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Extreme fluctuations and the finite lifetime of the turbulent state
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We argue that the transition to turbulence is controlled by large amplitude events that follow extreme
distribution theory. The theory suggests an explanation for recent observations of the turbulent state lifetime
which exhibit superexponential scaling behavior with Reynolds number.
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The fundamental nature and stability of the turbulent state
of fluids remains an open and challenging question. Fluid
flow is characterized by a dimensionless number Re, which
depends on the characteristic length L, velocity U, and kine-
matic viscosity of the fluid v through the relation Re
= UL/v. As the Reynolds number increases from zero, the
flow becomes increasingly structured and eventually statisti-
cal in nature, and at large Re, the flow is said to be turbulent
[1]. The conventional assumption—that the turbulent state is
absolutely stable—has been challenged recently by a series
of theoretical [2] and experimental probes [3-7] of the tran-
sition to turbulence. Taken as a whole, these works suggest
that turbulence might, in some flow regimes at least, be a
long-lived metastable state [2,8—11]. Such a view would be
consistent with the fact that long-lived transient turbulent
states can be excited as finite-amplitude instabilities of the
laminar state so that the laminar and turbulent states can
coexist (for a review of foundational work in this area, see,
e.g., Ref. [12]; recent developments are summarized in Refs.
[9-11,13]). However, the question remains as to whether the
turbulent state is ever sustainable with an infinite lifetime for
finite Reynolds numbers. This is a difficult experimental
question to decide because the lifetime of the turbulent state
can become so long that measurements become impossible.
With the necessary restriction to a small range of Reynolds
numbers, the data have, until recently, been difficult to inter-
pret in a compelling way.

In a set of elegant and remarkably accurate experiments
on transitional pipe turbulence [6], Hof et al. brought into
question the idea that pipe flow turbulence is stable at long
times beyond a finite critical Reynolds number [14,15]. The
laminar state of a straight smooth pipe flow is linearly stable
at all Reynolds numbers (see e.g., Ref. [16]), but a suffi-
ciently large perturbation triggers localized turbulent puffs
that persist for long times. The decay of the transient turbu-
lent state is reported to follow a Poisson distribution, with a
lifetime 7(Re) that increases sharply with increasing Rey-
nolds number. The measurements of the lifetime of these
localized puffs [6] reveal that 7(Re) apparently only diverges
at infinite Reynolds number, scaling in a superexponential
way with Re. Similar observations in another linearly stable
flow—Taylor-Couette flow with outer cylinder rotation—
have recently been reported by Borrero-Echeverry er al. [7].

In this Rapid Communication, we show that the form of
the experimental data is consistent with a simple and general
interpretation predicated on the use of extremal statistics.
Our approach is related to the notion that the transient turbu-
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lent phenomena reflect escape from a low-dimensional dy-
namical attractor [17-19], but we conceive turbulence as a
spatially extended phenomenon with a large number of de-
grees of freedom. The determining factor for the suppression
of a puff is the probability that the largest fluctuation in a
spatiotemporal interval consisting of multiple fluctuations
fails to attain a threshold value. Thus we need to calculate
the probability that the maximum amplitude of turbulent ve-
locity fluctuations dv(x,t) falls below some threshold value,
which we term B,.. We will assume below that once the tur-
bulence has been sufficiently suppressed, the turbulent state
is quenched, an assumption consistent with previously pub-
lished analyses [20-22]. Our calculation shows that the su-
perexponential dependence of the lifetime of the turbulent
state is a generic result of extremal statistics.

In order to understand the lifetime of turbulent puffs, we
assume that turbulent velocity configurations may be re-
garded as independent beyond a correlation time 7, and that
there is a probability p that the puff will be suppressed within
each time interval 7. Then, the lifetime statistics will be
Poisson. The probability P that turbulence persists to a time
t after becoming established at a time #, is P=(1-p)™, where
the number of intervals is M=(t—t,)/ 7,. Therefore

() =M In(1=p)=—(—tn(l=p), (1)
)

and so it follows that 7/ 7=—In(1—p). Since 1>p>0, we
can estimate In(1-p)=—p and therefore express the lifetime
in the form

T=T79/p, (2)

where p depends on Re.

We now determine how p depends on the Reynolds num-
ber of the flow and potentially other factors. Within a spatial
and temporal interval, multiple fluctuations occur, sampled
from the turbulent velocity distribution P;(Sv). The energy
associated with these fluctuations is proportional to dv?. We
assume that when the energy fails to attain a certain thresh-
old [20-22] at all points in the puff, the turbulent state be-
comes unstable and decays. Thus if the largest velocity fluc-
tuation is less than the threshold, all of the turbulent
fluctuations are less than the threshold. Accordingly, it is
necessary to calculate the probability distribution of the
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maximum of the fluctuations within a puff, in order to ensure
that the largest fluctuation is below the threshold.

We consider primarily a Gaussian distribution of velocity
fluctuations but our arguments also apply to the case of an
exponential distribution (as is the case at high Reynolds
numbers). We seek the probability distribution P,,(x) for the
maximum x of a set of energy fluctuations {dv?}, where i
=1,...,N. N represents the number of degrees of freedom
and should scale with the size of the turbulent puff, denoted
here by N. Standard results from extreme statistics theory
show that the appropriate result is the family of Fisher-
Tippett distributions [23]. In particular, the universality class
for P,; must be the type-I Fisher-Tippett distribution, some-
times known as the Gumbel distribution [24,25]

Py(x) = éexp[— (x = ) Blexplexpl— (x— WAL, (3)

where 3 sets the scale and u the location of the distribution.
Note that the scale and location will depend on N, because
the maximum of a set of random variables will be an increas-
ing function of the number of random variables. In particular,
for the Gaussian case, Fisher and Tippett showed that asymp-
totically

p~\InN, B~1/InN. (4)

The mean and standard deviation of the Gumbel distribu-
tion are u+I"B and B/ 6, respectively, where I'=0.577 is
the Euler-Mascheroni constant. The corresponding cumula-
tive distribution is the probability that x<<X and is given by

X
F(X) = f Py (x)dx = exp{- exp[- (X - w)/B]}.  (5)

—00

Thus, p=F(B,), where B, is the threshold.

We anticipate that B, is a decreasing function of Re, re-
flecting the intuition that at higher Re, turbulence can be
more easily sustained by small fluctuations. We will consider
the behavior of B, as this sets the threshold in the distribution
of energy maxima. The experiments are conducted in nomi-
nally smooth pipes within a narrow range of Re so it is
appropriate to expand B, about a particular Reynolds number
Re,, leading to B.=B%+B!(Re—Re;)+O(Re?), where B and
B! are coefficients. In order to describe the same Reynolds
number regime of the experiments, Re, may be interpreted to
be a characteristic Reynolds number at which localized tur-
bulent puffs first are observable so that the lifetime is order
7y. This onset is not a precisely defined point, but for con-
creteness we will specifically define it to be the Reynolds
number where 7=e7,. We will see that this choice simplifies
the analysis below, but we emphasize that irrespective of
whether or not we use the coefficient e or some other number
of O(1), our main predictions for the superexponential dis-
tribution are not affected. The freedom of choice in this defi-
nition of Re, is completely analogous to the arbitrariness in
the definition of the coexistence point between liquid and
gas, which is also dominated by nucleation phenomena, as
has also been noticed by Manneville [22].
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Collecting results, we find that the average lifetime of a
turbulent puff will have the approximate functional form:

7= 75 explexp{- [B(L) + Bl.(Re —Rey) + O((Re — Rey) ) }]
(6)

in agreement with experimental findings. The coefficient 7,
may in principle depend on pipe length or aspect ratio if
these factors change the spatial scale on which regions of the
localized turbulent puff are statistically independent and the
time scale on which the state of the puff loses memory of
previous states. The Taylor expansion only needs to be car-
ried out to first order given the (understandably) small range
of Reynolds number over which the experiments measuring
the lifetime of turbulent puffs have been conducted. From
Eq. (5) we can write

In In(7/7y) == (B.— m)/B=c; Re + ¢y, (7)

where we have used the notation of Ref. [6] to denote the
coefficients ¢ and c, of the linear fit to the data. Comparing
with Eq. (6) we read off that

c,==BYB c¢;=— (B~ u—B.Rey)/B. (8)

Now, at Rey, the lifetime becomes comparable to the corre-
lation time 7, and to be concrete, we chose that for Re
=Re,, T7=e7, although it is straightforward to verify that our
results have only a very weak dependence on the precise
coefficient used. Then from Eq. (6), we see that B"=u and
thus the ratio of the coefficients c,/c;=—Re,. The physical
interpretation, if any, of the fitting parameter Re is not clear
to us because although it is defined loosely as a characteristic
Reynolds number below which the lifetime of the turbulent
state is too small to be observable, any systematic depen-
dence on intrinsic features of turbulence, flow geometry, and
perhaps wall roughness is beyond the scope of our work and
of the experiments available at this time. Moreover, the
choice of definition of the Reynolds number in any particular
geometry is not unique once multiple length scales are
present, as in the case of Taylor-Couette flow, and thus it is
hard to identify a unique and consistent definition of Re and
Re, in order to retain meaning across different flow geom-
etries.

We conclude with a comment about the dependence of 7
on puff length N. The number of degrees of freedom N active
in the turbulent puff is proportional to A. In our approach, the
N dependence of 7 can be estimated by substituting the scal-
ing of x and B as given by Eq. (4) into our formula for 7.
This yields that log(7) <\ to leading order, showing that the
superexponential scaling with Reynolds number does not
translate into a superexponential scaling with length and is
consistent with numerical measurements reported in Ref.
[21]. This prediction also applies if the probability distribu-
tion for velocity fluctuations is exponential because in this
case u~log N, i.e., as log A\, but B does not scale with N
[23].

The interpretation of the lifetime statistics given here is
related to that suggested recently by Manneville [22] and
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earlier considerations by Pomeau on nucleation phenomena
in hydrodynamics [26]. Indeed, any spatially extended dy-
namical system with a memoryless subcritical bifurcation
should be expected to yield extremal statistics, and we hope
to report on detailed calculations of this phenomenon in a
future publication [27].
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