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Nonlinear elasticity of the phase-field crystal model from the renormalization group
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The rotationally covariant renormalization group equations of motion for the density wave amplitudes in the
phase field crystal model are shown to follow from a dynamical equation driven by an effective free energy
density that we derive. We show that this free energy can be written purely as a function of the strain tensor and
thence derive the corresponding equations governing the nonlinear elastic response.
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Multiple scale approaches to materials pattern formation
are essential to account for the variety of material structures
that emerge on different scales, and the dependence of ma-
terials properties on structures at more than one scale [1].
However, a coarse-grained description describing the pattern
dynamics is not in itself sufficient, for example, in fracture
mechanics, one would like to be able to predict the response
of real, heterogeneous materials to deformations, and to
couple the resulting elasticity theory to discrete, atomistic
descriptions at small scales. In short, the challenge of mate-
rials modeling requires not just a coarse-grained description
of the underlying atomistic dynamics, but a multiresolution
approach that can locally adapt to capture the appropriate
fast space and time scales.

Recently, we presented a proof of concept realization of
such a calculation [2—4], using a minimal model of a crys-
talline material called the phase field crystal (PFC) model
[5-7]. The PFC model evolves the local density field through
a conservation law governed by a free-energy functional that
penalizes departures from a perfectly periodic ground state
[8]. The resulting density field retains the crystallographic
and elastic properties of the material, in contrast to conven-
tional phase field model descriptions of materials, and ap-
pears to give a realistic account of a variety of phenomena,
including multicrystalline solidification [6], elasticity [5,6,9],
defect dynamics [6,10,11], epitaxial growth, as well as crack
and fracture dynamics [6]. Our proof-of-concept calculation
consisted of two distinct steps: (i) a renormalization-group
calculation for the rotationally covariant equation of motion
for the amplitudes of density waves corresponding to the
lattice periodicity, and (ii) the numerical solution of the re-
sulting equations using adaptive mesh refinement techniques
[4]. In two dimensions, this calculation was three orders of
magnitude faster than straightforward integration of the PFC
equations.

In this Rapid Communication, we show that an additional
level of coarse-graining can be performed on the complex
amplitude representation, leading to a theory of nonlinear
elasticity valid at system wide or macroscopic scales. Our
construction is of interest methodologically; instead of pos-
tulating a form for the strain energy based on symmetry and
phenomenology [12,13], we derive it from a more micro-
scopic model—in this case, the PFC model. Our work pro-
vides a theoretical connection to microscopic structures and
opens up the possibility of deriving other forms of strain
energy by similar approaches. Finally, in varying our level of
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description from the PFC model to the complex amplitude
representation to the strain energy formulation, we obtain the
basis for a multiple scale approach to materials properties,
accessing the realm of continuum mechanics from a density
functional theory at atomic scales. This approach could be
applicable to interpreting recent experiments on atomic force
microscope nanoindentation of graphene [14,15], compli-
menting theoretical approaches using tight-binding methods
[16].

Model. The PFC model is defined by the free-energy den-
sity [5,6],

p r
f= 5(1+V2)2p+ Epz+p4, (1)

where p(¥,7) is the phase field, or the order parameter. The
dynamics is conservative and dissipative, given by

J
_p=V2<5_F>’ (2)
at op

where F=[d’xf(x) is the total free energy of the system,
taken here to be two dimensional. Thermal noise is ignored
in our discussion here, but could be included if desired. Gen-
erally, it will not be important at system scales. There are
three phases in this model, namely, uniform, stripe, and tri-
angular. The ground state in the triangular phase can be writ-
ten in the single-mode approximation by

3
Pl ®) = A2 (%7 + &%) + py, 3)
j=1
where p, is the average density, A is the constant amplitude

and
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are the three lattice vectors. Goldenfeld et al. showed [2,3]
that instead of using p(xX,7) as the dynamical variable, it is
more efficient to generalize Eq. (3) and promote the constant
amplitudes A to 3 slowly varying complex amplitudes
A;(¥,7) and treat the A;(X,7) as dynamical variables. Using
renormalization-group techniques, they showed that the rota-
tionally covariant equation of motion for A,(x,f) is given by
[2.3]

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.065105

PAK YUEN CHAN AND NIGEL GOLDENFELD

A —LyT =14

ot 1 PoALA5

= 3A,(JA 7+ 2|45+ 2|A5)) + -+, (5)

where I'=—r-3p% and L, =V?+2ik,-V is a rotationally co-
variant operator, and small nonlinear gradient terms [3] are
not written out explicitly. The corresponding equations for
A, 5(x,1) can be written down from the appropriate permuta-
tions.

Derivation of the amplitude equations without using
renormalization group. The first attempt to derive the free
energy in this representation is to note that Eq. (5), ignoring
the nonlinear gradient terms, can be written as

ﬂ[ Fdzn[AZ X t)] (6)

ot OA” y

where the free-energy Fy, is given by the free-energy den-
sity,

3

3
YT =LA +3 2 JAPIAL* - EIA,I“
J.k=1 j=1

+ 6p0(A 1A2A3 +ATA;A;) (7)

fdyn EA (1_

The dynamics given by Eq. (6) is purely dissipative, as op-
posed to the density-conserving dynamics in the original
PFC equation, Eq. (2).

To resolve this conundrum, we note that mass conserva-
tion should only be exhibited in the dynamical equation of
motion and not be represented in the equilibrium free energy.
Thus, the correct way to derive the free energy in the com-
plex amplitude representation is to derive it from the original
PFC free energy, Eq. (1). The easiest way to do that is to
substitute the ansatz, Eq. (3), into the free energy, Eq. (1).
The first term of Eq. (1) can then be computed by using the
identity

3
(1+V?)p= 2 (M LA +c.c.) +py, (8)
j=1

where c.c. stands for complex conjugate. By performing an
integration by parts, we find

g(l +V2)’p= %[(1 + V)P, ©)
3

=D AL, (10)
j=1

where in the last line constants and terms with the rapidly
oscillating factor exp(ilzj-f) are neglected. We can neglect
the oscillating terms because the complex amplitudes, A, are
slowly varying on that scale, so the terms cancel themselves
upon integration over space. Other terms in the free energy
can be transformed in a similar fashion. The resulting free
energy is given by

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 80, 065105(R) (2009)

3 3 3
Famp= EA (T =LA +3 2 A 1AL - E At
ji=1 235
+ 6p0(A]A2A3 + A1A2A3) . (l 1)

Note that this free energy is different from Eq. (7). The 1
—L; operator in the first term in Eq. (7) is absent here. This is
to be expected because this operator arises from the conser-
vative Laplacian in the dynamical equation, and according to
our discussion above, it should not appear in the free energy.
The transformation of the dynamical equation, Eq. (2), into
the complex amplitude representation can be performed by
observing that for any function, f(x), the identity,

f (L 1)f(x)]e’r" = (12)

holds, a counterpart to the identity,

JOC d*xV?g(x) =0, (13)

—00

for any function g(x). In fact, if we define g(x)=£(x)e’*i*¥, Eq.
(13) implies Eq. (12). This shows that when we make the
change of variables from the density, p, to the complex am-
plitudes, A;, the Laplacian in the conservative dynamical
equation has also to be transformed to L;—1. We, thus, arrive
at the equation of motion

W (- 1y o (14)

dt oA j

which, when written out explicitly, is

dA,

" =(1=L)[T =LA, - 6pyA>A5,—3A,(|A > + 2|4,)?

+2|A5P)] (15)

with appropriate permutations for A, ;(x,#). By construction,
these equations conserve the density of the system.

Equation (15) is exactly the same as Eq. (5) with all the
nonlinear gradient terms included. This derivation shows that
the inclusion of the nonlinear gradient terms is crucial for
density conservation, and that all those terms can actually be
written in the condensed form of Eq. (15). Note, however,
that our derivation does not explicitly use a renormalization-
group argument, but follows from the integral identity, Eq.
(12). The connection with the renormalization-group ap-
proach arises from the coarse-graining assumption after Eq.
(10), where we asserted that the rapid oscillation averages to
ZEero.

Nonlinear elasticity. The goal of this section is to derive
the free energy as a function of the strain tensor, when the
PFC crystal is deformed under a general deformation,

xm = an'xl‘l’ (16)

where F,,, is the deformation gradient. Einstein’s summation
convention is used throughout, except for the index j in k,

Aj, and L In general, the deformation gradient can be writ-

ten as [13]
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Frn=R,,Up, (17)

where R,,, is a pure rotation matrix and U,, is a positive-
definite, pure deformation matrix. Since our system is rota-
tionally covariant, we expect that the free energy should only
depend on the function UTU, where U7 is the transpose of
the matrix U.

Under the deformation, Eq. (16), the complex amplitudes
transform as

A] — A]’ :Aeikijmnxn’ (18)

where we defined D,,,=R,,;Ui,— 6, and assumed that |A ]
=A for all j, where A is a constant. k;,, is the m-th component
of the vector E, Because the deformation gradient only enter
the complex amplitude through its phase, describing local
density deformations, the only relevant terms in the free en-
ergy are the gradient terms given by

3
— #r2
E=21AijAj. (19)
j:

Other terms in the free energy, Eq. (11), only contribute
when we minimize the free energy with respect to A at the
end of the calculation. By using Eq. (18) and differentiating,
we obtain

LjAj = (— kjmkjanpRnaquan + l)Aj. (20)

Apply L; again and substitute the result into Eq. (19) to ob-
tain

E=A*E, -2E,+3), (21)
where
3
E = (E} kjmkjnkjukjv) FrngFugFrunF s (22)
-
and,
3
E,= (E} kjmk,.,,> FrugFog (23)
i

The rest of the derivation concerns the evaluation of E; and

E,. We first evaluate E,. By using the definition of lzj from
Eq. (4), we obtain

klmkln = 5my5 = 5mn5 (24)

ny my >

3 1 3
k2mk2n = Zémxgnx + Zém) - \T(gmxény + 5nx + 5my) }

(25)
and,

3 1 V3
5mx5nx+z5my+j(5mx5 + 57!X+5 )'

k3mk3n = Z ny ny

(26)

Combining these three equations we have
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d 3 3
2 kjmkjn = Eémn(ﬁmx + 5my) = Egmn (27)
J=1

Thus, E, is given by

3 3 3
E,=—F,F u,U ETr[UTU], (28)

2 'patpa= 5 ¥ paYpa T
where we used the property of the rotation matrix, that
RiyR ;=R ,R,j= 8, T{A] and A” are the trace and trans-
pose of the matrix A, respectively. The evaluation of E; is
more involved. We note that

klmklnkluklv = dnngnuﬁuv 5my’ (29)
and observe that the term
k2mk2nk2uk2v + k3mk3nk3uk3v (30)

is equal to the term
2 X [kykonkouky, + terms with positive coefficients].
31)

By exploring this relation and using the definition of Ej, Eq.
(4), we obtain,

o0 | W

Ay + Ay + Ayyy)

yyxx

3
2 Kk uk k=
=1
3
+ g(Axyyx + Ayxxy + Ayxyx)

9
+ g(Axxxx + Ayyyy) ’

(32)
where we defined A,;.;= 6,,40,,0,.9,4 for convenience. By
this, we have

3
( 2 kjmkjnkjukjv ) RmpRnaRusth
j=1

3
= g [RprxaR yxR vt +R pr yaRstxt]

3
+ g [RpryaRmRyt + RprxaRystt]

xptya RxaRst yl]

3
+§[R Ry.R\ R +R,,

9
+ g[Rprqustxl + RpryaRysRyz] . (33)
To evaluate this expression, we note that we can combine
terms judiciously. For example, by using the property of the
rotation matrix, we obtain

RprxaRysR + RprxaRstxt = Rprxa 5st’ (3 4)

vt

and,

RypR (R Ry + RypR (R Ry = Ry, R, 18, (35)

yp tya yptya yptya

The sum of Egs. (34) and (35) then give
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Rprquys
= 846,p- (36)

Ry + RR (R R+ Ry, R R (R + R\ R, R Ry,

pya

Repeating this for all the terms in Eq. (33), we obtain

3
3
(21 kjmkjnkjukju)RmpRnaRusRut = g[aap 55! + 551} 5at + 5{13 517[] .
J=

(37)
Substituting into Eq. (22), and then into Eq. (21), we obtain
E=3A%A, where

A= é{[Tr( UTO)? +2 Te(UTUUTO)} - Te(UTU) + 1.

(38)

By using the relation U; Upn= Opn+2u,,,, where u,-_,-E[aiuj
+0;u;+(Ju;)(du;)]/2 is the nonlinear strain tensor, we ob-
tain

3 3
A= (Eufx + Eui) + uiy + uix + uxxuyy> . (39)

Finally, we substitute back into the free energy, Eq. (11),
and minimize the whole expression with respect to A to ob-
tain
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) , (40)

1 1
A(A) = g(— po = g\/9p(2)+ IS(F - A)
which gives the free-energy density as
45
fla)= ?A“(A) +12pA%(A) = 3(T' = A)A%(A).  (41)

This formula completely defines the elastic properties of the
PFC model, and provides a starting point for conventional
continuum mechanical applications of nonlinear elasticity
theory.

Nonlinear elastic theories are coarse-grained models up to
the level of the continuum, and so do not explicitly include
defect structures; our results are most useful for understand-
ing large deformation behavior, twinning, and phase transi-
tions in ordered materials. However, for plastic deforma-
tions, dislocations need to be included, usually by
postulating a free energy with contributions from nonlinear
elasticity [such as Eq. (41)], vacancies and dislocations
[17,18]. While this can yield useful insights, the most suit-
able level of description for probing the multiscale phenom-
ena accompanying plastic flow remains the PFC equations
taking into account vacancies [19] or their rotationally cova-
riant renormalized counterparts (if only dislocations are
present). We will report on this approach in a future publica-
tion [20].
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