. Although Faxén’s
heroic solution was the first of its kind, his real insight
was realizing that approximations in the application of
boundary conditions could be as important as the ap-
proximations in the governing equations.

His formal solutions are in essence a difficult exten-
sion of Lamb’s reformulation of Oseen’s equations, and
they inspired several similar solutions. In 1929, Gold-
stein completed a similarly herculean calculation to de-
rive a general solution to Oseen’s equation for flow
around a sphere �Goldstein, 1929�. Like Faxén’s result
for the cylinder, Goldstein’s solution can, in principle,
exactly satisfy the boundary conditions. Unfortunately, it
also suffers from the same problems: It is impossible to
determine all of the infinitely many integration con-
stants.

Goldstein’s solution is summarized by Tomotika, who
also translated it into the language of stream functions
�Tomotika and Aoi, 1950�. We combine elements from
both papers in quoting the following solution:

	�r,�� = − r2Q1�cos ��

+ �
n=1

� �Bnr−n + �
m=0

�

Xmr2�m,n�rR/2��
�Qn�cos �� . �46�

In Eq. �46�,
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Qn��� = �
−1

�

Pn���d� , �47a�

�m,n�x� = − � m

2m − 1
�m−1�x� +

m + 1

2m + 3
�m+1�x��

�fm,n�x� − � m

2m + 1
fm−1,n�x�

+
m + 1

2m + 1
fm+1,n�x���m�x� , �47b�

�m�x� = �2m + 1�� �

2x
�1/2

Km+1/2�x� , �47c�

fm,n�x� = �2n + 1��
j=0

m
�2j� ! �2m − 2j� ! �2n − 2j�!
�j ! �2�2m + 2n − 2j + 1�!

� � �m + n − j�!
�m − j� ! �n − j�!�

2


m+n−2j�x� , �47d�


n�x� = �2n + 1�� �

2x
�1/2

In+1/2�x� ,

fm,n�x� = �
j=0

m

Cm�k�
�j
n�x�

�xj . �47e�

Here Kn�x� and In�x� are Bessel functions, Pm�x� are
Legendre polynomials, and Cm�k� is the coefficient of xk

in Pm�x�. Note that the second expression for fm,n�x�,
written in terms of derivatives, is computationally con-
venient �Goldstein, 1929�.

Equation �46� is given with undetermined constants of
integration Bn and Xm. Methods to determine these con-
stants were discussed by both Tomotika �Tomotika and
Aoi, 1950� and Goldstein �1929�. We present our own
analysis later.

There are many different results which have been ob-
tained using the above general solution. The exact for-
mula for the stream function and the drag coefficient
depend on what terms in the solution are retained, and
how one meets the boundary conditions. In general, re-
taining n angular terms in Eq. �46� requires the retention
of m=n−1 terms in the second sum. In his original pa-
per, Goldstein retains three terms in each series, and
thereby calculates the formula for CD given by

CD =
6�

R
�1 +

3
8

R −
19

320
R2 +

71
2560

R3 −
30 179

2 150 400
R4

+
122 519

17 203 200
R5 + O�r6�� . �48�

The coefficient of the last term reflects a correction due
to Shanks �1955�.

To obtain the result in Eq. �48�, Goldstein both trun-
cated his solution for the stream function and then ex-
panded the resulting CD about R=0. Van Dyke ex-
tended this result to include an additional 24 terms, for

purposes of studying the mathematical structure of the
series, but not because of any intrinsic physical meaning
�Van Dyke, 1970�. Van Dyke does not state whether he
was including more harmonics in the stream function
solution or simply increasing the length of the power
series given by Eq. �48�.

In addition to expressing Goldstein’s solution for the
geometry of a sphere in terms of stream functions, To-
motika derived his own exact solution to Eq. �37� for
flow past a cylinder �Tomotika and Aoi, 1950�. Tomotika
closely followed the spirit of Lamb �1911� and Goldstein
�1929�, and his resulting “analysis is quite different from
Faxén’s” �Tomotika and Aoi, 1950�. His solution to Eq.
�37� is given below, conveniently expressed in terms of
stream functions. Note that Tomotika’s result suffers
from the same problems as his predecessors: an infinite
number of undetermined integration constants,

	�r,�� = r sin �

+ �
n=1

� �Bnr−n + �
m=0

�

Xmr�m,n�rR/2��sin n� ,

�49�

where

�m,n�x� = �Km+1�x� + Km−1�x���Im−n�x� + Im+n�x��

+ Km�x��Im−n−1�x� − Im−n+1�x�

− Im+n−1�x� + Im+n+1�x�� . �50�

As before, Bn and Xm are constants of integration which
need to be determined by the boundary conditions �Eq.
�10��.

As with Goldstein’s solution for the sphere, approxi-
mations are necessary in order to actually calculate a
drag coefficient. By retaining the m=0 and n=1 terms,
Tomotika reproduced Bairstow’s result for CD �Eq. �45��.
He also numerically calculated drag coefficients based
on retaining more terms. As with the Goldstein solution,
keeping n angular terms requires keeping m=n−1 terms
in the second sum.

The solutions given by Eqs. �46� and �49� represent
the culmination of years of efforts to solve Oseen’s equa-
tion for both the sphere and the cylinder. These general
solutions are also needed in both matched asymptotics
and the new techniques presented in this section �Proud-
man and Pearson, 1957�.

There is a final noteworthy solution to Eq. �37�. In
1954, Imai published a general method for solving the
problem of flow past an arbitrary cylindrical body �Isao,
1954�. His elegant technique, based on analytic func-
tions, applies to more general geometries. Imai calcu-
lated a formula for CD, approximating the functions in
his exact solution with power series about R=0. His re-
sult �reexpressed in our notation� is given by

CD =
4�

R

 + R�−

�

2
+

�


4
−

5�
2

32
� . �51�

Note that Imai’s result agrees with Eq. �42� at lowest
order, the only order to which Oseen’s equation really
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applies. A priori his result is neither better nor worse
than any other solution of Oseen’s equation. It is simply
different.

e. Discussion

We have presented Oseen’s governing equations for
low Reynold number fluid flow. These equations are a
linearized approximation to the Navier-Stokes equa-
tions. We have also presented a number of different so-
lutions, for both stream functions and drag coefficients;
each of these solutions comes from a unique set of ap-
proximations. The approximations which have been
made can be put into the following broad categories:

• the governing equation—Oseen’s equation approxi-
mates the Navier-Stokes equations;

• solutions which only satisfy the Oseen’s equation ap-
proximately;

• solutions which only satisfy the boundary conditions
approximately;

• solutions where the stream function is expanded in a
power series about R=0 after its derivation;

• approximations in the drag coefficient derivation;

• drag coefficients which were expanded in a power
series about R=0 after their derivation.

The first approximation is in the governing equations.
Oseen’s approximation is an ad hoc approximation
which, although it can be shown to be self-consistent,
requires unusual cleverness to obtain. Because it is not
derived systematically, it can be difficult to understand
either its applicability or the limitations of its solutions.
There have been years of discussion and confusion
about both the equation and its solutions. The short an-
swer is this: Oseen’s governing equation is a zeroth-
order uniformly valid approximation to the Navier-
Stokes equation; the equation and its solutions are valid
only at O�R0�.

It is not easy to prove this claim rigorously �Faxén,
1923�. However, it can be easily shown that Oseen’s
equations are self-consistent with its solutions, and that
the error in the solution is of O�R1�. One way to explic-
itly demonstrate this is by substituting a solution of
Oseen’s equation into the left-hand side of the Navier-
Stokes equations �Eq. �6��, thereby estimating the con-
tribution of inertial terms for the flow field characterized
by the solution. By repeating that substitution into the
left-hand side of Oseen’s equation �Eq. �35��, one can
estimate the contribution of inertial terms under Oseen’s
approximations. Comparing the two results gives an es-
timate of the inaccuracies in Oseen’s governing equa-
tions.

Concretely, for the sphere, we substitute Eq. �38� into
the right-hand side of Eq. �36�, and into the right-hand
side of Eq. �12�. The difference between the two results
is of O�R1�.

For the cylinder, substitute Eq. �44� into the right-
hand side of Eqs. �37� and �9�. The difference between

the exact and approximate inertial terms is of O�R
�,
where 
 is defined as in Eq. �44�.

These conclusions do not depend on the choice of so-
lution �or on the number of terms retained in Eq. �44��.
They explicitly show that the governing equation is only
valid to O�R� �or O�R
��. Consequently, the solutions
can only be meaningful to the same order, and the
boundary conditions need only be satisfied to that order.
With these considerations, almost all solutions in the
preceding section are equivalent. The only ones which
are not—such as Eq. �41�—are those in which the solu-
tion itself has been further approximated.13

Since the formulas for determining CD �Eqs. �19� and
�24�� are of the form 1/R+terms linear in stream func-
tion + nonlinear terms, a stream function which is valid
to O�R� will result in a drag coefficient which is valid to
O�R0�. Thus in all formulas for CD which have been pre-
sented so far, only the first term is meaningful. For a
sphere, this is the Stokes’ drag �Eq. �29��, and for the
cylinder, Lamb’s results �Eq. �42��.

We have concluded that it is only good fortune that
Oseen’s new 3

8R term is actually correct. This concurs
with the analysis of Proudman et al., who wrote,
“Strictly, Oseen’s method gives only the leading term …
and is scarcely to be counted as superior to Stokes’s
method for the purpose of obtaining the drag” �Proud-
man and Pearson, 1957�. Proudman and Pearson also
note that the vast effort expended finding exact solu-
tions to Oseen’s equation is “of limited value.” Gold-
stein’s formula for CD, for instance, is expanded to
O�R5�, well beyond the accuracy of the original govern-
ing equations. The reason for Oseen’s good fortune is
rooted in the symmetry of the problem. Chester and Van
Dyke both observed that the nonlinear terms which
Oseen’s calculation neglects, while needed for a correct
stream function, do not contribute to the drag because
of symmetry �Chester, 1962; Van Dyke, 1975�.

Lindgren argues that Faxén proved that, when the
boundary conditions are met properly and Oseen’s equa-
tions solved exactly, the resulting CD is that obtained by
Stokes �Eq. �29�� �Lindgren, 1999�. Whether this argu-
ment is correct does not matter, as Oseen’s additional
term is beyond the accuracy of his governing equations.

There is another approximation which arises while
computing CD in the context of Oseen’s equation. Many
�see, e.g., Tomotika and Aoi �1950�� compute the pres-
sure in Eqs. �19� and �24� by integrating Oseen’s equa-
tion �Eq. �35��, rather than the Navier-Stokes equations
�Eq. �6��. In Eqs. �20� and �25�, we presented a pressure
calculation based on the Navier-Stokes equations. Cal-
culating pressure using the linearized Oseen equation
introduces an additional approximation into CD. While
not necessarily problematic or inconsistent, this approxi-
mation can be difficult to identify.

13In this case, the Bessel functions have been expanded near
R=0 and are no longer well behaved as R→�.
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f. Two different interpretations

One criticism of the Oseen equation is that it may be
obtained by linearizing the Navier-Stokes equations,
without regard to the magnitude of inertial and viscous

terms. By writing u� =U� �+
u� , treating 
u� as a small per-
turbation, and expanding Eq. �6� one can formally re-
produce Oseen’s equations. Clearly, the disturbance to
the uniform stream is not negligible near the surface of
the solid body, and therefore Oseen’s equations “would
appear to be a poor approximation in the neighborhood
of the body where the boundary condition u� =0 requires
that the true inertial term be small” �Happel and Bren-
ner, 1973�.

This incorrect argument, put forth as a reason to use
Stokes’ solutions, overlooks the origins of Oseen’s equa-
tions. The point of Oseen’s approximation is that inertial
terms are only significant at large values of 	r	, where
R 	r	 is no longer negligible. Near the surface of the solid,
the approximate inertial terms which Oseen introduced
are negligible in comparison to the viscous terms, be-
cause they are multiplied by the factor R �on the left-
hand side of Eq. �35��. Hence the difference between
Oseen’s and Stokes’ equations in the neighborhood of
the sphere will be of O�R�, and is beyond the scope of
either theory.

g. Better approximations

The approach of Whitehead was essentially to im-
prove Stokes’ solution for the sphere in an iterative fash-
ion �Whitehead, 1889�. By substituting the first approxi-
mation into the governing equations, he estimated the
neglected terms. He then tried, and failed, to solve the
resulting governing equation. This approach fails be-
cause the Stokes’ equations are not uniformly valid to
zeroth order.

Oseen’s equations are uniformly valid and as Proud-
man remarked, “there seems little reason to doubt that
Whitehead’s iterative method, using Oseen’s equation
rather than Stokes’s equation would yield an expansion,
each successive term of which would represent a uni-
formly valid higher approximation to the flow. In each
step of the iteration, a lower-order approximation would
be used to calculate those particular inertia terms that
are neglected … the expansion generated in this way
would seem to be the most economic expansion pos-
sible” �Proudman and Pearson, 1957�.

Proudman did not follow through on this idea, instead
developing a solution based on matched asymptotics ex-
pansions �see below�. In an appendix, Van Dyke relates
the unpublished work of Illingworth �1947� �Van Dyke,
1975�. Illingworth carried through Whitehead’s program,
deriving a new expression �Eq. �52�� for CD, which
agrees to O�R2ln R� with the later results of matched
asymptotic calculations �Eq. �55��,

CD =
6�

R
�1 + 3

8R +
9
40

R2ln R + 0.1333R2

+
81
320

R3ln R − 0.0034R3 + ¯ � . �52�

Although this result has since been subsumed by
matched asymptotics, it is nonetheless remarkable, sub-
stantially improving any previous drag calculations, and
rigorously justifying Oseen’s 3

8R term.
There have also been efforts �see, e.g., Shanks �1955�

and Van Dyke �1970�� to resum Goldstein’s series expan-
sion for CD �Eq. �48��. However, these results have little
intrinsic �as opposed to methodological� value, as Gold-
stein’s result is only valid to O�R�. If applied to more
accurate approximations, such as Eq. �52�, these meth-
ods could be worthwhile. Alas, even improved approxi-
mations lack a sufficient numbers of terms in the expres-
sion for CD to make this practicable.

h. Summary

Simply put, Oseen’s equations resolved the paradoxes
of Stokes and Whitehead, put Stokes’ results on firm
theoretical ground, and led to the first solution for the
drag on a cylinder. Although the Oseen equations hap-
pen to provide a uniformly valid first approximation, it is
difficult to extend this work to higher-order approxima-
tions.

Figure 8 compares the “predictions” of Oseen theory
to experimental and numerical data for the drag on a
sphere. Again, Oseen’s first-order theory is, strictly
speaking, not adequate to make the predictions with
which it is traditionally credited. The theoretical drag
coefficients are roughly valid for R�0.2, with Gold-
stein’s solution �Eq. �48�� being slightly better than
Oseen’s prediction �Eq. �39��. All are clearly superior to
Stokes’ formula �Eq. �29��.

FIG. 8. �Color online� Drag on a sphere, experiment vs Oseen
theory �Maxworthy, 1965; Le Clair and Hamielec, 1970; Dennis
and Walker, 1971�. The Stokes’ solution �Eq. �29�� is shown at
the bottom for reference. In these coordinates, it is defined by
the line y=0.
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Figure 8 also shows the prediction of Illingworth’s
second-order Oseen theory �Eq. �52��. Not surprisingly,
it gives the best prediction of CD, particularly when
compared to Dennis’ numerical results.

Figure 9 shows the important predictions of Oseen
theory for the drag on an infinite cylinder. As with the
sphere, the theory is only truly entitled to predict the
lowest-order term. Figure 9 shows decent agreement
with the data. Although more “exact” solutions �such as
Bairstow’s and Imai’s� do better than Lamb’s lowest-
order solution, this is purely coincidental. Tomotika’s so-
lutions exhibit similar characteristics to these two solu-
tions.

3. Matched asymptotics

Efforts to systematically improve Oseen’s results led
to the development of matched asymptotic expansions.14

This branch of applied mathematics was developed
gradually, with systematic work beginning with papers
by Kaplun, and Lagerstrom and co-workers �Kaplun,
1954; Lagerstrom and Cole, 1955�. Kaplun subsequently
used these techniques to calculate the drag on a cylinder,
obtaining an entirely new result for CD �Lagerstrom et
al., 1967�. Proudman and Pearson subsequently applied
matched asymptotics to both the sphere and the cylin-
der, deriving a new result for the drag on a sphere
�Proudman and Pearson, 1957�:

“The principle of asymptotic matching is simple.
The interval on which a boundary-value problem
is posed is broken into a sequence of two or more
overlapping subintervals. Then, on each subinter-
val perturbation theory is used to obtain an
asymptotic approximation to the solution of the
differential equation valid on that interval. Fi-
nally, the matching is done by requiring that the
asymptotic approximations have the same func-

tional form on the overlap of every pair or inter-
vals. This gives a sequence of asymptotic approxi-
mations … the end result is an approximate
solution to a boundary-value problem valid over
the entire interval” �Bender and Orzag, 1999�.

Both of the two low Reynolds number problems are
attacked in similar fashion. The problem is divided into
only two regions. The first region is near the surface of
the solid body. In this region, inertial terms are small,
the approximation of Stokes �R�0� applies, and the
problem is solved perturbatively �in R�. At each order in
R, the two no-slip boundary conditions at the surface are
applied. One undetermined constant remains �at each
order in R�. Loosely speaking, it is determined by the
boundary condition as 	r� 	 →�. This expansion is re-
ferred to as the Stokes expansion.

The second region is far from the sphere, where iner-
tial terms are important. In this region, R 	r 	 �O�1�, and
the approximations which led to Oseen’s governing
equation apply. The Oseen problem is then solved per-
turbatively, and the boundary condition as 	r� 	 →� is ap-
plied. There are two undetermined constants remaining;
they are related to the boundary conditions on the sur-
face. This perturbative expansion is referred to as the
Oseen expansion.

The next part of this calculation is asymptotic match-
ing, which determines the remaining coefficients.15 In
this process, we expand the Oseen expansion for small
R 	r�	 and the Stokes expansion for large 	r�	. By choosing
the three hitherto undetermined coefficients appropri-
ately, these two limiting forms are made to agree order
by order in R. For this to be possible, the two asymptotic
functional forms must overlap. With the coefficients de-
termined, the two unique, locally valid perturbative ap-
proximations are complete. If desired, they can be com-
bined to make a single uniformly valid approximation.

While straightforward in theory, asymptotic matching
is difficult in practice, particularly for an equation like
the Navier-Stokes equation. However, it is still far sim-
pler than alternatives, such as iteratively solving the
Oseen equations. Van Dyke’s book is an excellent pre-
sentation of the many subtleties which arise in applying
matched asymptotics to problems in fluid mechanics
�Van Dyke, 1975�. We now present the matched
asymptotic solutions for Eqs. �9� and �12�. These solu-
tions result in the state of the art drag coefficients for
both the sphere and the cylinder.

a. Sphere

Although Lagerstrom and Cole initially applied
matched asymptotics to the problem of the sphere, the
seminal work came in the 1957 paper by Proudman and
Pearson �Lagerstrom and Cole, 1955; Proudman and
Pearson, 1957�. Chester and Breach extended this paper
via a difficult calculation in 1969 �Chester and Breach,

14This technique is also known as the method of inner and
outer expansions or double asymptotic expansions.

15At this point, there are two unknown coefficients in the
Oseen expansion and one in the Stokes expansion.

FIG. 9. �Color online� Drag on a cylinder, experiment vs
Oseen theory �Tritton, 1959; Jayaweera and Mason, 1965�.
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1969�. We summarize the results of both papers here.
These workers used a perturbative solution in the
Stokes regime of the form

	�r,�� = 	0 + R	1 + R2ln R	2L + R2	2 + R3ln R

+ R3	3 + O�R3� . �53�

This rather peculiar perturbative form cannot be deter-
mined a priori. Rather, it arose in a fastidious incremen-
tal fashion, calculating one term at a time. The proce-
dure of asymptotic matching required including terms
like R2ln R in the expansion; otherwise, no matching is
possible. Note that matched asymptotics give no expla-
nation for the origin of these singular terms.

The first step to finding a perturbative solution in the
Oseen region is to define the Oseen variables:

� = Rr, ���,�� = R2	�r,�� .

Part of the reason for this transformation can be under-
stood via the derivation of the Oseen equation. The re-
gion where inertial effects become important has been
shown to be where R 	r 	 �O�1�. Intuitively, the variable
�=Rr is a natural choice to analyze this regime, as it will
be of O�1�. The precise reason for the selection of these
variables is a technique from boundary layer theory
known as a dominant balance argument, which we re-
visit later �Bender and Orzag, 1999�.

The perturbative expansion in the Oseen region takes
the form

���,�� = �0 + R�1 + R2�2 + R3ln R�3L + O�R3� .

�54�

Note that there is no R2ln R term in this expansion; none
is required to match with the Stokes expansion. As with
the Stokes expansion, this form cannot be determined a
priori.

Proudman and Pearson completely solved the Stokes’
expansion through O�R ln R�, and partially solved the
O�R2� term. They determined the Oseen expansion
through O�R�. Chester and Breach extended these re-
sults up to a partial solution for O�R3� in the Stokes’
expansion, and to O�R3ln R� in the Oseen expansion.

The exact form of these expansions has been given by
Chester and Breach.16 Some aspects of these results
have been seen before: the leading order in the Stokes’
expansion �	0� is simply the Stokes solution �Eq. �28��.
In the Oseen expansion, �0 is simply the formula for the
uniform stream expressed in Oseen variables. The sec-
ond term �1 is the rotational part of Oseen’s solution
�Eq. �38��.

Both authors then used their result for the Stokes ex-
pansion to calculate CD, which is given by

�55�

Here � is Euler’s constant. Equation �55� reproduces and
extends nearly all earlier work; showing both the origi-
nal results of Proudman and Pearson and higher-order
contributions of Chester and Breach �Proudman and
Pearson, 1957; Chester and Breach, 1969�. The Stokes
term is Stokes’ original result �Eq. �29��, which was rig-
orously justified by Oseen. The Oseen term is generally
credited to Oseen �Eq. �39��, although it is really beyond
the accuracy of his work, and is only justified by this
calculation.17

Figure 10 compares the results of matched asymp-
totics �Eq. �55�� with experimental data, numerical re-
sults, and the basic prediction of Oseen’s equation �Eq.
�39��. This plot has been the source of some confusion.
Maxworthy examined his data and concluded that CD as
computed by Oseen and Goldstein �Eq. �48�� were as
good as any matched asymptotics predictions �Maxwor-
thy, 1965�. The calculations of Dennis and Le Clair, how-
ever, refute that claim, and demonstrate the systematic
improvement that results from matched asymptotics.

Neither is it immediately clear that the extra terms in
Eq. �55� due to Chester and Breach are actually any
improvement on the work of Proudman and Pearson.
Van Dyke notes, “This result is disappointing, because
comparison with experiment suggests that the range of
applicability has scarcely been increased” �Van Dyke,
1975�, and Chester himself remarks that “there is little
point in continuing the expansion further.” At very low
Reynolds number, however, the results of Dennis “indi-
cate that the expression of Chester and Breach gives a
better approximation to the drag coefficient than any
other asymptotic solution until about �R=0.3�” �Dennis
and Walker, 1971�. Figure 10 shows the excellent low R
agreement between Dennis’ numerical results and Eq.
�55�.

The prediction of matched asymptotics �Eq. �55�� is
close to Illingworth’s second-order Oseen theory �Eq.16Note that 	2 given by Proudman is incorrect �Proudman

and Pearson, 1957�. There is also a mistake by Chester and
Breach �1969�, Eq. �3.5�; the coefficient of c8 should be r−3 not
r−2. 17Illingworth’s unpublished result also justifies this term.

FIG. 10. �Color online� Drag on a sphere, experiment vs
matched asymptotic theory. Experimental and numerical re-
sults are plotted as in Fig. 8.
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�52��. Close examination shows that the matched asymp-
totics results are slightly closer to the Dennis’ calcula-
tions in the limit of low Reynolds number. Strictly
speaking, these two theories should only be compared as
r→0, and in this regime matched asymptotics are supe-
rior. This is not surprising, as the best matched
asymptotic calculation is a higher-order approximation
than that of Illingworth.

b. Cylinder

In 1957, Kaplun applied matched asymptotics to the
problem of the cylinder, and produced the first new re-
sult for CD �Kaplun, 1957�. Additional stream function
calculations �but without a drag coefficient� were done
by Proudman and Pearson �1957�. Kaplun’s calculations
were extended to higher order by Skinner, whose work
also explored the structure of the asymptotic expansions
�Skinner, 1975�. We summarize results from all three pa-
pers here.

Near the surface of the cylinder, the Stokes expansion
applies, and the perturbative solution takes the follow-
ing form:

	�r,�� = 	0�r,�,
� + R	2�r,�,
�

+ R2	3�r,�,
� + O�R3� . �56�

Here 
=
�R� is defined as in Eq. �41�. What is remark-
able about the structure of this expansion is its depen-
dence on 
. To be precise, each function 	n is actually
another perturbative expansion, in 
:

	n�r,�,
� = 
Fn,1�r,�� + 
2Fn,2�r,�� + O�
3� . �57�

This formulation is equivalent to an asymptotic expan-
sion in terms of ln R−1, which is used by Proudman and
Pearson:

	n�r,�, ln R� =
F̃n,1�r,��
�ln R�1 +

F̃n,2�r,��
�ln R�2 + O� 1

�ln R�3� .

�58�

This form is much less efficient than that given by Eq.
�57�, in the sense that more terms in the Stokes and
Oseen expansions are needed to obtain a given number
of terms in CD. For that reason, expansions in 
 are used
here.

This curious asymptotic form is necessitated by
matching requirements. It is also the source of a number
of bizarre complications. The first implication is that all
terms in Eq. �56� of O�R� and higher will be transcen-
dentally smaller than any of the terms in the expansion
for 	0. This is true asymptotically, as R→0. The reason
for this is that inertial terms never enter into any of the
governing equations for the Stokes expansion; they en-
ter only through the matching process with the Oseen
expansion.

As with the sphere, the first step to finding a pertur-
bative solution in the Oseen region is to transform into
the relevant Oseen variables. In this case,

� = Rr, ���,�� = R	�r,�� . �59�

The perturbative expansion which can solve the problem
in the Oseen region has the same generic form as Eq.
�56�:

���,�� = �0��,�,
� + R�1��,�,
� + O�R2� . �60�

The functions �n�� ,� ,
� can also be expressed as a se-
ries in 
�R�. However, the formula cannot be written
down as conveniently as it could in Eq. �57�. The first
two terms take the forms given by

�0��,�,
� = F0,0��,�� + 
F0,1��,�� + O�
2� , �61a�

�1��,�,
� = 
−1F1,−1��,�� + F0,0��,�� + O�
� . �61b�

Kaplun and Proudman both considered only terms of
O�R� in the Stokes expansion. As R→0, this is an excel-
lent approximation, as all higher terms are transcenden-
tally smaller. In this limit, the Stokes expansion takes a
particularly simple form:

	�r,�� = 	1�r,�,
� = �
n=1

�

an
n�2r ln r − r +
1

r
�sin � .

�62�

Kaplun obtained terms up to and including n=3. Proud-
man et al. also obtained expressions for the Oseen ex-
pansion, albeit expressed as a series in ln R−1. Skinner
extended Kaplun’s Stokes expansion to include terms up
to O�
3�, O�R
�, and O�R2
� �Skinner, 1975�. He ob-
tained approximate solutions for the Oseen expansion,
including terms up to O�
� and O�R�. The lowest-order
solutions in the Oseen expansion are related to the ex-
pression for a uniform stream and the solution of Lamb
�Eq. �41��.

Using his solution, Kaplun computed a new result for
the drag coefficient �Eq. �63�� which agrees with Lamb’s
result �Eq. �42�� at lowest order,

CD =
4�

R
�
 − k
3� . �63�

Here

k = �
0

�

K0�x�K1�x��x−1I1�2x� − 4K1�x�I1�x� + 1�dx

� 0.87.

Skinner extended these results, showed that terms of
O�R0� do not contribute to the drag, and calculated the
first transcendentally smaller contribution, which is of
O�R1�. His result is given by

CD =
4�

R
�
 − k
3 + O�
4�

−
R2

32
�1 −




2
+ O�
2�� + O�R4�� . �64�

The value of these new terms is questionable, and Skin-
ner himself noted that they are likely negligible in com-
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parison to the neglected terms of O�
4�. Asymptotically
this is unequivocally true.

Figure 11 compares the predictions of matched
asymptotic theory with Lamb’s result �Eq. �42�� based on
Oseen’s equation. Although both theories agree as r
→0, matched asymptotic results seem no better than
Lamb’s solution. The comparison is further complicated
by the scatter in the different experiments; matched as-
ymptotics agree more closely with Tritton’s measure-
ments, while Lamb’s solution agrees better with Jaya-
weera’s. We draw two conclusions from Fig. 11: Both
theories break down for R�0.1 and neither theory is
demonstrably more accurate. Even more disappoint-
ingly, Skinner’s result is nowhere better than
Kaplun’s—it is actually worse at higher Reynolds num-
bers.

Part of the problem with the matched asymptotics ap-
proach arises from the need for two expansions, in 
 and
R. Because infinitely many orders of 
 are needed be-
fore any higher orders in R are relevant means that in-
finitely many terms in the Oseen expansion must be cal-
culated before the second-order term in the Stokes
expansion. This is inefficient, and is the reason for Skin-
ner’s lack of success.

A paper by Keller et al. solved this problem numeri-
cally �Keller and Ward, 1996�. They developed a method
to sum all of the orders of 
 for the first two orders of R.
Their beyond-all-orders numerical results prove the im-
portance of these higher-order terms. When such terms
are accounted for, the resulting CD is vastly improved
from Kaplun’s and is superior to any of the analytic so-
lutions discussed here. Interestingly, it seems to agree
well with the experiments of Tritton, although it is diffi-
cult to tell from the plot in their paper, which does not
remove the leading-order divergence.

4. Other theories

Among the community interested in settling velocities
and sedimentation, there are many theoretical models of
the drag on a sphere. These workers specify CD as a

function of R by means of a sphere drag correlation. An
overview of these formula has been given by Brown and
Lawler �2003�. These results are generally semiempir-
ical, relying on a blend of theoretical calculations and
phenomenologically fit parameters to predict CD over a
large range of Reynolds number. While practically use-
ful, these results are not specific to low Reynolds num-
bers, and cannot be derived from the Navier-Stokes
equations. They address a different problem, and will
not be further considered here.

One other semiempirical theory is due to Carrier
�1953�. He argued that the inertial corrections in the
Oseen equation were overweighted, and multiplied
them by a coefficient which he constrained to be be-
tween 0 and 1. Consequently, his theory is in some sense
“in between” that of Stokes and that of Oseen. He ulti-
mately determined this coefficient empirically.

5. Terminology

Confusing terminology, particularly in the matched as-
ymptotics literature, riddles the history of these prob-
lems. We previously detailed discrepancies in the defini-
tion of CD. In this section we explain the sometimes
conflicting terms used in the matched asymptotics litera-
ture, introduce a convention which eliminates confusion,
and also explain how some adopt different definitions of
the Reynolds’ number.

Matched asymptotics literature discusses numerous
perturbative expansions, each of which are valid in a
different regime, or “domain of validity.” Different au-
thors use different labels for these expansions. Most de-
fine the “inner” expansion to be the expansion which is
valid inside the boundary layer �Bender and Orzag,
1999�. A boundary layer is a region of rapid variation in
the solution. The “outer” expansion is valid outside of
the boundary layer, where the solution is slowly varying
�Bender and Orzag, 1999�. Problems with multiple
boundary layers require additional terminology. The
outer expansion is based upon the primary reference
quantities in the problem, and the inner expansion is
usually obtained by stretching the original variables by
dimensionless functions of the perturbation parameter
�Van Dyke, 1975�. The appropriate stretching, or scaling,
functions are obtained through a dominant balance
analysis, which can be difficult. After this rescaling, the
argument of the inner expansion will be of O�1� inside
the boundary layer. Accompanying these inner and
outer expansions are inner variables, outer variables, in-
ner limits, and outer limits.

The low Reynolds number flow problems are compli-
cated by the fact that some, including Van Dyke, also
define expansions on the basis of their physical location
�Van Dyke, 1975�. The “outer” limit is valid far from the
solid body �	r�	 is large�, and the “inner” limit is valid
near the surface of the body �	r� 	 �1�.

This is consistent with yet another definition, based on
proximity to the origin of the chosen coordinate system.
In a review paper Lagerstrom and Casten defined the
inner limit as being valid near the origin, and the outer

FIG. 11. �Color online� Drag on a cylinder, experiment vs
matched asymptotic theory �Tritton, 1959; Jayaweera and Ma-
son, 1965�.
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limit as being valid except near the origin �Lagerstrom
and Casten, 1972�. Part of their motivation for this new
definition was to distinguish between the domain of va-
lidity of an expansion and the limit process by which it is
obtained.

Finally, Kaplun refers to the inner and outer limits
based on their correspondence to high Reynolds number
flow �Kaplun, 1957�. He identifies the Stokes approxima-
tion as the inner limit, and Oseen’s equation as the outer
limit.

Part of the confusion arises because of disagreements
over the location of the boundary layer. Van Dyke
claims that “it is the neighborhood of the point at infin-
ity,” while Kaplun argues that the boundary layer is near
the surface. Definitions referenced to the boundary
layer disagree when there are disagreements about its
location.

To eliminate this confusion, a preferable alternative
notation has emerged from subsequent work �Kaplun
and Lagerstrom, 1957; Proudman and Pearson, 1957�.
We follow this notation, defining the Oseen and Stokes
expansions, which were used previously. The Oseen ex-
pansion is valid far from the surface, and is expressed in
stretched coordinates. The Stokes limit is valid near the
surface of the sphere, where r is small, and is expressed
in the original variables.18

Matched asymptotics workers also discuss uniform ap-
proximations, intermediate expansions, or composite ex-
pansions �Lagerstrom et al., 1967; Van Dyke, 1975;
Bender and Orzag, 1999�. The basic idea is that the
Stokes and Oseen expansions can be blended together
to form a single expression which is valid everywhere.
This result reduces to the two original expansions when
expanded asymptotically in the two limits. How to cal-
culate a uniform expansion is discussed below.

There are also minor differences in the definition of
the Reynolds number R. Some define R based on the
diameter of the solid, while others base it on the radius.
This factor of 2 can be difficult to track. We define the
Reynolds number using the radius of the fixed body:
R= 	u�� 	a /�. It is worth noting that Liebster �1927�,
Thom �1933�, Tomotika and Aoi �1950�, Tritton �1959�,
Goldstein �1965�, and Kaplun �Lagerstrom et al., 1967�
all use the diameter.

C. Uniformly valid approximations

As mentioned previously, the inner and outer expan-
sions may be combined into a single, uniformly valid
approximation, which is applicable everywhere. For a
function of one variable, the uniform approximation is
constructed as �Bender and Orzag, 1999�

yuniform�x� = youter�x� + yinner�x� − yoverlap�x� . �65�

yoverlap�x� consists of the common “matching” terms be-
tween the inner and outer expansions.

Kaplun demonstrates that yuniform�x�→y�x� as the
expansion variable R→0, i.e., the uniform approxima-
tion tends to the exact solution everywhere �Lagerstrom
et al., 1967�. To be more precise, if the matched asymp-
totics solution is constructed to O�R1�, then

lim
R→0

y�x� − yuniform�x� � O�R1� .

As a matter of practice, calculating the uniform solu-
tion is mechanistic. First, express the inner and outer
expansions in the same coordinates; in our case, express
the Oseen expansion in Stokes variables.19 Alternatively,
one can express the Stokes expansion in Oseen vari-
ables. Next, express both solutions as a power series in
the expansion parameter R. By construction the Stokes
expansion is already in this form but the transformed
Oseen expansion is not, and must be expanded to the
same power in R as the Stokes solution.

From these two power series we can identify the over-
lap function yoverlap. This function consists of the terms
which are in common between the two expansions, and
is usually obtained by inspection. Of course, yoverlap is
only valid to the same order as the original matched
asymptotics solution, and higher-order terms should be
discarded. The uniformly valid approximation is then
obtained using yoverlap and Eq. �65�.

1. The correct way to calculate CD

Proudman and Pearson argue that “uniformly valid
approximations per se are not usually of much physical
interest … In the present problem, for instance, it is the
Stokes expansion that gives virtually all the physically
interesting information” �Proudman and Pearson, 1957�.
All matched asymptotics calculations are based solely on
the Stokes expansion, and are therefore influenced by
the Oseen expansion only via the boundary conditions.
For instance, the drag coefficient is calculated using only
the Stokes expansion. Other properties of the stream
function, such as the size of the dead water wake directly
behind the sphere or cylinder, are also calculated using
the Stokes expansion.

In this section we argue that this approach is incor-
rect, and that uniformly valid approximation should be
used to calculate all quantities of interest. By adopting
this viewpoint, we obtain new results for CD, and dem-
onstrate that these drag coefficients systematically im-
prove on previous matched asymptotics results.

Matched asymptotics workers argue that the drag co-
efficient is calculated at the surface of the solid �Eqs.
�24� and �19��, where r=1. Since the Oseen solution ap-
plies for large r, the Stokes solution applies for small r,
and the Stokes solution ought to be used to calculate
CD. In fact, by construction any uniformly valid approxi-
mation must reduce to the Stokes expansion in the limit
as Rr→0.

18Van Dyke’s book is not consistent in relating inner and
outer expansions to the Stokes and Oseen expansions.

19Note that this transformation affects both the radial coordi-
nates and stream function, and that it differs for the sphere and
cylinder.
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Curiously, proponents of the Oseen equation argue
conversely �Faxén, 1927; Happel and Brenner, 1973�.
They claim that because the Oseen expansion happens
to apply everywhere, it should be used to calculate all
sorts of quantities of interest, including CD. In fact,
Hapel and Brenner wrote a book essentially devoted to
this premise �Happel and Brenner, 1973�. In fairness, it
must be mentioned that all these authors were well
aware of their choices, and motivated their approach
pragmatically: they obtained useful solutions to other-
wise intractable problems.

In reality, both approaches converge to the exact so-
lution for suitably small Reynolds numbers. However,
for small but noninfinitesimal R, the best estimate of
derivative quantities such as CD is obtained not by using
the Stokes expansion, but by using a uniformly valid ap-
proximation calculated with both the Stokes and Oseen
expansions. Such a drag coefficient must agree with re-
sults derived from the Stokes expansion as Rr→0, and it
can never be inferior. Moreover, this approach makes
determination of the drag coefficient’s accuracy straight-
forward; it is determined solely by the accuracy of the
uniform expansion, without any need to be concerned
about its domain of applicability.

We now calculate the drag coefficients for both the
sphere and the cylinder using uniformly valid approxi-
mations with previously published inner and outer ex-
pansions. These corrections are small but methodologi-
cally noteworthy, and are absent from the existing
literature.

a. Cylinder

Although the state-of-the-art matched asymptotics so-
lutions are due to Kaplun, it is more convenient to use
stream functions �Kaplun, 1957�. Skinner conveniently
combines previous work, providing a concise summary
of Stokes and Oseen stream functions �Skinner, 1975�.
We base our derivation of a uniformly valid approxima-
tion on the results in his paper. The Stokes expansion is
given by �Skinner, 1975�

	�r,�� =
1
2

�
 − k
3 + O�
4���2r ln r − r +
1

r
�

�sin � + O�R1� . �66�

The Oseen expansion is given by

���,�� = �� sin � − 
�
n=1

�


n��

2
� �

n

�sin n� + O�
2� + O�R1�� . �67�

With these results, creating the uniform approxima-
tion and calculating CD is straightforward. The only
subtlety is the sine series in Eq. �67�. However, Eq. �21�
tells us that, for the purposes of calculating the drag,
only the coefficient of sin � matters. We calculate the
overlap between the two functions by expanding Eq.
�67� about �=0. The result is given by

	overlap�r,�� = 

r

2
�2 ln r − 1�sin � + O�
2� + O�R1� .

�68�

Combining this with the Oseen and Stokes expansions,
we obtain the uniformly valid approximation given by

	uniform�r,�� = �r + 
� 1

2r
− r
1� rR

2
��

+ k
3� r

2
− r ln r −

1

2r
��sin �

− 
�
n=2

�


n�Rr

2
� r

n
sin n� + O�
2�

+ O�R1� . �69�

By substituting this result into Eq. �21�, we obtain a new
result for CD:

CD =
�
�24 − 32k
3 + 6R2
1��R/2� + R3
1��R/2��

8R
.

�70�

Figure 12 compares Eq. �70� with Kaplun’s usual result
�Eq. �63��. The new drag coefficient �Eq. �70�� is a small
but systematic improvement over the results of Kaplun.
Because they are asymptotically identical up to O�
4�
and O�R�, they agree as R→0. However, at small but
noninfinitesimal R, our new result is superior. Compar-
ing Figs. 12 and 11, we can also see a second surprise:
The new result betters Skinner’s CD, even though they
were based on the same stream functions. If Skinner had
used a uniformly valid approximation, his result would
not have misleadingly appeared inferior to Kaplun’s.

b. Sphere

As with the cylinder, calculating CD from a uniformly
valid expansion yields an improved result. However,
there is a substantial difference in this case. Although

FIG. 12. �Color online� Drag on a cylinder, comparing uni-
formly valid calculations and matched asymptotics results
�Tritton, 1959; Jayaweera and Mason, 1965�.

907John Veysey and Nigel Goldenfeld: Simple viscous flows: From boundary layers to …

Rev. Mod. Phys., Vol. 79, No. 3, July–September 2007



matched asymptotics calculations have been done
through O�R3� in Eq. �53� and O�R3ln R� in Eq. �54�, the
higher-order terms in the Oseen expansion are impos-
sible to express in a simple analytic form. Asymptotic
expressions exist �and have been used for matching�, but
these cannot be used to construct a uniformly valid ex-
pansion. Consequently, we can only compute the uni-
form expansion through O�R�, and its predictions can
only be meaningfully compared to the first two terms in
Eq. �55�.

The solutions for the Stokes and Oseen expansions
are given by Chester and Breach, and are quoted here
�Chester and Breach, 1969�: the Stokes expansion

	�r,�� = −
1
2
�2r2 − 3r +

1

r
�Q1���

− R
3
16
��2r2 − 3r +

1

r
�Q1���

− �2r2 − 3r + 1 −
1

r
+

1

r2�Q2����
+ O�R2ln R� , �71�

and the Oseen expansion

���,�� = − �2Q1��� − R
3
2

�1 + ��

��1 − e−�1/2���1−��� + O�R2� . �72�

By taking the �→0 limit of Eq. �72�, we can calculate the
overlap between these two expansions. The result is
given by

	overlap�r,�� =
r

8
�12 − 8r�Q1��� +

rR

8
�3rQ2���

− 3rQ1���� + O�R2� . �73�

Equations �73�, �72�, and �71� can be combined to form a
uniformly valid approximation:

	uniform�r,�� = 	�r,�� − 	overlap�r,�� +
��rR,��

R2

+ O�R2ln R� . �74�

Due to the e−�1/2���1−�� term, we cannot use the simple
expression for CD �Eq. �26��. Instead, we must use the
full set of Eqs. �11�, �24�, and �25�. After completing this
procedure, we obtain a new result for CD given by

CD =
6�

R
� e−2R

320R3 �40eR�1728 + 1140R + 335R2 + 56R3

+ 6R4� − 60R�1 + R� + e2R�− 69120 + 23580R

− 2420R2 + 20�10 + ��R3 + 10�18 − ��R4 − 8R5

− 3R6�� −
e−R/2�I1�R/2�

4R
� + O�R1� . �75�

This result is plotted in Fig. 13. Asymptotically, it
agrees with the matched asymptotics predictions to
O�1�, as it must, and reproduces the 3

8R Oseen term. As

R increases, however, the uniform calculation becomes
superior to the first two terms of the matched asymptotic
CD. Although it is a much higher-order solution than
either of the other results, we show the full matched
asymptotics prediction for comparison.

III. RENORMALIZATION GROUP APPLIED TO LOW R
FLOW

A. Introduction to the renormalization group

In 1961, Lagerstrom proposed the first of a number of
“model problems,” ordinary differential equations
which exhibited many of the same asymptotic features
as the low Reynolds number problems. They were used
to study and develop the theory of matched asymptotic
expansions. The mathematical solution of these prob-
lems is closely analogous to the actual solutions of the
Navier-Stokes equations.

A review of these equations, and of their matched
asymptotic solutions, has been given by Lagerstrom �La-
gerstrom and Casten, 1972�. The relevant models can be
summarized by the following equation:

d2u

dx2 +
n − 1

x

du

dx
+ u

du

dx
+ 
�du

dx
�2

= 0. �76�

This ordinary differential equation �ODE� is subject to
the boundary conditions u���=1, u���=0. In Eq. �76�, n
corresponds to the number of spatial dimensions �n=2
for the cylinder, n=3 for the sphere�. 
 � 0 characterizes
incompressible flow, and 
=1 corresponds to compress-
ible flow. Equation �76� is similar to the Navier-Stokes
equations expressed in Oseen variables. There are fun-
damental differences between the structure of the in-
compressible and compressible flow equations.

These model problems have been posed by Hinch, al-
beit in terms of Stokes �rather than Oseen� variables
�Hinch, 1991�. Hinch begins by examining the model de-
scribing incompressible flow past a sphere. He next ex-
amines incompressible flow past a cylinder, which he

FIG. 13. �Color online� Drag on a sphere, experiment vs
theory �Maxworthy, 1965; Le Clair and Hamielec, 1970; Dennis
and Walker, 1971�.
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calls “a worse problem.” Finally, he treats compressible
flow past cylinder, which he dubs “a terrible problem.”

These problems, which have historically been the
proving ground of matched asymptotics, were solved
using new renormalization-group �RG� techniques by
Chen et al. �1994b, 1996�. These techniques afford both
quantitative and methodological advantages over tradi-
tional matched asymptotics. The RG approach derives
all subtle terms �e.g., R2ln R� which arise during
asymptotic matching, demonstrating that origin of these
terms lies in the need to correct flaws inherent in the
underlying expansions. Moreover, RG does not require
multiple rescalings of variables, and its results, while
asymptotically equivalent to those of matched asymptot-
ics, apply over a much larger range �e.g., they extend to
higher R�.

In particular, Chen et al. solved Hinch’s first model,
which describes incompressible flow past a sphere �n
=3, 
=0�, as well as the model for both kinds of flow
past a cylinder �n=2, 
=0,1� �Chen et al., 1994b, 1996�.
In a notation consistent with Hinch, they termed these
models the “Stokes-Oseen caricature” and the “terrible
problem.”

The dramatic success of the RG techniques in solving
the model problems inspired their application to the
original low Reynolds number flow problems. That is
our primary purpose here, as the low Reynolds number
problems are the traditional proving ground for new
methodologies. We show that the RG techniques per-
form well when applied to these problems. RG produces
results superior to and encompassing the predictions of
matched asymptotics. More importantly, the RG calcu-
lations are considerably simpler than matched asymptot-
ics, requiring half the work.

The utility of the RG approach is most easily seen
through an example, which will also provide a frame-
work for understanding the analysis presented in subse-
quent sections. Several pedagogical examples can also
be found in the references �see, e.g., Goldenfeld �1992�,
Chen et al. �1994b, 1996�, Oono �2000��. We begin here
with an analysis of the most complicated model prob-
lem, the terrible problem, which caricatures compress-
ible flow past a cylinder.

1. Detailed analysis of the “terrible problem”

Although the terrible problem has been solved by
Chen et al. we reexamine it here in considerably more
detail, as its solution is closely analogous to those of the
low Reynolds number flow problems. This switchback
problem is exceptionally delicate,20 requiring the calcu-
lation of an infinite number of terms for the leading-
order asymptotic matching.

There are pitfalls and ambiguities in applying RG
techniques, even to the terrible problem, which while
terrible, is considerably simpler than the real low Rey-

nolds number problems. Understanding these subtleties
in this simpler context provides essential guidance when
attacking the Navier-Stokes equations.

We want to solve the ODE given by Eq. �77a�, subject
to the boundary conditions �77b�. This equation can be
derived from Eq. �76� by setting n=2, 
=1, and trans-
forming to the Stokes variables, r=x /�. Unlike Eq. �76�,
Eq. �77� is obviously a singular perturbation in �, which
has been removed from the boundary conditions. The
last term in the equation vanishes when �=0,

d2u�r�
dr2 +

1

r

du�r�
dr

+ �du�r�
dr

�2

+ �u�r�
du�r�

dr
= 0, �77a�

u�1� = 0, u�r = � � = 1. �77b�

This problem cannot be solved exactly, although numeri-
cal solution is straightforward. Trouble arises due to the
boundary layer21 located near r=�. RG analysis requires
that we work in the inner variable for our approximation
to capture the correct behavior near the boundary
layer.22 This requirement may also be qualitatively mo-
tivated by arguing that one must choose coordinates to
“stretch out” the boundary layer so that it can be well
characterized by our approximate solution.

To determine the appropriate change of variables, we
need to analyze Eq. �77� using a dominant balance argu-
ment �Bender and Orzag, 1999�. As it stands, the first
three terms of Eq. �77a� will dominate, since � is small.
The rescaling x=�r yields inner Eq. �78�. This, of course,
is the same equation originally given by Lagerstrom �Eq.
�76��,

d2u�x�
dx2 +

1

x

du�x�
dx

+ �du�x�
dx

�2

+ u�x�
du�x�

dx
= 0, �78a�

u��� = 0, u�x = � � = 1. �78b�

The next step in the RG solution is to begin with the
ansatz that the solution to Eq. �78� can be obtained from
a perturbation expansion �Eq. �79��. We fully expect this
ansatz to fail since we have a singular perturbation in
our ODE. We therefore refer to this starting point as the
naive perturbation expansion,

u�x� = u0�x� + �u1�x� + �2u2�x� + O��3� . �79�

Collecting powers of �, we obtain differential equations
for u0�x�, u1�x�, etc.:

O��0�:
u0��x�

x
+ u0�x�u0��x� + u0��x�2 + u0��x� = 0, �80�

O��1�: u1u0� +
u1�

x
+ u0u1� + 2u0�u1� + u1� = 0, �81�

20Hinch notes, “It is unusual to find such a difficult prob-
lem…” �Hinch, 1991�.

21A boundary layer is a region of rapid variation in the solu-
tion y�t�.

22Here we use inner in the usual sense �Bender and Orzag,
1999�. For further discussion, see Sec. II.B.5.
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O��2�: u2u0� + u1�u1 + u0u2� + �u1��
2 + 2u0�u2� +

u2�

x
+ u2�

= 0. �82�

a. O��0� solution

The first complication of the terrible problem arises
when we attempt to solve Eq. �80�, a nonlinear ODE.
Although one solution �u0�x�=A0� is seen by inspection,
an additional integration constant is not forthcoming,
and our solution to the O��0� problem cannot satisfy
both boundary conditions �Eq. �78b��. The resolution to
this quandary is simple: ignore the problem and it will go
away; continue constructing the naive solution as if
u0�x�=A0 were wholly satisfactory. The qualitative idea
is that the O��0� solution is the uniform field which we
have far from any disturbance source. Why is this ac-
ceptable?

The RG method is robust against shortcomings in the
naive expansion. We know that singular perturbation
problems cannot be solved by a single perturbation ex-
pansion. We therefore expect problems, such as secular
behavior, to arise in our solution for the naive expan-
sion. RG techniques can be used to remove these flaws
from the perturbative solution, turning it into a uni-
formly valid approximation �Chen et al., 1996�. It does
not matter whether these defects arise from an incom-
plete solution for u0�x�, the intrinsic structure of the
equation, or a combination of the two. To solve the ter-
rible problem �and later the low Reynolds number prob-
lems�, we must exploit this flexibility.

For subsequent calculations, there are two ways to
proceed. First, we may retain A0 as an arbitrary con-
stant, one which will ultimately be renormalized in the
process of calculating a uniformly valid approximation.
Alternatively, we may set A0=1, satisfying the boundary
condition at x=�.23 This unconventional approach to the
RG calculation effectively shifts the freedom that usu-
ally comes with the O��0� constants of integration into
the O��1� solution. This artifice greatly simplifies subse-
quent calculations, and is invaluable in treating the
Navier-Stokes equations. Moreover, these two ap-
proaches are equivalent, as we now show.

b. O��1� solution

If u0�x�=A0, Eq. �81� simplifies to

d2u1

dx2 + �1

x
+ A0�du1

dx
= 0. �83�

The solution is u1�x�=B0+B1e1�A0x�, where en�x�
��x

�e−tt−ndt. Notice that the first term is linearly depen-
dent on the u0�x� solution. There are many opinions re-
garding how to utilize this degree of freedom �Kunihiro,
1995; Woodruff, 1995�. In our approach, one is free to

choose the homogeneous solutions of u0, u1, etc., for
convenience. The only constraint24 is that the naive so-
lution �Eq. �79�� must have a sufficient number of inte-
gration constants to meet the boundary conditions. In
this example, that means two constants of integration.

Different choices of particular solutions will ulti-
mately result in different approximate solutions to the
ODE. However, all of these solutions will agree within
the accuracy limitations of the original approximation
�in this case the naive expansion�. This can be shown
explicitly. In this example, as in the low Reynolds num-
ber problems, we choose a particular solution which sim-
plifies subsequent calculations. Setting B0=0 �note that
this is not the same as a redefinition of the constant A0�,
we obtain the solution

�84�

The second term in Eq. �84� diverges logarithmically
as x→0. One may argue that this divergence is irrel-
evant, since the range of the original variable is
r� �1, � �, and numerical solutions demonstrate that the
solutions to Eq. �77� in �1, � � diverge when extended to
r�1. But the argument that the divergence in Eq. �84� is
an intrinsic part of the solution �and therefore should
not be considered problematic� is incorrect. Although
the original variable r is limited to r� �1, � �, the trans-
formed variable x=�r has the range x� �0, � �. This oc-
curs because there are no restrictions on the lower limit
of �. The divergence exhibited by the second term of Eq.
�84� must be removed via renormalization in order to
turn the flawed naive solution into a uniformly valid ap-
proximation.

This divergence arises for two reasons. First, we are
perturbing about an O��0� solution which is deficient; it
is missing the second integration constant �and concomi-
tant fundamental solution�. More fundamentally, Eq.
�79� attempts to solve a singular perturbation problem
with a regular expansion, an approach which must fail.
The RG technique solves these problems by restructur-
ing the naive expansion and eliminating the flaws in
u0�x�.

Although A0 is simply a constant of integration when
�=0, it must be modified when ��0. We absorb the di-
vergences into a modification, or renormalization, of the
constant of integration A0. Formally, one begins by
“splitting” the secular terms, replacing e1�A0x� by
e1�A0x�−e1�A0��+e1�A0��, where � is an arbitrary posi-
tion. This results in

u�x� = A0 + �B1�e1�A0x� − e1�A0�� + e1�A0��� + O��2� .

�85�

Since � is arbitrary, it can be chosen such that e1�A0x�
−e1�A0�� is nonsecular �for a given x�. The divergence is

23Meeting the boundary condition at x=� results only in the
trivial solution u0�x�=0.

24Of course the solution must also satisfy the governing
equation.
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now contained in the last term of Eq. �85�, and is exhib-
ited as a function of �.

It is dealt with by introducing a multiplicative renor-
malization constant, Z1=1+�i=1

� ai����i, and then renor-
malizing A0 as A0=Z1A0���.25 The coefficients ai��� can
then be chosen26 order by order so as to eliminate the
secular term in Eq. �85�. Substituting, and choosing a1 to
eliminate the final term of Eq. �85�, we obtain

u�x� = A0��� + �B1�e1�A0���x� − e1�A0������ + O��2� ,

�86�

where a1 satisfies

a1��� =

− B1e1��A0����1 + �
i=1

�

ai����i��
A0���

. �87�

Note that to obtain Eq. �86� we needed to expand e1
about �=0. Unusually in this equation the renormalized
constant �A0���� appears in the argument of the expo-
nential integral; this complicates the calculation. We
later show how to avoid this problem by restructuring
our calculations.

Qualitatively, the idea underlying Eq. �86� is that
boundary conditions far away �from x=�� are unknown
to our solution at x��, so that A0 is undetermined at
x=�. RG determines A0 in this regime through the
renormalization constant Z1 �which depends on ��. Af-
terward there will be new constants which can be used
to meet the boundary conditions.

The RG condition states that the solution u�x� cannot
depend on the arbitrary position �. This requirement can
be implemented in one of two ways. First, since ��u�x�
=0, apply �� to the right-hand side of Eq. �86� and set the
result equal to zero:

A0���� + �B1� e−A0����

�
+

A0����
A0���

�e−A0���� − e−A0���x��
+ O��2� = 0. �88�

The next step in RG is to realize Eq. �88� implies that
A0�����O���. Retaining only terms of O���, we obtain

dA0���
d�

+ �B1� e−A0����

�
� + O��2� = 0. �89�

In principle, we simply solve Eq. �89� for A0���. Un-
fortunately, that is not possible, due to the presence of
A0��� in the exponential. This complication also occurs
in other switchback problems, as well as in the low Rey-
nolds number problems. Equation �89� can be solved by
an iterative approach: Initially set �=0, and solve for
A0���=�0, a constant. Next substitute this result into the
O��� term in Eq. �89�, solving for A0��� again:

A0��� = �0 + �B1e1��0�� . �90�

In this solution, we have a new integration constant, �0.
Having obtained this result, we again must exploit the
arbitrary nature of �. Setting �=x, and substituting into
Eq. �86�, we obtain

u�x� = �0 + �B1e1��0x� + O��2� . �91�

But this is identical to the original solution �Eq. �83��.
What have we accomplished? This renormalized result is
guaranteed to be a uniformly valid result, for ∀x. The
renormalization procedure ensures that the logarithmic
divergence in Eq. �91� is required by the solution, and is
not an artifact of our approximations. Obtaining the
same answer is a consequence of solving Eq. �88� itera-
tively. Had we been able to solve that equation exactly,
this disconcerting coincidence would have been avoided.

We obtain the final solution to Eq. �77a� by applying
the boundary conditions �Eq. �78b�� to Eq. �91�: �0=1,
B1=−1/ ��e1����. Last, we undo the initial change of vari-
ables �r=x /��, yielding the result given in Eq. �92�. As
shown by Chen et al., this is an excellent approximate
solution �Chen et al., 1996�,

u�r� = 1 −
e1�r��
e1���

+ O��2� . �92�

Furthermore, if we expand the coefficient B1
=−1/ ��e1���� for �→0+, B1��� /��−1/ ln�1/��
−� / ln2�1/��. These logarithmic functions of � are exactly
those which are required by asymptotic matching. These
“unexpected” orders in � make the solution of this prob-
lem via asymptotic matching very difficult. They must be
deduced and introduced order by order, so as to make
matching possible. In the RG solution, they are seen to
arise naturally as a consequence of the term 1/e1���.

There are several other equivalent ways to structure
this calculation. It is worthwhile to examine these �and
to demonstrate their equivalence�, in order to streamline
our approach for the low Reynolds number problems.

The first variation occurs in how we apply the RG
condition. Rather than applying �� to Eq. �86�, we may
also realize that the original constants of integration,
A0=Z1���A0���, must be independent of �, hence the “al-
ternative” RG equation:

�A0

��
=

��Z1���A0����
��

= 0.

Substituting

Z1 = 1 + ��− B1e1��A0����1

+ �
i=1

�

ai����i����A0���+O��2� ,

one obtains

25A0 is the only constant which can be renormalized to re-
move the divergences, as B1 is proportional to the secular
terms.

26Note that the coefficients must also be independent of x.
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A0���� + �B1� e−A0����

�
+

A0����
A0���

e−A0����� + O��2� = 0.

�93�

Because this implies A0�����O��1�, Eq. �93� simplifies to
Eq. �89� �to within O��2��, and these two methods of
implementing the RG condition are equivalent.

In addition to this dichotomous implementation of the
RG condition, there is yet another way to structure the
analysis from the outset: We set A0=1 in the zeroth-
order solution, and rely on the robustness of the RG
approach to variations in our perturbative solution. With
this u0�x� solution, there is no longer any freedom in our
choice of u1�x� integration constants—both are needed
to meet boundary conditions. In this approach, our na-
ive perturbative solution is

�94�

Proceeding as before, replace e1�x� by e1�x�−e1���
+e1���:

u�x� = 1 + ��B0 + B1�e1�x� − e1��� + e1����� + O��2� .

Again introduce renormalization constants �Z1=1
+�i=1

� ai����i, Z2=1+�i=1
� bi����i�, and renormalize B0, B1

as B0=Z1B0��� and B1=Z2B1���. In fact, only B0 needs
to be renormalized, as the B1 term multiplies the secular
term and consequently cannot absorb that divergence.
This can be seen systematically by attempting to renor-
malize both variables. With an appropriate choice of co-
efficients, a1=−B1���e1��� and b1=0, the final term in the
last equation is eliminated. b1=0 demonstrates that B1
does not need to be renormalized at O��1�. The resulting
equation is given by

u�x� = 1 + ��B0��� + B1����e1�x� − e1����� + O��2� .

�95�

We did not actually need to determine a1 or b1 in order
to write Eq. �95�; it could have been done by inspection.
Determination of these quantities is useful for two rea-
sons. First, it helps us see which secular terms are being
renormalized by which integration constants. Second, it
allows the second implementation of the RG condition
which was described above. This can sometimes simplify
calculations.

Using the first implementation �requiring ��u�x�=0�
and Eq. �95�, we obtain

B0���� + B1�����e1�x� − e1���� + B1���
e−�

�
= O��1� . �96�

This can only be true ∀x if B1����=0, or B1���=�2, a con-
stant �as expected�. Knowing this, we solve for B0���
=�1+�2e1���. Substituting this result into Eq. �95�, and
setting �=x, we obtain the renormalized solution

u�x� = 1 + ���1 + �2e1�x�� . �97�

The boundary conditions in Eq. �78b� are satisfied if �1
=0 and �2=−1/ ��e1����. Returning to the original vari-
able �r=x /��, we obtain

u�r� = 1 −
e1�r��
e1���

+ O��2� . �98�

This is identical to Eq. �92�, demonstrating the equiva-
lence of these calculations. The latter method is prefer-
able, as it avoids the nonlinear RG equation �Eq. �89��.
We use this second approach for analyzing the low Rey-
nolds number problems.

The RG analysis has shown us that the logarithmic
divergences present in Eq. �84� are an essential compo-
nent of the solution, Eq. �98�. However, we must work to
O��2� in order to see the true utility of RG and to un-
derstand all of the nuances of its application.

c. O��2� solution

We base our treatment of the O��2� on the second
analysis presented above. Through O��1�, the naive so-
lution is u0�x�=1, u1�x�=B0+B1e1�x�. Substituting into
Eq. �82�, we obtain the governing equation for u2�x�:

u2� + �1 +
1

x
�u2 =

B0B1e−x

x
−

B1
2e−2x

x2 +
B1

2e−xe1�x�
x

.

�99�

This has the same homogeneous solution as u1�x�,
u2

�h��x�=C0+C1e1�x�. A particular solution is

u2
�p��x� = − B1B0e−x + 2B1

2e1�2x� − 1
2B1

2e1
2�x�

− B1
2e−xe1�x� .

As discussed previously, we are free to choose C0, C1
to simplify subsequent calculations. The constants B0, B1
are able to meet the boundary conditions, so there is no
need to retain the O��2� constants: we choose C0=0,
C1=0. In this case, the differing choices of C0 ,C1 corre-
spond to a redefinition of B0 ,B1 plus a change of O��3�,
i.e., B̃0=B0+�C0.27 Our naive solution through O��2� is
thus

u�x� = 1 + ��B0 + B1e1�x�� + �2�− B1B0e−x+ 2B1
2e1�2x�

− 1
2B1

2e1
2�x�
=

− B1
2e−xe1�x�� + O��3� . �100�

The underlined terms in this Eq. �100� are divergent
as x→0; the doubly underlined term is the most singular
��ln�x�2�. RG can be used to address the divergences in
Eq. �100�. However, there is a great deal of flexibility in
its implementation; while most tactics yield equivalent
approximations, there are significant differences in com-
plexity. We now explore all organizational possibilities in

27This was not true at the previous order.
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the terrible problem, an exercise which will subse-
quently guide us through the low Reynolds number cal-
culations.

The first possibility is to treat only the most secular
term at O��2�. The doubly underlined term dominates
the divergent behavior, and contains the most important
information needed for RG to construct a uniformly
valid approximation. The approximation reached by this
approach is necessarily inferior to those obtained utiliz-
ing additional terms. However, it is nonetheless valid
and useful, and eliminating most of the O��2� terms sim-
plifies our calculations.

Discarding all O��2� terms except the doubly under-
lined term, we begin the calculation in the usual manner,
but come immediately to the next question: Ought we
replace e1

2�x� by e1
2�x�−e1

2���+e1
2��� or by �e1�x�−e1����2

+2e1�x�e1���−e1
2���? Each option eliminates the diver-

gence in x, replacing it with a divergence in �. Both
merit consideration. Beginning with the latter, the renor-
malized perturbative solution is

u�x� = 1 + ��B0��� + B1����e1�x� − e1�����

− �2� 1
2B1���2�e1�x� − e1����2�

+ �2�less divergent terms� + O��3� . �101�

Applying the RG condition ���u�x�=0� results in a
lengthy differential equation in �. Because we want our
solution to be independent of x, we group terms accord-
ing to their x dependence. Recognizing that B1����
�O��1�, B0�����O��1�, and working to O��3�, we obtain
two equations which must be simultaneously satisfied:

B1���� −
�e−�B1

2���
�

= O��3� , �102a�

e−��B1��� + �B1
2���e1����

�
− e1���B1���� + B0���� = O��3� .

�102b�

Equation �102a� has the solution

B1��� =
1

�1 + �e1���
+ O��2� .

Substituting this result into Eq. �102b�, and solving it, we
obtain the result

B0��� = �0 +
ln��1 + �e1����

�
+ O��2� .

Both �0 and �1 are constants of integration which can be
later used to meet the boundary conditions. Substituting
these solutions into Eq. �101�, setting �=x, disregarding
terms of O��2� and higher, we obtain the renormalized
solution

u�x� = 1 + ���0 +
ln��1 + �e1�x��

�
� + O��2� . �103�

Choosing �0 and �1 to satisfy Eq. �78b� results in

u�x� = ln�e +
�1 − e�e1�x�

e1���
� + O��2� . �104�

Expressing this in the original variable �r=x /��, results
in the final answer

u�r� = ln�e +
�1 − e�e1��r�

e1���
� + O��2� . �105�

This is the solution previously obtained by Chen et al.,
albeit with a typographical error corrected �Chen et al.,
1996�. We now revisit this analysis, using the alternative
“splitting” of the most secular term in Eq. �100�, but not
yet considering less secular �or nonsecular� terms of
O��2�.

If we replace e1
2�x� in Eq. �100� by e1

2�x�−e1
2���+e1

2���,
we obtain the new naive expansion given by

u�x� = 1 + ��B0��� + B1����e1�x� − e1�����

− �2� 1
2B1���2�e1

2�x� − e1
2�����

+ �2�less divergent terms� + O��3� . �106�

We now repeat the same calculations:

�1� Apply the RG condition ���u�x�=0�.

�2� Group the resulting equation according to x depen-
dence. This will result in two equations which must
be satisfied independently.

�3� Discard terms of O��3�, observing that B0����, B1����
must be of O��1�.

�4� Solve these differential equations simultaneously for
B0���, B1���.

�5� Substitute these solutions into the original equation
�i.e., Eq. �106��, and set �=x.

�6� Choose the integration constants in this result to sat-
isfy Eq. �78b�.

�7� Obtain the final solution by returning to the original
variable, r=x /�.

For Eq. �106�, steps �1�–�4� result in the following so-
lutions for our renormalized constants: B1���=�1

+O��2�, B0���=�0+�1e1���−��1
2e1

2��� /2+O��2�. Complet-
ing step �5�, we obtain the renormalized result:

u�x� = 1 + � ��0 + �1e1�x�� − �2�1
2e1

2�x�
2

+ O��2� . �107�

This is identical to our starting point, Eq. �100� �re-
taining only the most secular terms�. This should no
longer be surprising, as we observed the same phenom-
ena in the O��1� analysis �Eq. �91��. However, it is worth
noticing that we obtained two different results �Eqs.
�104� and �107�� depending on how we structured our
RG calculation. This apparent difficulty is illusory, and
the results are equivalent: Expanding Eq. �103� for small
� reproduces Eq. �107�. Here, as in previous cases, we
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are free to structure the RG calculation for convenience.
This easiest calculation is the second approach—in
which only one constant of integration is actually
renormalized—and our renormalized result is the same
as our naive starting point.

This simplified analysis �considering only the most
secular terms� illustrates some of the pitfalls which can
arise in applying RG to switchback problems. However,
we must finish the O��2� analysis by considering all terms
in Eq. �100� to understand the final nuances of this prob-
lem. There is a new complication when we attempt to
renormalize all terms of Eq. �100�: The final term
−B1

2e−xe1�x� has the same kind of splitting ambiguity
which we encountered in dealing with the doubly under-
lined term.

We introduce our arbitrary position variable �, which
we want to choose so as to eliminate the secular term in
x by replacing it with a divergence in �. In many cases, it
is clear how to deal with the secular term. For example,
a linear divergence x can be replaced with x−�+�. The
final � will be absorbed into the renormalized constants
of integration, and the x−� term �which is now consid-
ered nonsecular� will ultimately disappear after renor-
malization. However, the term −B1

2e−xe1�x� is confusing.
As seen above, there are two ways to “split” the
B1

2e1
2�x� /2 term. There are four different ways to split

e−xe1�x�. It may be replaced by any of the following:

�1� �e−x−e−��e1�x�+e−�e1�x�.

�2� e−xe1�x�−e−�e1���+e−�e1���.

�3� �e−x−e−���e1�x�−e1����+e−�e1�x�+e−xe1�x�−e−�e1���.

�4� e−x�e1�x�−e1����+e−xe1���.

All four of these options “cure” the divergent term
�i.e., the secular term will vanish when we subsequently
set �=x�, and are equal to e−xe1�x�. If handled properly,
any of these options can lead to a valid renormalized
solution. However, we show that the fourth and final
option is most natural, and results in the simplest alge-
bra.

How do we choose? The first consideration is subtle:
The overall renormalized perturbative result must sat-
isfy the governing equation �Eq. �80�� independently for
each order in �. How we renormalize the O��1� diver-
gences �Eq. �95�� has implications for O��2� calculations.
For example, in O��1� renormalization, there is an im-
portant difference between Eqs. �95� and �85�. The
former has the additional term −�B1���e1���. This term
requires the presence of an additional O��2� term:
�2e−xB1

2���e1���. Without this term the O��2� renormal-
ized solution will not satisfy Eq. �82�, and the renormal-
ization procedure will yield an incorrect solution. We
were able to gloss over this before because we were con-
sidering only the most secular term at O��2�.

Inspecting the four possible splittings enumerated
above, we see that only the last two options provide the
necessary �2e−xB1

2���e1��� term, and can satisfy Eq. �82�

without contrivances.28 In examining both of these op-
tions, we split the e1

2�x� term for simplicity, as in the
derivation of Eq. �107�.29 Considering the third option
first, our renormalized perturbation solution becomes

u�x� = 1 + ��B0��� + B1����e1�x� − e1�����

+ �2
„− B1���B0���e−x − B1

2����e−x − e−��

��e1�x� − e1���� − 1
2B1���2�e1

2�x� − e1
2����

+ 2B1
2����e1�2x� − e1�2���… + O��3� . �108�

As it must, this result satisfies Eq. �82� to O��2�. By
applying the RG condition ���u�x�=0� to Eq. �108�, and
grouping the resulting equation according to x depen-
dence, we obtain a lengthy equation which can only be
satisfied to O��3� ∀x if

B1����e� = �B1
2��� ,

e2��B0���� = e2��e1���B1���� − e�B1��� − 3�B1
2���

+ e��B1
2���e1��� − e���B1

2���e1��� ,

0 = ���B1��� + e���B0����� . �109�

Generally, no solution will exist, as we have two un-
known functions and three differential equations. In this
case, however, the first equation requires that

B1��� =
e�

− � + e��1
. �110�

For this B1��� solution, it is actually possible to satisfy
the latter equations simultaneously to O��3�: This occurs
because the last equation is simply the lowest order of
the second one.30 There is another noteworthy point re-
garding the second part of Eq. �109�. In all previous cal-
culations, we discarded terms like �2B0����, since B0����
and B1���� had to be of O��1�. To solve these equations,
however, B0���� cannot be O��1� �although B1���� is�. Solv-
ing for B0,

B0��� = �0 − �
�

� 2� + e��1 + e��2� − 1��e1���
��� − e��1�

d� .

�111�

This solution, while valid, is cumbersome. Consider
instead the fourth possible split enumerated above.
Equation �112� gives our renormalized perturbation so-
lution, which satisfies Eq. �82�,

28The first two options can satisfy the governing equation if
we carefully choose a different homogeneous solution at O��2�.
With the proper nonzero choice of C0 and C1 we can use the
first two splittings enumerated, and they will result in an
equivalent RG solution.

29In principle, each of the possible O��1� splittings could be
paired with all possibilities at O��2�, resulting in eight total
possibilities.

30This can be seen explicitly by substituting Eq. �110�.
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u�x� = 1 + ��B0��� + B1����e1�x� − e1�����

+ �2�− B1���B0���e−x − B1
2���e−x�e1�x� − e1����

− 1
2B1���2�e1

2�x� − e1
2����

+ 2B1
2����e1�2x� − e1�2���� + O��3� . �112�

Applying the RG condition ���u�x�=0�, and requiring
that it be satisfied for ∀x, we obtain the following solu-
tions for B0���, and B1���:

B1��� = �1 + O��3� , �113a�

B0��� = �0 + �1e1��� + ��−
�1

2e1
2���
2

+ 2�1
2e1�2���

+ O��3� . �113b�

Substituting these results into Eq. �112� and setting �
=x, we obtain the final RG result

u�x� = 1 + ���0 + �1e1�x�� + �2�− �1�0e−x + 2�1
2e1�2x�

−
1
2

�1
2e1

2�x� − �1
2e−xe1�x�� + O��3� . �114�

This is, of course, identical to our naive staring point, a
happenstance we have seen several times previously. It is
worth noting that the renormalized solutions obtained
using Eqs. �110� and �111� are asymptotically equivalent
to Eq. �114�.

It may seem that we have needlessly digressed into
the terrible problem. However, a clear-cut “best” strat-
egy has emerged from our detailed exploration. Further-
more, we have identified—and resolved—a number of
subtleties in the application of RG. Before applying
these lessons to the problem of low Reynolds number
flow past a cylinder, we summarize our conclusions.

The best strategy is the one used to derive Eq. �114�, a
result which is identical to our naive solution �Eq. �100��.
First, transform to the inner equation. Solve the O��0�
equation incompletely �obtaining just one constant of
integration�, which can then be set to satisfy the bound-
ary condition at �. This “trick” necessitates retention of
integration constants at O��1�, but results in computa-
tional simplifications �a nonlinear RG equation� which
are essential in dealing with the Navier-Stokes equations.

At O��2�, the homogeneous solutions are identical to
those at O��1�. Consequently, the O��2� integration con-
stants need not be retained, as we can meet the bound-
ary conditions with the O��1� constants. We just pick a
convenient particular solution.

To apply RG to the terrible problem, we first split the
secular terms. There are several ways to do this, even
after requiring that the renormalized perturbation ex-
pansions satisfy the governing equations at each order.
We can again choose for simplicity, bearing in mind that
O��1� renormalization can impact O��2� calculations. It is
easiest to apply the RG condition to the renormalized
perturbation expansion, rather than applying it to the
integration constants directly. In solving the resulting

equation, we want solutions which are valid ∀x. To solve
the RG equation, care must be taken to satisfy several
conditions simultaneously, and it cannot be assumed that
our renormalized constants have a derivative of O��1�.

Although there is quite a bit of flexibility in imple-
menting the RG technique, our results are robust: Re-
gardless of how we structure the calculation, our solu-
tions agree to within an accuracy limited by the original
naive perturbative solution; they are asymptotically
equivalent. It is this robustness which makes RG a use-
ful tool for the low Reynolds number problems, where
the complexity of the Navier-Stokes equations will con-
strain our choices.

B. Flow past a cylinder

1. Rescaling

To solve Eq. �9� using RG techniques, we begin by
transforming the problem to the Oseen variables. As in
the terrible problem, to find a solution which is valid for
all r� we need to analyze Eq. �9� using a dominant balance
argument. As it stands, different terms of Eq. �9� will
dominate in different regimes.31Looking for a rescaling
of 	 and r which makes all terms of the same magnitude
�more precisely, of the same order in R�, yields the re-
scaling given by �Proudman and Pearson, 1957�

� = Rr, � = R	 . �115�

Transforming to these variables, Eq. �9� becomes

��
4���,�� = −

1

�

���,��
2�

���,��
. �116�

The boundary conditions �Eq. �10�� become

��� = R,�� = 0, 
 ����,��
��



�=R

= 0,

lim
�→�

���,��
�

= sin��� . �117�

2. Naive perturbation analysis

The next step in obtaining the RG solution is to begin
with the ansatz that the solution can be obtained from a
perturbation expansion �Eq. �118��,

���,�� = �0��,�� + R�1��,�� + R2�2��,�� + O�R2� .

�118�

Substituting Eq. �118� into Eq. �116�, and collecting pow-
ers of R yields a series of equations which must be sat-
isfied:

31I.e., the left-hand side which is comprised of inertial terms
dominates for small 	r�	 whereas at large 	r�	 the viscous terms
which comprise the right-hand side are of equal or greater
importance.
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O�R0�: ��
4�0��,�� =

1

�
� ��0

��

�

��
−

��0

��

�

��
���

2�0,

O�R1�: ��
4�1��,�� =

1

�
�� ��1

��

�

��
−

��1

��

�

��
���

2�0

+ � ��0

��

�

��
−

��0

��

�

��
���

2�1� ,

O�R2�: ��
4�2��,�� =

1

�
�� ��2

��

�

��
−

��2

��

�

��
���

2�0

+ � ��0

��

�

��
−

��0

��

�

��
���

2�2

+ � ��1

��

�

��
−

��1

��

�

��
���

2�1� .

�119�

3. O„R0
… solution

The zeroth-order part of Eq. �120� is the same as Eq.
�116�, and is equally hard to solve. But RG does not
need a complete solution; we just need a starting point.
We begin with the equation which describes a uniform
stream. This is analogous to the constant O��0� solution
in the terrible problem.

A first integral to the O�R0� equation can be obtained
by noting that any solutions of ��

2�0�� ,��=0 are also
solutions of Eq. �120�. This is Laplace’s equation in cy-
lindrical coordinates, and has the usual solution �assum-
ing the potential is single valued�:

�0��,�� = A0 + B0ln � + �
n=1

�

��An�n + Bn�−n�sin n�

+ �Cn�n + Dn�−n�cos n�� . �120�

We are only interested in solutions with the symmetry
imposed by the uniform flow �Eq. �10��. Hence A0=B0
=Cn=Dn=0. Furthermore, the boundary conditions at
infinity require that An=0 for n�1. For simplicity at
higher orders, we set Cn=0; this is not required, but
these terms will simply reappear at O�R1�. Finally set
A1=1 to satisfy the boundary condition at � �Eq. �117��.
As in the terrible problem, this is done for technical
convenience, but will not change our results. We are left
with the potential describing the uniform flow:

�0��,�� = � sin��� . �121�

4. O„R1
… solution

By substituting Eq. �121� into the O�R1� governing
equation, we obtain

��
4�1��,�� = �cos���

�

��
−

sin���
�

�

��
���

2�1. �122�

Equation �122� is formally identical to Oseen’s equation
�Eq. �37��, albeit derived through a different argument.

This is fortuitous, as its solutions are known �Tomotika
and Aoi, 1950�. Unfortunately, when working with
stream functions, the solution can only be expressed as
an infinite sum involving combinations of modified
Bessel functions Kn, In.

The general solution can be obtained either by follow-
ing Tomotika or by using variation of parameters
�Proudman and Pearson, 1957�. It is comprised of two
parts, the first being a solution of Laplace’s equation �as
at O�R0��. The same considerations of symmetry and
boundary conditions limit our solution: in Eq. �120�,
A0=B0=Cn=Dn=0; An=0, if n�1. Here, however, we
retain the constants Bn, and do not fix A1. This is analo-
gous to what was done with the homogeneous terms at
O��1� in the terrible problem. The second part of the
general solution is analogous to a particular solution in
the terrible problem, and can be obtained from Tomoti-
ka’s solution �Eq. �49��. These two results are combined,
which will be the basis for our RG analysis,

�1��,�� = A1� sin �

+ �
n=1

� �Bn�−n + �
m=0

�

Xm��m,n��/2��sin n� .

�123�

Before discussing the application of RG to Eq. �123�,
it is worthwhile to discuss Eq. �122� in general terms.
Equation �122� may be rewritten as

L�1 � ���
2 − cos���

�

��
+

sin���
�

�

��
���

2�1 = 0. �124�

We see explicitly that Eq. �124� is a linear operator �L�
acting on �1, and that the right-hand side is zero. This is
the homogeneous Oseen equation. It is only because of
our judicious choice of �0 that we do not need to deal
with the inhomogeneous counterpart, i.e., with a non-
zero right-hand side. However, the inhomogeneous
Oseen equation governs �n at all higher orders. This can
be seen for O�R2� from Eq. �119�.

In general, the solutions to the inhomogeneous Oseen
equation are found using the method of variation of pa-
rameters. It is worth exploring these solutions, as they
provide some insight into the structure of Eq. �49�. We
now solve Eq. �124� for a particular kind of inhomoge-
neity, one which can be written as a Fourier sine series.32

We want to solve

L�1 = �
n=1

�

F̃n���sin n� . �125�

The substitution33 �2�1=e� cos �/2��� ,�� allows us to
obtain the first integral of Eq. �125�. This result is given
by �Proudman and Pearson, 1957�

32The symmetry of the problem precludes the possibility of
cosine terms in the governing equations for �n, ∀n�1.

33�2�1�� ,�� is the vorticity.
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��2 −
1
4
����,�� = �

n=1

�

Fn���sin n� . �126�

Here Fn���=e−� cos �/2F̃n���. To solve for ��� ,��, begin by
noting that the symmetry of the inhomogeneous terms
implies that ��� ,�� can be written as a sine series. Con-
sequently, substitute ��� ,��=�n=1

� gn���sin n� into Eq.
�126� to obtain

gn���� +
1

�
gn���� − �1

4
+

1

�2�gn��� = Fn��� . �127�

The fundamental solutions of Eq. �127� are Kn�� /2�,
In�� /2�. Using variation of parameters, the general solu-
tion of Eq. �127� may be written as

gn��� = − In��

2
���n + J1

�n����� + Kn��

2
���n + J2

�n����� .

�128�

Here J1
�n����=�d��Fn���Kn�� /2�, J2

�n����=�d��Fn���
�In�� /2�, and �n, �n are constants. The next step is to
undo our original transformation, and to solve the re-
sulting equation:

�2�1��,�� = e� cos �/2�
n=1

�

gn���sin n�

=�
n=1

�

bn���sin n� . �129�

In Eq. �129�, bn���=�m=1
� gm����In−m�� /2�−In+m�� /2��.

We have the unfortunate happenstance that each bn de-
pends on the all harmonics of the first integral. This is
the origin of the nested sum �over m� in Tomotika’s so-
lution �Eq. �49��.

As before, symmetry will require that �1�� ,�� be rep-
resentable as a sine series: �1�� ,��=�m=1

� Xm���sin m�.
With this substitution we obtain �for each m� the radial
component of Poisson’s equation in cylindrical coordi-
nates:

Xm� ��� +
1

�
Xm� ��� −

m2

r2 Xm��� = bm��� . �130�

The fundamental solutions were discussed before in the
context of Laplace’s equation: �m, �−m. As before, a par-
ticular integral is obtained through variation of param-
eters, and the general solution may be written as

Xn��� = − �n�An + I1
�n����� +

1

�n �Bn + I2
�n����� . �131�

Here I1
�n����=�d�−�bn��� /2n�n, I2

�n����=�d�−�bn����n /
2n, and An, Bn are integration constants.

It is useful to relate Eq. �131� to Tomotika’s solution
�Eq. �49��. There are four integration constants for each
angular harmonic. Two are obvious: An, Bn. The other
two arise in the first integral �the vorticity solution�, Eq.
�128�. However, every vorticity integration constant ap-

pears in each harmonic of Eq. �131�. For example, one
cannot uniquely assign �1 and �1 to the sin � harmonic
of Eq. �131�. However, if one considers n terms from Eq.
�128� and n terms from Eq. �131�, there will be 4n inte-
gration constants — four per retained harmonic of Eq.
�131�. In passing we note that matched asymptotics
workers avoid this problem by using the vorticity di-
rectly, and thereby simplify their treatment of boundary
conditions. This approach does not work in conjunction
with RG.

It is mildly disconcerting to have four integration con-
stants, as there are only three boundary conditions for
each harmonic �Eq. �117��. However, two of the con-
stants �An and �n� will be determined by the boundary
conditions at infinity. This claim is not obvious, particu-
larly since terms which are divergent prior to renormal-
ization might not be present after the renormalization
procedure. We outline here an argument which can be
made rigorous. There are two kinds of divergences in
Eq. �131�: terms which are secular as �→0, and terms
which diverge too quickly as �→�.34

After renormalization, we try to need to meet the
boundary conditions �Eq. �117��. As in the case of the
terrible problem, it will turn out that the simplest ap-
proach to renormalization yields a renormalized pertur-
bation solution which is the same as the naive series.
Consider Eq. �131�. The terms which are secular as �
→0 will not preclude satisfying the boundary conditions.
Those which diverge too quickly as �→�, however, will
conflict with Eq. �117�.

These terms must be eliminated by a suitable choice
of integration constants. It turns out not to matter
whether we do this before or after the renormalization
procedure. For simplicity, we will do it before renormal-
izing. First, the coefficient of �n must vanish for all n
�1. This can happen, with an appropriate choice of An,
if

lim
�→�

I1
�n���� � O�1� .

For this requirement to be met, the coefficient of In�� /2�
in Eq. �128� must vanish �e.g., �n=lim�→�J1

n����. It is al-
ways possible to choose �n appropriately, because the
following condition is satisfied for all n:

lim
�→�

J1
�n���� � O�1� .

In our problem this is true because Fn��� is based on
solutions to the lower-order governing equations. By
construction, these are well behaved as �→�. Therefore
for the inhomogeneous Oseen equation under consider-
ation �Eq. �126��, we see that two of the four integration
constants �An, �n� are needed to satisfy the boundary
conditions at infinity.

34To be precise, terms which diverge faster than � as �→�
are problematic, and prevent satisfying the boundary condi-
tions �Eq. �117��.
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More specifically, the immediate problem requires us
to consider the homogeneous Oseen’s equation �Eq.
�124��, and Tomotika’s solution �Eq. �49��. For this prob-
lem, Fn���=0, and the coefficient of In�� /2� in Eq. �128�
has no � dependence. So we simply choose �n such that
this coefficient vanishes. Simplifying Eq. �128�, we then
have the following solution for the vorticity:

�2�1��,�� = e� cos �/2�
n=1

�

Kn��

2
���n�sin n� . �132�

Since this solution for the vorticity is well behaved as
�→�, it follows that we can choose An �n�1� in Eq.
�131� so that the coefficient of �n vanishes as �→�. We
are left with the solution

Xn��� = An�
n,1 + �n�I1
�n���� − I1

�n�����

+ �−n�Bn + I2
�n����� . �133�

For the homogeneous Oseen’s equation, I1
�n���� and

I2
�n���� simplify to

I1
�n���� =� d�

− �

2n
�−n��

m=1

�

�mKm��

2
��In−m��

2
�

− In+m��

2
��� , �134�

I2
�n���� =� d�

− �

2n
�n��

m=1

�

�mKm��

2
��In−m��

2
�

− In+m��

2
��� . �135�

This result is fundamentally the same as Tomotika’s
�Eq. �49��. However, his solution is more useful, as he
accomplished the integrals in Eq. �134�. What is the
point of all this work? First, the approach based on the
variation of parameters may be applied to the inhomo-
geneous Oseen equation, which must be solved for or-
ders higher than O�R1�. Second, we see explicitly what
happens to the two sets of integration constants �n and
An. Tomotika’s solution has but two integration
constants,35 Bn and �n. The other constants have already
been chosen so as to satisfy the boundary conditions at
�. We have shown explicitly how they must be deter-
mined, and stated without proof that this may be done
prior to renormalization. In short, we have explained
why Eq. �123� is the appropriately general O�R1� solu-
tion for our naive perturbation analysis.

In addition to explaining why Tomotika’s solution is a
suitable starting point for RG, our analysis also connects
with the O�R1� solution of Proudman and Pearson
�1957�. We have shown that the vorticity must be well
behaved at �=� if the overall solution is to satisfy the
boundary conditions.

a. Secular behavior

Combining Eqs. �121� and �123�, we begin the follow-
ing naive solution:

���,�� = � sin��� + R�A1� sin � + �
n=1

� �Bn�−n

+ �
m=0

�

Xm��m,n��

2
��sin n�� + O�R�2. �136�

Although intimidating, this is conceptually equivalent to
Eq. �85� �in the terrible problem�. The first step in our
analysis is identifying which terms are divergent. As ex-
plained above, Eq. �136� is specifically constructed to be
of O��1� as �→�. In fact, only the O�R0� and A1 terms
matter at large �. As �→0, however, many other terms
in Eq. �136� diverge. All Bn terms diverge. Most of the
�m,n��� terms are also secular.

Rather than enumerating and sorting through the dif-
ferent divergences, we simply treat the problem ab-
stractly. Equation �136� can be rewritten as

���,�� = � sin��� + R�A1� sin � + R��,� ;�Bi� ;�Xj��

+ S��,� ;�Bm� ;�Xn��� . �137�

Here S includes the terms which are secular as �→0,
and R includes regular terms.

5. Renormalization

Equation �137� is renormalized just like the terrible
problem. We begin with the renormalized perturbation
expansion given by Eq. �138�. Note that we are not
specifying the details of which terms are secular, or how
we are splitting these terms. The only term we are ex-
plicitly considering is A1. This is a trick built on consid-
eration of the terrible problem. Our best solution �Eq.
�114�� to that problem was built on the renormalization
of just one constant, B0 in Eq. �113a�. Essentially, we will
repeat that procedure here, using A1 as that constant,

���,�� = � sin��� + R�A1���� sin �

+ R„�,� ;�Bi���� ;�Xj����…

+ S„�,� ;�Bm���� ;�Xn����…

− S„�,� ;�Bm���� ;�Xn����… + O�R2�� . �138�

We will now apply the RG condition ������ ,��=0� to
Eq. �138�. Accomplishing this in complete generality is
difficult. However, using our experience from the ter-
rible problem, we can see that this is not necessary. The
RG condition may be satisfied as follows: First, suppose
that Xn����=O�R2� ∀n, Bm� ���=O�R2� ∀m. These equa-
tions are satisfied by Xn���=�n, Bm���=�m. Substituting
these results into Eq. �138� and applying the RG condi-
tion results in

0 = R�A1����� sin � − S���,� ;��m� ;��n��� . �139�

This is easily solved for A1���,35There is also A1, but that is a special case.
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A1��� =
S��,� ;��m� ;��n��

� sin �
+ �1. �140�

We have explicitly validated our supposition that
�Xn���� and �Bm���� can be constants. With this supposi-
tion, we have shown that the RG condition applied to
Eq. �138� can be satisfied with an appropriate choice of
A1���. We have satisfied the RG condition through
clever tricks derived from our experience with the ter-
rible problem. However, this solution is entirely valid,
and our experience with the terrible problem has shown
us that more complicated solutions are asymptotically
equivalent.

Substituting Eq. �140� into Eq. �138�, and setting �=�,
we obtain our renormalized solution:

���,� = � sin��� + R��1� sin � + R��,� ;��i� ;��j��

+ S��,� ;��m� ;��n��� . �141�

By now it should not be surprising that this is the same
equation as our naive perturbation solution �Eq. �137��,
and by extension the same solution obtained by Tomo-
tika and Aoi �1950�. As in the case of the terrible prob-
lem, however, we now know that this is a uniformly valid
approximation. We now may choose the integration con-
stants to satisfy the boundary conditions, and then cal-
culate the drag coefficient.

a. Truncation

Unfortunately, there are infinitely many integration
constants, and it is impossible to apply the boundary
conditions to our renormalized solution �or Eq. �136��.
To progress further, we must make the same sort of un-
controlled approximations made by previous workers
�Tomotika and Aoi, 1950; Proudman and Pearson,
1957�.36

Our approximation consists of a careful truncation, in
both m and n, of the series in Eq. �136�. There are two
important points to consider. First is the sin � symmetry
of the overall problem: terms proportional to sin � re-
flect the symmetries exhibited by the uniform flow which
are imposed on our solution via the boundary conditions
at infinity. The importance of this harmonic is further
seen in Eq. �21�: only the coefficient of sin � will be
needed for the computation of CD.

Second, we recall that the remaining boundary condi-
tions are imposed at the surface of the sphere, at �=R in
Oseen coordinates. When applying the boundary condi-
tions, terms which are secular as �→0 will therefore be
most important. Specifically, we cannot truncate any
terms which are divergent, although we are at liberty to
set their coefficients equal to zero.

These considerations allow exactly one solution. First,
set all Bn=0 for n�1. Second, set all Xm=0 m�0. We
retain three coefficients A1, B1, X0, which will permit the
boundary conditions to be satisfied for the sin � har-
monic. What about the higher harmonics? These terms
are truncated in an uncontrolled approximation. How-
ever, as we show the discarded terms are O�R3ln R� or
higher at the surface of the sphere. They are regular
terms, and thus negligible in comparison to the secular
terms retained �which are O�R−1��.

Now, suppose we follow Tomotika, and try to extend
this approach, by retaining a few more terms. The next
step would be to retain the B2, X1 terms, and to try to
satisfy the boundary conditions for the sin 2� harmonic.
As before, all higher Bn, Xm are set to zero. Why not
include the next harmonic or two?

The answer lies in the terms we discard. If we satisfy
the boundary conditions at �=R for the first n harmon-
ics, we must retain the coefficients X0 , . . . ,Xn−1. To
minimize the amount of truncation we do, first set Xm
=0 for ∀m�n−1 and Bk=0 for ∀k�n. What then is the
form of the terms which are discarded from our solu-
tion?

�discard
�n� ��,�� = R� �

k=n+1

�

�
m=0

n−1

Xm�m,k��/2�� sin k�� .

�142�

�discard
�n� �� ,�� is largest as �→0, and will be most impor-

tant at �=R, on the surface of the cylinder. If we retain
only the n=1 harmonic, �discard

�1� �� ,���O�R3ln R�. Since
we are only working to O�R1�, this is fine. We must also
consider the derivative, since we want to satisfy all
boundary conditions �Eq. �10�� to the same order:
�discard��1� �� ,���O�R2ln R� therefore in the case where we
retain only the sin � harmonic, the discarded terms are
negligible, as we are working to O�R1�.37 When we re-
tain higher harmonics, everything changes. Table IV
shows the magnitude of the discarded terms at �=R for
the first four harmonics.

From Table IV, we see immediately that to retain
sin 2� harmonics we must have an error in our derivative
boundary condition of O�R1�—the order to which we
are trying to work. If we retain higher harmonics, this

36Kaplun was able to avoid this difficulty using the velocity
field instead of stream functions, although his approach brings
other problems: the solution cannot be expressed in closed
form, and must be approximated to apply the boundary con-
ditions �see Sec. II.B.3.b�.

37This argument is somewhat simplistic: the neglected terms
also contribute, when meeting the boundary conditions, to the
values of the retained coefficients, i.e., all nonzero Xm affect
X0. But these are higher-order effects.

TABLE IV. Relative importance of discarded terms at �=R.

n= 1 2 3 4

�discard
�n� �� ,�� O�R3ln R� O�R2� O�R1� O�R0�

�discard� �n��� ,�� O�R2ln R� O�R1� O�R1� O�R−1�
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situation gets worse. First we have an O�R1� error in the
stream function itself, and then we begin to have errors
which are divergent in R. For n�4, both �discard

�n� �� ,��
and �discard��n� �� ,�� are increasingly divergent functions of
R.

Since it is in practice impossible to fit the boundary
conditions to Eq. �136�, we must truncate the series ex-
pansion. We have shown that there is only one trunca-
tion consistent with both the symmetry requirements of
the problem and the demand that we satisfy the bound-
ary conditions to O�R1�:

���,�� = � sin��� + R�A1� + B1�−1

+ X0��0,1��

2
��sin � . �143�

This result is identical to Proudman’s O�R1� result for
the Oseen stream function �Proudman and Pearson,
1957�. However, he arrives at this result by considering
matching requirements with the O�R0� Stokes expansion
and by imposing sin � symmetry on the first integral �Eq.
�130��. Our approach arrives at the same conclusion, but
without the need for asymptotic matching or the two
expansions it requires. Moreover, we did not need the
expertise and finesse which matched asymptotics work-
ers needed to deduce the unusual form of their expan-
sions �e.g., the 1/ ln R term in Eq. �58��. Finally, we note
that Tomotika’s numerical results support our truncation
�Tomotika and Aoi, 1950�.

b. Meeting boundary conditions

It is straightforward to apply the boundary conditions
�Eq. �10�� to Eq. �143�. To satisfy the condition at infin-
ity, A1=0. The other two requirements are met by the
following choice of coefficients:

B1 =
− R2�0,1� �R/2�

4�0,1�R/2� + R�0,1� �R/2�
, �144�

X0 =
− 4

R�4�0,1�R/2� + R�0,1� �R/2��
. �145�

Notice that we are using the Oseen stream function. The
Stokes function is related by 	�r ,��=��rR ,�� /R. Put-
ting everything together, we have the new result given
by

���,�� = � sin��� + R� − R2�0,1� �R/2�
4�0,1�R/2� + R�0,1� �R/2�

�−1

+
− 4

R�4�0,1�R/2� + R�0,1� �R/2��
��0,1��/2��

�sin � . �146�

Remember that although our truncated solution satisfies
the boundary conditions exactly, it only satisfies the gov-
erning equations approximately.

6. Calculating the drag coefficient

We now transform Eq. �146� into Stokes coordinates,
and substitute the result into Eq. �21�.38 We thereby ob-
tain a new result for CD, given by

CD =
��− 12�0,1� �R/2� + R�6�0,1� �R/2� + R�0,1� �R/2���

8�0,1�R/2� + 2R�0,1� �R/2�
.

�147�

This result is plotted in Fig. 14, where it is compared
against the principal results of Oseen theory, matched
asymptotic theory, and experiments. When compared as-
ymptotically, all theoretical predictions agree. At small
but not infinitesimal Reynolds number, the largest differ-
ence is seen between Kaplun’s second-order result and
first-order predictions, including Eq. �147�. As explained
previously, current experimental data cannot determine
whether Kaplun’s second-order matched asymptotics so-
lution is actually superior.

The RG result lies among the first-order predictions.
Fundamentally, the RG calculation begins with an equa-
tion similar to Oseen’s, so this is not too surprising.
Within this group Eq. �147� performs very well, and is
only slightly bettered by Imai’s prediction �Eq. �51��.
These two results are very close over the range 0�R
�1.

The real strength of Eq. �147� can be seen in Fig. 15.
As the Reynolds number increases beyond R=1, all
other theories begin to behave pathologically. They di-
verge from experimental measurements and behave
nonphysically �e.g., a negative drag coefficient�. The RG
prediction suffers from none of these problems; it is well
behaved for all R. As it is still based on a perturbative
solution, it does become less accurate as R increases.

38Or, alternatively, into Eqs. �8�, �19�, and �20�.

FIG. 14. �Color online� Drag on cylinder, comparing RG pre-
dictions to other theories at low R.
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C. Flow past a sphere

1. Rescaling

Our analysis of low Reynolds number flow past a
sphere closely follows both the cylinder problem and the
terrible problem. We omit redundant explanations. As
before, the first step is a rescaling of both r and 	—the
transformation into Oseen coordinates. A dominant bal-
ance analysis identifies the rescaling given by

� = Rr, � = R2	 . �148�

In Oseen variables, the governing equation �Eq. �12��
becomes

D�
4���,�� =

1

�2� �����,��,D�
2���,���

���,��

+ 2D�
2���,��L����,��� , �149�

where

� � cos �, D�
2 �

�2

��2 +
1 − �2

�2

�2

��2 ,

L� �
�

1 − �2

�

��
+

1

�

�

��
. �150�

The boundary conditions �Eq. �14�� transform into

��� = R,�� = 0, 
 ����,��
��



�=R

= 0,

lim
�→�

���,��
�2 =

1
2

�1 − �2� . �151�

2. Naive perturbation analysis

We continue by substituting our naive perturbation
assumption �Eq. �118�� into Eq. �149�, and then collect-
ing powers of R,

O�R0�: D�
4�0��,�� =

1

�2� ���0��,��,D�
2�0��,���

���,��

+ 2D�
2�0��,��L��0��,��� ,

�152a�

O�R1�: D�
4�1��,�� =

1

�2� ���0,D�
2�1�

���,��

+
���1,D�

2�0�
���,��

+ 2�D�
2�0L��1

+ D�
2�1L��0�� �152b�

O�R2�: D�
4�2��,�� =

1

�2� ���0,D�
2�2�

���,��

+
���1,D�

2�1�
���,��

+
���2,D�

2�0�
���,��

+ 2�D�
2�0L��2 + D�

2�1L��1

+ D�
2�2L��0�� . �152c�

3. O„R0
… solution

As seen with both the cylinder problem and the ter-
rible problem, Eq. �152a� is the same as the original gov-
erning equation �Eq. �149��. As before, we proceed using
an incomplete solution for �0: the uniform stream which
describes flow far from any disturbances. Analogously to
the cylinder, we notice that Eq. �152a� is satisfied if
�0�� ,�� obeys D�

2�0�� ,��=0. The general solution of
this equation which also satisfies the appropriate sym-
metry requirement ��0�� ,�= ±1�=0� is given by

�0��,�� = �
n=0

�

�An�n+1 + Bn�−n�Qn��� . �153�

Here Qn��� is defined as in Eq. �46�. Following the
analysis used for the cylinder, we set all coefficients to
zero, excepting A1=−1/2. This choice of A1 satisfies the
uniform stream boundary condition �Eq. �151�� at �=�.
We thereby obtain

�0��,�� = − �2Q1��� . �154�

4. O„R1
… solution

Substituting Eq. �154� into Eq. �152b�, we obtain

D�
4�1��,�� = �1 − �2

�

�

��
+ �

�

��
�D�

2�1��,�� . �155�

This result is also derived in matched asymptotic analy-
sis, and is formally identical to the Oseen equation for a
sphere �Eq. �35��. Structurally, this problem is similar to
what we have seen previously, and is solved in two steps

FIG. 15. �Color online� Drag on a cylinder, comparing RG
predictions to other theories at higher R.
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�Goldstein, 1929�. First use the transformation D�
2�1

=e��/2��� ,�� to obtain39

�D�
2 − 1

4 ����,�� = 0. �156�

This may be solved to obtain the first integral:

D�
2�1��,�� = e�1/2����

n=1

� �An��

2
�1/2

Kn+1/2��

2
�

+ Bn��

2
�1/2

In+1/2��

2
��Qn��� . �157�

As in the case of the cylinder, the inhomogeneous
term on the right-hand-side of Eq. �157� consists of inte-
gration constants which multiply the two modified
Bessel functions. We are beset by the same consider-
ations, which must be resolved by applying boundary
conditions �Eq. �151�� to the renormalized solution. Fol-
lowing the same arguments given for the cylinder, we set
the coefficients Bn=0, which will later make it possible
to satisfy the boundary conditions at infinity.

Completing the second integration is difficult, but was
accomplished by Goldstein �1929�. The requisite solu-
tion is essentially the second term in Eq. �46�:

�1
�a���,�� = A1�2Q1��� + �

n=1

� �Bn�−n

+ �
m=0

�

Xm�2�m,n��/2��Qn��� . �158�

Note that we have omitted the terms AnrnQn��� which
diverge too quickly at infinity �this was also done for the
cylinder�.

Alternatively, one may simplify the series in Eq. �157�
by retaining only the n=1 term �setting all other An=0�.
It is then possible to complete the second integration
with a closed form solution:

�1
�b���,�� = A1�2Q1��� + A1�1 + ���1 − e−�1/2���1−���

+ �
n=1

�

Bn�−nQn��� , �159�

As before, we neglect the AnrnQn��� solutions. This is
essentially Oseen’s solution �Eq. �38��, expressed in the
appropriate variables and with undetermined coeffi-
cients.

We therefore have two solutions �Eqs. �158� and �159��
which can be used for �1. For the moment, we consider
both. We later demonstrate that the former is the pre-
ferred choice by considering boundary conditions.

5. Secular behavior

We consider our O�R1� naive solution abstractly:

���,�� = − �2Q1��� + R�A1�2Q1���

+ �
n=1

�

Bn�−nQn��� + ¯ � + O�R2� . �160�

This generic form encompasses both Eqs. �159� and
�158�. It also possesses two key similarities with both the
terrible and cylinder problems. First, there is a term at
O�R1� which is a multiple of the O�R0� solution
�A1�2Q1����. Second, the secular behavior in our naive
solution occurs at the same order as the integration con-
stants which we hope to renormalize.40 This fact is in
essence related to equations like Eq. �89�, which must be
solved iteratively. We avoided that kind of RG equation
by introducing the constant which could have been asso-
ciated with the O�R0� solution at O�R1�. But renormal-
izing divergences into integration constants at the same
order limits the ability of RG to “resum” our naive se-
ries. In all of these cases, the real power of RG tech-
niques could be seen by extending our analysis to O�R2�.

Because of the similarities between Eqs. �160� and
�136�, we can tackle this problem in a manner formally
the same as the cylinder. By construction, Eq. �160� is
O��2� as �→�. Hence the only terms with problematic
secular behavior occur in the limit �→0. As before,
these divergences need not even be explicitly identified.
We write

���,�� = − �2Q1��� + R�A1�2Q1���

+ R��,� ;�Bi� ;�Xj�� + S��,� ;�Bm� ;�Xn��� .

�161�

Here S includes the terms which are secular as �→0,
and R includes regular terms.

6. Renormalization

Equation �161� is only cosmetically different from Eq.
�137�. Renormalizing the two equations can proceed in
exactly the same fashion. Therefore we may immediately
write the renormalized solution:

���,�� = − �2Q1��� + R��1�2Q1���

+ R��,� ;��i� ;��j�� + S��,� ;��m� ;��n��� .

�162�

This is, of course, the same solution from which we be-
gan. As in the previous two problems, we now know that
it is a uniformly valid solution, and turn to the applica-
tion of the boundary conditions.

7. Meeting the boundary conditions

We have two possible solutions for �1�� ,��. Consid-
ering the boundary conditions on the surface of the

39D�
2�1�� ,�� is the vorticity.

40These secular terms are not written explicitly in Eq. �160�.
They can be found in Eqs. �159� and �158�.
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sphere �Eq. �151�� will demonstrate why Eq. �158� is
preferential. Equation �159� can never satisfy the two
requirements for all angular harmonics. Expanding the
exponential term, we see that although it has but one
integration constant, it contributes to all powers of �.
The second solution, Eq. �158�, can meet both of the
boundary conditions, in principle. However, as in the
case of the cylinder, this is practically impossible, and we
must consider truncating our solution.

It is clear that we need to approximate our solutions
in order to apply the boundary conditions. Our proce-
dure is governed by the following considerations. First,
we demand that our approximate solution satisfy the
boundary conditions as accurately as possible. This re-
quirement is necessary because our goal is to calculate
the drag coefficient CD, a calculation which is done by
evaluating quantities derived from the stream function
on the surface of the sphere. Hence it is necessary that
the stream function be as accurate as possible in that
regime. Second, we want the difference between our
modified solution and the exact solution �one which sat-
isfies the governing equations� to be as small as possible.

a. Oseen’s solution

First, consider trying to satisfy these requirements
starting from Eq. �159�. Although this is the less general
solution to Oseen’s equation, we consider Oseen’s solu-
tion because of �i� its historical importance, including
widespread use as a starting point for matched asymp-
totics work, and �ii� the appealing simplicity of a closed-
form solution.

We combine Eqs. �159� and �154� to begin from the
solution ��� ,��=�0�� ,��+R�1

�b��� ,��. Since we are in-
terested in the solution near the surface of the sphere
��=R�, and because there is no other way to determine
the integration constants, we expand the exponential in
that vicinity. Retaining terms up to O�R�1��O���2, we
obtain

���,�� = �− �2 + R�A1�2 − A1���Q1���

+ R�
n=1

�

Bn�−nQn��� . �163�

The boundary conditions are satisfied if Bn=0 ∀n�1,
A1=0, A1=−3/2, and B1=−R2 /2. In passing, we note
that substituting these values into Eq. �159� reproduces
Oseen’s original solution �Oseen, 1910�. Continuing, we
substitute these values into Eq. �163�, obtaining

���,�� = �− �2 +
3R�

2
−

R3

2�
�Q1��� . �164�

This is nothing more than the Stokes solution �Eq. �28��,
albeit expressed in Oseen variables. Consequently, when
substituted into Eqs. �11�, �24�, and �25� and Eq. �164�
reproduces CD=6� /R.

How accurate is our approximate solution? The differ-
ence between Eqs. �164� and �159� is given by

�� = − 3
4R�1 + ���− 2 + 2e−�1/2���1−�� + ��1 − ��� .

�165�

At the surface of the sphere ��=R�, this equates to an
O�R3� error in the stream function, and an O�R2� error
in the derivative. That is entirely acceptable. However,
at large �, �� grows unbounded, being of O���1. This is
the fundamental problem with the solution given by Eq.
�164�. By beginning from Eq. �158�, we can avoid this
difficulty.

It is at first a little disconcerting that Oseen used his
solution to obtain the next approximation to CD �Eq.
�39�� �Oseen, 1913�. How can our results be worse? As
noted previously, “Strictly, Oseen’s method gives only
the leading term … and is scarcely to be counted as
superior to Stokes’ method for the purpose of obtaining
the drag” �Proudman and Pearson, 1957�.

b. Goldstein’s solution

We now apply the boundary conditions to Eq. �158�.
By starting from the more general solution to Oseen’s
equation, we can remedy the difficulties encountered
above. This analysis will be very similar to the trunca-
tion performed on Tomotika’s solution for the cylinder
problem.

We combine Eqs. �158� and �154� to begin from the
solution ��� ,��=�0�� ,��+R�1

�a��� ,��. As with the cyl-
inder, we approximate the full solution by truncating the
series in both m and n. Our first consideration is again
symmetry: The uniform flow imposes a sin � or Q1���
symmetry on the problem. Hence we must retain the n
=1 term in Eq. �158�. The importance of this term is
clearly seen from Eq. �26�: only the coefficient of Q1���
is needed to calculate the drag if the stream function
satisfies the boundary conditions.

As in the case of the cylinder, if we retain n harmon-
ics, we must retain m=n−1 terms in the second sum �the
sum over m� in order to meet both boundary conditions.
To minimize the error introduced by our approximations
we set all other Bn, Xm equal to zero. The remaining
terms, those which would violate the boundary condi-
tions and must be truncated, are then given by

�discard
�n� ��,�� = R� �

k=n+1

�

�
m=0

n−1

Xm�m,k��/2��2Qk���� .

�166�

We want to estimate the magnitude of the error in our
approximation, both overall and at the surface �the error
in the boundary conditions�. The error is given by
Eq. �166�. First, we calculate the magnitude of both
�discard

�n� �� ,�� and its derivative at the surface ��=R� with
n retained harmonics. The results are given in Table V.

From Table V, we see that to retain the Q2��� har-
monics we must have an error in our derivative bound-
ary condition of O�R1�—the order to which we are try-
ing to work. If we retain higher harmonics, this situation
gets worse.
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Since it is in practice impossible to fit the boundary
conditions to all harmonics, we must truncate the series
expansion. We see that there is only one truncation con-
sistent with both the symmetry requirements of the
problem and the demand that we satisfy the boundary
conditions to O�R1�:

���,�� = − �2Q1��� + R�A1�2 + B1�−1

+ X0�0,1��/2��2�Q1��� + O�R2� . �167�

We also must consider the overall error, e.g., how big
can �discard

�1� �� ,�� get? Although, at the surface of the
sphere, Eq. �167� is no better than Eq. �164�, it is supe-
rior for ��R. The magnitude of the error is maximized
as �→�. It can be shown by Taylor expansion �sepa-
rately accounting for m=0, m=n, etc.� that �m,n�x
→ � ��x−2. Therefore

lim
�→�

�discard
�1� ��,�� = O�R1� .

Although this is somewhat unsatisfactory, this solution
does not suffer from the same shortcomings as Eq. �163�.
The error remains bounded.

Equation �167� will satisfy the boundary conditions
�Eq. �151�� if A1=0 and

X0 =
6

6R�0,1�R/2� + R2�0,1� �R/2�
, �168�

B1 =
R3�0,1� �R/2�

6�0,1�R/2� + R�0,1� �R/2�
. �169�

As in the case of the cylinder, the resulting stream func-
tion satisfies the boundary conditions exactly, and the
governing equations approximately. Our final solution is

���,�� = − �2Q1��� + R� R3�0,1� �R/2�
6�0,1�R/2� + R�0,1� �R/2�

�−1

+
R3�0,1� �R/2�

6�0,1�R/2� + R�0,1� �R/2�
�0,1��/2��2�

�Q1��� + O�R2� . �170�

For reference,

�0,1�x� = −
3�

4x2�2 −
2

x
+

1

x2 −
e−2x

x2 � .

8. Calculating the drag coefficient

We calculated the drag coefficient by substituting Eq.
�170� into Eq. �26�, giving this new result:

CD =
��− 16�0,1� �R/2� + R�8�0,1� �R/2� + R�0,1�� �R/2���

2�6�0,1�R/2� + R�0,1� �R/2��
.

�171�

This can be expressed in terms of more conventional
functions by substituting for �0,1�x�, resulting in the drag
coefficient given by

CD =
4��24 + 24R + 8R2 + R3 + 4eR�R2 − 6��

R�2�R + 1� + eR�R2 − 2��
. �172�

This result is plotted in Fig. 16, where it is compared
against the principal results of Oseen theory, matched
asymptotic theory, numerical results, and experiments.
As R→0, there is excellent agreement. At small but
noninfinitesimal Reynolds numbers, RG is nearly iden-
tical to Oseen’s prediction �Eq. �39��, which is disap-
pointing. It is surprising that Goldstein’s result is better
than the RG result, as they are calculations of the same
order in R, and are a series approximation. That the
matched asymptotics predictions are superior is not sur-
prising; Chester and Breach’s result began with a much
higher-order perturbative approximation. If a higher-
order RG calculation were possible, RG ought to be
better than the same order matched asymptotics predic-
tion.

As in the case of the cylinder, the real strength of Eq.
�172� can be seen as the Reynolds number increases.
Figure 17 demonstrates that all other theories diverge
from experimental measurements for R�1. This is an
unavoidable aspect of their structure and derivation—
they are only valid asymptotically. The RG prediction
suffers from none of these problems. Equation �172� is
well behaved for all R, although it does become less
accurate at larger Reynolds numbers.

IV. CONCLUSIONS

We have devoted a substantial effort to the historical
problem of calculating the drag coefficient for flow
around a cylinder and a sphere at low Reynolds number.

TABLE V. Importance of discarded terms at �=R.

n� 1 2 3 4

�discard
�n� �� ,�� O�R3� O�R2� O�R1� O�R0�

�discard��n� �� ,�� O�R2� O�R1� O�R1� O�R−1�

FIG. 16. �Color online� Drag on a sphere, comparing RG to
other theories �Maxworthy, 1965; Le Clair and Hamielec, 1970;
Dennis and Walker, 1971�.
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We report four principal accomplishments. First, we
have untangled over 150 years of diffuse, confusing, and
sometimes contradictory experimental, numerical, and
theoretical results. We have expressed all important pre-
vious work within a consistent mathematical framework,
and explained the approximations and assumptions
which have gone into previous calculations. Moreover,
by plotting experimental results and theoretical predic-
tions with the leading-order divergence removed �an
idea originally due to Maxworthy�, we have consistently
and critically compared all available measurements.
There are no other such exhaustive comparative reviews
available in the existing literature.

Second, we have extended traditional matched asymp-
totics calculations. We advance and justify the idea that
uniformly valid approximations, not the Stokes or
Oseen expansions, should be used to calculate derivative
quantities such as CD. By combining this approach with
previously published matched asymptotics results, we
obtain new results for the drag coefficients. These results
systematically improve on published drag coefficients,
which relied only on the Stokes expansion. This meth-
odology also resolved a problem in the existing litera-
ture: the most accurate calculations for a cylinder, due to
Skinner, had failed to improve CD �Skinner, 1975�. When
treated via a uniformly valid approximation, our new
result based on Skinner’s solutions betters all matched
asymptotics predictions.

We have also explored the structure and subtleties in-
volved in applying renormalization-group techniques to
the terrible problem posed by Hinch and Lagerstrom
�Lagerstrom and Casten, 1972; Hinch, 1991� This prob-
lem, previously solved by Chen et al. �1996�, contains a
rich and henceforth unexplored collection of hidden
subtleties. We exhaustively examined all possible com-
plications which can arise while solving this problem
with the renormalization group. To treat some of these
possibilities, we identified and implemented a new con-
straint on the RG calculation; the renormalized pertur-
bation solution itself, not just the expansion on which it
is based, must satisfy the governing equations to the ap-

propriate order in �. While this had been done implicitly
in previous calculations, we had to deal with it explicitly
�e.g., by appropriate choices of homogeneous solutions�.
In the process of doing so, we obtained several new
second-order approximate solutions to the terrible prob-
lem, and demonstrated their equivalence.

Work with the terrible problem laid the foundation
for our most significant new calculation. In close analogy
with the terrible problem, we used the RG to derive new
results for the drag coefficients for both a sphere and a
cylinder �Eqs. �172� and �147�, respectively�. These new
results agree asymptotically with previous theoretical
predictions, but greatly surpass them at larger R. Other
theories diverge pathologically, while the results from
the RG calculation remain well behaved.

We demonstrated that these new techniques could re-
produce and improve upon the results of matched
asymptotics—when applied to the very problem which
that discipline was created to solve. Matched asymptot-
ics requires the use of two ingenious and intricate expan-
sions, replete with strange terms �like R ln R� which
must be introduced while solving the problem via a pain-
ful iterative process. RG requires only a single generic
expansion, which can always be written down a priori,
even in complicated singular perturbation problems with
boundary layers. It therefore gives rise to a much more
economical solution, requiring half the work and yield-
ing a superior result. It is hoped that demonstrating the
utility of these techniques on this historical problem will
result in increased interest and further application of
renormalization-group techniques in fluid mechanics.
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