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We simulate an individual-based model that represents both the phenotype and genome of digital
organisms with predator-prey interactions. We show how open-ended growth of complexity arises from
the invariance of genetic evolution operators with respect to changes in the complexity, and that the
dynamics which emerges shows scaling indicative of a nonequilibrium critical point. The mechanism is
analogous to the development of the cascade in fluid turbulence.
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Experiments on digital organisms represent one of the
most accurate and informative methodologies for under-
standing the process of evolution [1]. Systematic studies on
digital organisms are especially informative because the
entire phylogenetic history of a population can be tracked,
something that is much more difficult—but not impossible
[2]—to do with natural organisms. Experiments on digital
organisms can be performed over time scales relevant for
evolution, and can capture universal aspects of evolution-
ary processes, including those relevant to long-term adap-
tation [3,4], ecological specialization [5,6], and the
evolution of complex traits [7].

Despite this progress, the way in which evolution leads
to ever increasing complexity of organisms remains poorly
understood and difficult to capture in simulations and
models to date. Is this because these calculations are not
sufficiently realistic, extensive, or detailed, or has some-
thing fundamental been left out? In this Letter, we argue
that two fundamental aspects of evolutionary dynamics,
with the character of symmetries, have been omitted, thus
causing complexity growth to saturate.

The first feature is that the evolutionary dynamics must
be invariant with respect to changes in the complexity of
the evolving organisms. That is, if there are inhomogene-
ities which encourage organisms to have a specific com-
plexity, then these will act to prevent the complexity of the
system from continually increasing. This invariance is
similar in spirit to that which lies at the heart of the
Richardson cascade in turbulence [8,9]. Here, a hierarchy
of length scales exists due to a transport of energy by scale-
invariant processes between a large length scale and a
small length scale. The largest and smallest features of
the flow are determined by where the invariance is broken.
In the biological case, processes invariant to changes in
complexity will allow the dynamics to produce structures
of arbitrarily high complexity. We will see below, in an
explicit model, the effects of different genetic operations
with regard to this invariance criterion. This criterion can
also apply to the way that the fitness of an organism is
determined in the dynamics, either explicitly or implicitly.

The second feature is that there must be some advantage
which can only be gained by an organism in the system
being more complex than the organisms it competes with.
Competitive interactions can drive such a dynamic, for
example, if competition can be thought of as one organism
setting the environmental problem that the other organism
must solve. The resulting coevolution favors an increase in
complexity over a decrease, because for the problem-setter,
simplifying the problem does not exclude an organism
already able to solve the problem. This factor has the
same function as viscosity in turbulent flows: it sets the
directionality of the relevant transport.

These two features have precisely the same mathemati-
cal role in evolutionary models as the mechanisms of
energy transfer and viscous dissipation do in fluid turbu-
lence. Thus, the open-ended growth of complexity in our
model, and the existence of a hierarchy of structures at all
scales in turbulent flows, are mathematical consequences
of the same underlying dynamics. It is not important for
this argument what is the direction of energy flow in the
turbulence case: in fact, the direction depends on dimen-
sionality, with the possibility of the accumulation of large-
scale structures in two-dimensional turbulence through the
so-called inverse cascade.

The implications of this dynamical systems argument
are far-reaching and impose constraints on how digital
evolution models should be built. For example, despite
its popularity, the ‘‘fitness landscape’’ [10–12] picture of
evolution does not satisfy these constraints and is concep-
tually insufficient to account for the open-ended growth of
complexity. To illustrate our points, we now show how
open-ended growth of complexity emerges from under-
lying dynamical rules in a simple caricature of an evolving
ecosystem.

Complexity saturation in digital ecosystems.—TIERRA

[13] and AVIDA [14] are systems of digital organisms,
which are represented as self-replicating programs in a
Turing complete language. In principle, any program or
behavior can then be encoded with a sufficiently large
genome. In TIERRA, organisms exist in a linear space for
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which each point in space is associated with an instruction
and replication occurs via a loop which copies the contents
of the space at an offset. In early work on the TIERRA

model, it became evident that the dynamics were not
neutral with respect to the size of replicating programs.
Evolutionary pressure favored smaller programs as they
replicate with fewer instructions and out-produce the larger
programs in the system. This led to the development of
interesting parasitic behavior in which a program would
use a neighbor’s replication code to decrease its length; i.e.,
the complexity of organisms did not increase. When this
was corrected by a change in the way in which resources
were allotted, the length of organisms was observed to
increase in bursts, but eventually saturated for longer and
longer intervals [13], a finding attributed to insufficient
richness of the environment [15].

In AVIDA, there is a two-dimensional grid, each cell
of which contains a program, and replication occurs be-
tween cells. Selection is based on an organism’s ability to
solve a particular mathematical problem. AVIDA uses an
information-theoretic definition of complexity based on
the information learned by the organism from its environ-
ment [7]. For evolution occurring in a single niche, it is
found that this complexity increases for some time, then
saturates to a value determined by the maximum informa-
tion associated with the niche (the potential complexity)
[16].

A similar pattern of saturation in the level of complexity
is found in ‘‘WebWorld’’ [17–20]. Here, species are de-
scribed by a set of features that may be either present or
not, and the total rate of predation between species is
determined by summing over a random interaction matrix
for each feature possessed by the predator and each pos-
sessed by the prey. The total number of features possessed
is found to increase in the presence of interactions above
the neutral case. However, the increase in complexity is
eventually limited by the predefined set of features, there
being no possibility of creating new features in the model.

In summary, these and other digital ecosystems appear
to lack the drive to increasing complexity that arguably is
present in real biological systems.

Foodchain.—We now present an abstract minimal
model of an evolving predator-prey system, which we
call ‘‘FOODCHAIN.’’ This model exhibits the potential for
an open-ended growth of complexity. Organisms in this
model exist in a two-dimensional space and interact with
each other. The detailed mechanics of replication are ab-
stracted away (unlike TIERRA and AVIDA)—during repli-
cation, genetic operators (point mutation and gene
duplication) are applied to the genomes, which are of fixed
length 2048, to produce the genome of the offspring. In
‘‘FOODCHAIN,’’ fitness is determined solely by interactions
between organisms, as they attempt to eat a random neigh-
bor each timestep. A certain amount of energy is intro-
duced to each living organism’s every timestep, and

replication occurs when an organism has an adjacent
empty grid cell and a sufficient amount of energy.

Each organism has a fixed-length string of letters as its
genome. These letters can be upper or lower case so that
each letter is one of 52 possible letters. All but eight letters
are inactive and do not influence the interactions between
organisms. Of the eight active letters, four are offensive (A,
B, C, D) and four are defensive (a, b, c, d).

The predator-prey interactions are determined by organ-
isms’ genomes. A particular organism is not predisposed to
be predator or prey, and may even be able to eat its own
offspring. The comparison between genomes consists of
matching contiguous substrings of offensive letters in the
organism attempting predation with defensive letters in the
prey. If the predator has a sequence of offensive letters that
is not matched in the prey by a corresponding defensive
string, the prey organism dies and the predator gains a
percentage of its energy. A neutral letter or letter of a
different type ends a sequence.

This interaction rule satisfies the condition that fitness in
the system should depend only on relative quantities as
well as the condition that in interactions between different
complexities, higher complexities produce a benefit for the
organism. If a particular organism only has a defensive
string of length L, then a predator with an offensive string
of length at least L� 1 will always be able to eat it; thus,
there is always a structure at a higher complexity which
can bypass a particular defense.

When an organism replicates, its genome is subject to
change from mutation and other genetic operations. Point
mutations occur at a rate rm per letter and set the mutated
letter to a random letter, which may be the same as the
original. Gene duplication occurs at a rate rd. In gene
duplication, three random values between zero and the
length of the genome are generated: a start position istart,
ending position iend, and an offset iofs. The sequence be-
tween istart and iend is stored in memory and written back
into the genome starting at istart � iofs. The genome is
treated as being periodic as in microbial DNA, so if iend <
istart, the reading process proceeds through the end of the
genome and wraps around to the beginning.

In this system, the complexity is taken to be the longest
functional string (separated into attack and defense com-
plexities). The motivation for this choice is that it is
directly related to the capabilities of the organism. It also
represents the interaction between pieces of information in
the organism’s genome: together, a sequence of multiple
letters have a certain functionality that, apart, they would
not.

Point mutations do not satisfy the condition that the
dynamics should be invariant to changes in complexity.
If an organism has a particular active string of length L,
there are L chances for a point mutation to decrease the
complexity, and 2 chances for a point mutation to increase
the complexity. More specifically, if a mutation occurs at
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the first letter before or after the string, there is a 1=13
chance that the length of the active string increases by 1. If
a mutation occurs anywhere within the string, there is a
12=13 chance that the active length will decrease. The
average resultant length L0 of an active string initially of
length L after a single point mutation is given by

 hL0i �
3

4
L�

1

2
�

1

4L
: (1)

The dynamics of point mutations tends to decrease the
active length because there are many more ways to de-
crease it than to increase it. This entropy pressure competes
against the selection pressure due to the advantage that
results from having a sequence of higher active length. The
magnitude of the advantage, and thus the selection pres-
sure, is independent of the absolute sequence length,
whereas the entropy pressure scales with the sequence
length. Therefore, there is an equilibrium active string
length (complexity) at which the entropy pressure is bal-
anced against the selection pressure.

Gene duplication, on the other hand, operates equally on
sequences of different active lengths so long as the active
length is much smaller than the total genome length. The
probability that the gene duplication region cuts a sequence
of length L is L=Lgenome. If a particular sequence is cap-
tured, its length will at least be preserved and may increase
by an amount proportional to the average sequence length
in the organism if the write region is adjacent to another
sequence of the same type.

Point mutations are necessary to fully explore the ge-
netic space, but if the point mutation rate is too high, the
complexity cascade is inhibited. The next section examines
the results of simulations for a variety of point mutation
rates and system sizes in order to probe this effect.

Every hundred timesteps, the system-wide population,
average energy, average attack complexity, and average
defense complexity are stored for analysis. The attack
and defense complexities are taken to be the longest con-
tiguous string of attack and defense functionality. The
simulation is run for different initial random seeds in order
to extract the mean behavior of these quantities with simu-
lation time.

Results.—The average defensive complexity of organ-
isms in the system as a function of time is plotted in Fig. 1
for different system sizes. These simulations use a gene
duplication rate (per replication) of 0.1 and a mutation rate
of 0.01 per letter. The complexity increases with time for
short times, but then saturates at a value which depends on
the system size. We observed that in a system with no gene
duplication, the increase in complexity was logarithmic
with time, whereas the system with gene duplication ex-
hibited superlogarithmic complexity growth. Increasing
the system size beyond 256 has diminishing returns, as
the change from 256 to 512 is less than the change from
128 to 256.

When the mutation rate is decreased to 0.001, the satu-
ration at low system sizes is unchanged, but at high system
sizes, the saturation point increases. These results are
shown in Fig. 2. This suggests that a large mutation rate
creates a specific maximum complexity value due to en-
tropy pressure, and that a small system size creates a
different specific maximum complexity value. Thus, the
system will increase in complexity until it reaches the first
of those maxima. When the data are plotted in terms of
variables which reflect the asymptotic complexity scaling,
they collapse onto a single curve. This is analogous to
finite-size scaling around a critical point in which the
system size creates a departure from criticality and causes
the scaling to saturate.

The data collapse takes the form of ra�C� C0� �
f�raSb� where f�x� scales as x when x! 0 and f�x�
approaches a constant when x! 1. The data are found
to collapse for a � 0:6� 0:2, b � 2� 0:1, and C0 �
6:65� 0:1. The error in these quantities was determined
by varying them around the point of best collapse and
monitoring the quality of the collapse. The S2 dependence
is indicative that the total population is the relevant quan-
tity when determining finite-size effects. The value of C0 is
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FIG. 1. Defense complexity versus time in FOODCHAIN for
system sizes 64, 128, 256, and 512 square grids. Duplication
rate is set to 0.1 and mutation rate is set to 0.01.
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FIG. 2. Dependence of maximum defensive complexity on
system size and mutation rate. The inset shows that the data
collapse onto a single curve when plotted with a dependent
variable �C� 6:65�r0:6 and independent variable r0:6S2.
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consistent with the complexity one would generate by
randomly generating strings of length 2048 with a propor-
tion of defense characters to alphabet size equal to that
observed in the smallest systems. That is to say, at the
asymptote corresponding to high mutation rate and low
system size, the complexity of strings is due entirely to
evolutionary pressures on the relative proportions of the
different characters, rather than spatial organization within
the genome.

The saturation due to large point mutation rate can be
understood as being due to its complexity dependence as
discussed earlier and in terms of the eigenerror threshold
[21,22], but the observed scaling exponent is not at this
time understood. The system size scaling is surprising as it
is not obvious a priori that the complexity of an organism’s
genome should be related to the size of the space the
organism lives in (in contrast with turbulence, in which
the complexity of the flow is expressed in the distribution
of velocity throughout the system).

It is possible that the connection between system size
and complexity in ‘‘FOODCHAIN’’ is a result of the fixation
of complexity-decreasing mutations. For a finite popula-
tion of organisms with a set of traits that may be present or
absent in each organism, the fluctuations in the population
and the dynamics of reproduction will eventually cause the
trait to be either present or absent in every member of the
population. The probability of a particular mutation going
to fixation is P�s� � �1� exp��2s��=�1� exp��4Ns��,
where s is the selective advantage and N is the population
size [23–25].

In the context of the FOODCHAIN model, each organism
may have many strings of varying complexities only a few
of which are responsible for the organism’s reproductive
success. The pivotal strings are not necessarily those of the
highest complexity (short defense strings can still be im-
portant in defending against short attack strings held by
other organisms, for instance). However, a mutation to the
most complex string may turn it into a pivotal string even if
it is not currently experiencing selective pressure. In the
low mutation rate, limit fixation of complexity-decreasing
mutations imposes a limit on the maximum sustainable
length L of a particular string. We balance the rate of
fixation of complexity-increasing mutations (which occur
at a constant rate) with the rate of fixation of complexity-
decreasing mutations (which occur at a rate proportional to
L): P�s� � LP�0� � 0, where P�0� / 1=N [24]. This re-
sults in the scaling L / N, consistent with the system size
scaling exponent observed in the data collapse.

In the simple ‘‘FOODCHAIN’’ model presented here, there
is no separation between primitive organisms that compete
with each other using structures of low complexity and
organisms with very complex offensive and defensive
strings. In order to generate a rich hierarchy of structures,
some form of trophic structure would need to be repre-
sented in the system [26].
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