
Molecular dynamics on diffusive time scales from the phase-field-crystal equation

Pak Yuen Chan,1 Nigel Goldenfeld,1 and Jon Dantzig2

1Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street,
Urbana, Illinois 61801-3080, USA

2Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street,
Urbana, Illinois 61801-2906, USA

�Received 8 February 2009; published 23 March 2009�

We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by
requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and
describes the motion of each of them. By solving the dynamical equation of the model, which is a partial
differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales.
To illustrate this approach, we calculate the two-point correlation function of a fluid.
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Molecular dynamics �MD� has long been a powerful tool
to study statistical mechanical systems �for an introduction,
see, e.g., Ref. �1��. By postulating the interaction between
atoms and solving the resulting equations of motion, precise
information about each atom is known. One of the draw-
backs of MD, however, is that too much information is cap-
tured. For example, atomic motions in MD simulations are
resolved on atomic time scales, whereas in many systems the
relevant time scales are diffusive. This makes MD computa-
tionally demanding, if not completely inapplicable, in many
cases of interest where long time scales are required. In this
Rapid Communication we pursue an approach to attain long
time scales, starting not from individual particles but from a
continuum description of matter known as the phase-field-
crystal �PFC� model �2–6�.

The starting point of the PFC model is that crystalline
materials are governed by a free energy functional that pe-
nalizes departures from periodicity of the density in the same
way that the Landau theory of phase transitions uses a func-
tional that penalizes spatial gradients of the order parameter.
The PFC model is formulated in terms of an order parameter
representing the local density, and is constructed so that the
free energy functional is minimized by a periodic order pa-
rameter configuration. Despite its simplicity and minimal
physical input, the PFC model can reproduce both qualitative
and semiquantitative �i.e., scaling� properties of multicrystal-
line solidification �4�, dislocation dynamics �7�, fracture,
grain boundary energetics �4�, elastic �phonon� interactions
�8�, grain coarsening �9�, linear and nonlinear elasticity �4�,
and plasticity �10�. The PFC model has also been extended to
binary systems �5,10�, and can be related to density func-
tional theory �5�. Recent applications of the renormalization
group technique �11–13� and adaptive mesh refinement have
improved the computational efficiency of the model, with
resultant computational times several orders of magnitude
times faster than MD �11,14�.

Although the PFC model represents microscopic configu-
rations, it is not MD. The model describes the collective
properties of the crystal, but it does not attempt to describe
the motion of each individual atom. One can regard the
peaks in the order parameter as representing local density
maxima, and thus be identified as PFC “atoms.” However,
although the order parameter ��x� , t� tends to form PFC atoms

in order to minimize the total energy of the system, their
number is not conserved. This neglect of the actual atomic
configuration, and the resulting absence of vacancies in the
description, prevents us from using the model to describe
faithfully microscopic phenomena that involve atomic hop-
ping and vacancy diffusion.

The goal of this paper is to modify the PFC model such
that it describes not only the collective behavior, but also the
motions of individual atoms. We will see that this can be
done by constraining the value of the order parameter to be
positive. By so doing, instead of being an abstract order pa-
rameter, ��x� , t� becomes a physical density—the number of
atoms in the model can be controlled by adjusting a single
parameter, �0. The resulting theory is a MD simulation: we
can specify the temperature, number of atoms, and the inter-
action potential between atoms. As an illustration of this ap-
proach we simulate a simple fluid and reproduce the form of
the standard two-point pair distribution function.

Inclusion of Vacancies. In real materials, vacancies are
present when the local density is low, i.e., when there are not
enough atoms to fill the space. In the PFC model, however,
even if the value of the order parameter is small, which is
analogous to the low density situation, a perfect periodic
configuration can still be formed because there is no con-
straint, or energy penalty, for negative values of the order
parameter. Therefore, as long as the system is in a periodic
state, such as the two-dimensional �2D� triangular phase, any
uniform configuration will evolve to a spatially periodic one
in equilibrium. Thus, the notion of vacancies is not respected
in this model. If a vacancy is created through a special initial
condition, the free volume will simply diffuse throughout the
crystal as the configuration readjusts its periodicity.

We can stabilize vacancies by imposing a constraint on
the order parameter—we forbid the order parameter to be
negative. In this case, if the local order parameter is not high
enough, instead of forming a periodic state that extends to
negative values, the system can form a periodic structure in
some region, while leaving a very low, or zero, density in
another. The number of atoms is then conserved and the zero
density regions are identified with vacancies.

We now identify the region of the phase diagram in which
vacancies are present and stable, and we do this by calculat-
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ing the energy of a state with vacancies, working for simplic-
ity in two dimensions. The PFC model is given by the free
energy density �3,4�

f =
�

2
�r + �1 + �2�2�� +

�4

4
, �1�

where r�0 is the undercooling parameter and �0 is the mean
value of the order parameter. The dynamics follows the
“modified” PFC formulation �8�,

�2�

�t2 + �
��

�t
= �2�2�F

��
+ � , �2�

where F��fddx is the total free energy of the system, � and
� are parameters that control the evolution, and � is a Gauss-
ian white noise satisfying the usual fluctuation-dissipation
theorem. It is helpful to introduce the ansatz for the one-
mode approximation to the triangular state in two dimen-
sions,

��x�� = A�
j=1

3

�eik� j·x� + e−ik� j·x�� + �0, �3�

where k�1,2,3= x̂ , ��3 /2�ŷ� �1 /2�x̂ are the basis wave vectors
of the triangular phase. Substituting this ansatz into Eq. �1�,
and averaging over the whole system gives the free energy
density as a function of the constant amplitude, A,

f0��0,A� =
45

2
A4 − 12A3�0 +

�0
2

4
�2 + 2r + �0

2� + 3A2�r + 3�0
2� .

�4�

Minimizing f0��0 ,A� with respect to A gives two roots,

A���0� =
1

15
�3�0 � �− 15r − 36�0

2� , �5�

where the solutions that minimize the energy are A=A+ for
�0�0 and A=A− for �0�0. The roots are real for �0
��−5r /12 �recall that r�0�.

Now, let us consider the effect of the constraint that the
density be positive. Examining Eq. �3�, we see that the sum-
mation is bounded by �6, so requiring ��x� , t�	0 is equiva-
lent to requiring 	A	
�0 /6. However, Eq. �5� shows that
	A+��0�	��0 /6 for all values of r and �0, so the ground state
A=A+ is forbidden by the constraint. The ground state must
be given by some other configuration.

There are at least two possible configurations for the
ground state. First, the ground state can still be perfectly
periodic with an amplitude A�A+ satisfying 	A	��0 /6. Sec-
ond, the ground state can partition itself into two domains—a
perfectly periodic domain with average density �1 and am-
plitude A1 satisfying 	A1	
�1 /6, and a domain with ��x��
=0. The second domain corresponds to vacancies. To see
which is realized in practice, we have to calculate the energy
of these two states, and recognize that the ground state is the
one with lower total energy.

Let us first calculate the free energy density of a perfectly
triangular state. Since A=A+ is forbidden, we are left with
three options for A: A=A−, which is the other local minimum

of the free energy, and A= ��0 /6. The latter two are the
boundary values satisfying the condition 	A	
�0 /6. By ex-
amining Eq. �4�, one can see that f0��0 ,�0 /6�

 f0��0 ,−�0 /6�, so we can ignore the A=−�0 /6 solution. The
free energy density of the periodic state is then

fper��0� = f0
�0,
�0

6
� �6�

if 	A−��0�	��0 /6, and otherwise,

fper��0� = min� f0„�0,A−��0�…, f0
�0,
�0

6
�
 �7�

where min�a ,b� denotes the minimum of a and b. Substitut-
ing A−��0� and �0 /6 into Eq. �4� gives the explicit expres-
sions

f0„�0,A−��0�… = −
13

500
�0

4 +
7r + 25

50
�0

2 −
1

10
r2

−
20r�0 + 48�0

3

375
�− 15r − 36�0

2, �8�

f0
�0,
�0

6
� =

1

288
�133�0

4 + �144 + 168r��0
2� . �9�

Now, let us compare the energy of these two possible
ground states. If the system is perfectly periodic over the
whole domain, whose area is designated B0, then the free
energy is given by

fwhole��0� = B0fper��0� . �10�

If the whole system instead partitions itself into one domain
made up of a triangular phase having mean density �1��0,
with the remaining domain having �=0, the free energy is
given by �for simplicity, surface energy between the two
phases is neglected in this calculation�

fv��0� = B1fper��1� = 
�0

�1
�B0fper��1� , �11�

where B1 is the area of the triangular domain. The second
equality is obtained by using the conservation of mass
�0B0=�1b1. The difference between these two free energies,
�f � fv− fwhole, is

�f = B0�0
 fper��1�
�1

−
fper��0�

�0
� . �12�

It is important to note that �1 is a parameter that we can
choose to minimize the energy of the second possible state;
the only constraint is that �1	�0 because B1
B0.

For vacancies to exist, we require that �f �0 for some
values of �1��0. We note, however, that for the solution A
=A−, f0(�0 ,A−��0�) /�0 is an increasing function of �0 �see
Fig. 1� and so �f is positive for this branch of the solution.
In other words, no vacancy is present in this solution. There-
fore, in order to have vacancies in the ground state, we re-
quire this branch of the solutions to be forbidden by the
constraint; i.e., we require 	A−��0� 	 ��0 /6, which by Eq. �5�
is equivalent to requiring
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�0,�1 � �− 12r/53. �13�

On the other hand, it is easy to show from Eq. �9� that
f0��0 ,�0 /6� /�0 has a minimum �for r�−6 /7� at

�min = ��− 48 − 56r�/133. �14�

Thus, if �0
�min and r�−6 /7, the system can minimize the
total free energy by partitioning itself into two domains: a
triangular phase made up of atoms, with average density �
=�min, and a region of vacancies where �=0. Combining
Eqs. �13� and �14� indicates that the minimum also satisfies
the constraint 	A−��0� 	 ��0 /6 so long as r�−636 /343. We
also note that the area of the triangular phase, B1
=B0��0 /�1�, is directly proportional to the mean density, �0.
So by adjusting �0, we can control the number of atoms in
the PFC model. This shows that the addition of the con-
straint, ��x���0 for all x�, does indeed promote the ��x�� from
an abstract order parameter to a physical density, which dic-
tates the number of atoms in the system.

To summarize, the various constraints define the region

�min ��− 48 − 56r

133
and −

636

343
� r � −

6

7
, �15�

where the triangular phase and stable vacancies can coexist.
The area fraction of the triangular phase is �0 /�min, and the

amplitude is A=�min /6. The rest of the domain has zero den-
sity and thus is composed of vacancies. These results are
summarized in Fig. 2.

Implementation. In order to implement the positive den-
sity constraint, we add a vacancy term, fvac���, to the free
energy density that penalizes negative values of ��x� , t�. As
long as the repulsion from negative values is strong enough
to avoid ��0, the result should not depend on any particular
choice of fvac���. Of the many possible choices for fvac���,
we use

fvac��� = H�	�	n − �n� , �16�

with n=3 and H=1500, because this turns out to be numeri-
cally convenient and stable.

With the vacancy term, Eq. �16�, we can numerically
verify the analytical calculation for the coexistence between
the periodic phase and vacancies. Figure 3 provides results
from simulations with r=−0.9 and different values of �0,
showing clearly that the number of atoms increases with �0.
In addition, Fig. 4 shows that the PFC atomic density �i.e.,
the number of atoms per unit area� indeed increases linearly
with �0, as expected. The curve starts to saturate at around
�0=0.15, as opposed to the prediction from Eq. �15�, �min
�0.134. This discrepancy is not surprising for several rea-
sons: In the analytical calculation, we consider only the one-
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FIG. 1. The function f0(�0 ,A−��0�) /�0 is an increasing function
of �0, plotted for various values of r. The x axis is plotted on
logarithmic scale in order to resolve the curves.
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FIG. 2. Window in which stable vacancies can coexist with a
triangular phase. A minimum in f0��0 ,�0 /6� /�0 exists at �min

=��−48−56r� /133 for r
−6 /7, and this minimum is forbidden by
the constraint 	A−��0� 	 
�0 /6 for r�−636 /343.

FIG. 3. PFC simulations with different values of �0 for r
=−0.9. The number of atoms increases with �0. �a�–�f� correspond
to �0=0.06, 0.08, 0.10, 0.12, 0.14, and 0.16.
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FIG. 4. The PFC atomic density increases linearly with the order
parameter, �0, when the vacancy term is added to the model. r
=−0.9 is used. The curve starts to saturate at around �0=0.15, as

opposed to the analytical prediction �0=��−48−56r� /133=0.134.
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mode approximation in the ansatz; we did not account for the
surface energy between the triangular phase and the vacan-
cies; and we did not account for thermal fluctuations, intro-
duced in the simulation to help the system equilibrate faster.

With the modifications described above, the PFC simula-
tion operates similar to a molecular dynamics simulation, but

on diffusive time scales many orders of magnitude faster
than pure molecular dynamics �4�. We can control the num-
ber of atoms and the temperature in the system by adjusting
�0 and the magnitude of thermal noise, �, respectively. The
interaction potential between individual PFC atoms is speci-
fied by the PFC free energy �specifically the gradient terms�
and is controlled by the undercooling r. In fact, by decreas-
ing the value of �0 such that the system is dilute enough, we
can simulate a liquid using the PFC model. We simulated
such a liquid with parameters r=−0.9, �0=0.09, �=15, and
�=0.9. A typical result is shown in Fig. 3�b�. Figure 5 shows
the two point correlation function, g�x�, extracted from the
simulation. It resembles the two-point correlation function of
a liquid—a correlation hole, a strong nearest-neighbor corre-
lation, and a weak correlation with atoms one or two atomic
spacings away �1�.
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FIG. 5. The two-point correlation function of a liquid using the
PFC model. Parameters are r=−0.9, �0=0.09, �=15, and �=0.9.
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