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Macroscopic effects of the spectral structure
in turbulent flows
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There is a missing link between the macroscopic properties
of turbulent flows1–4, such as the frictional drag5 of a wall-
bounded flow, and the turbulent spectrum1,6,7. The turbulent
spectrum is a power law of exponentα (the ‘spectral exponent’)
that gives the characteristic velocity of a turbulent fluctuation
(or ‘eddy’) of size s as a function of s (ref. 1). Here we seek
the missing link by comparing the frictional drag in soap-film
flows8, where α = 3 (refs 9,10), and in pipe flows5, where
α = 5/3 (refs 11,12). For moderate values of the Reynolds
number Re, we find experimentally that in soap-film flows
the frictional drag scales as Re−1/2, whereas in pipe flows the
frictional drag scales13 as Re−1/4. Each of these scalings may
be predicted from the attendant value of α by using a new
theory14–16, in which the frictional drag is explicitly linked to the
turbulent spectrum.

Turbulent flows past a wall experience frictional drag, the
macroscopic property of a flow that sets the cost of pumping oil
through a pipeline, the draining capacity of a river in flood, and
other quantities of engineering interest2,3,5,17,18. The frictional drag
is defined as the dimensionless ratio f =τ/ρU 2, where τ is the shear
stress or force per unit area that develops between the flow and the
wall, ρ is the density of the fluid and U is the mean velocity of the
flow. Already in eighteenth-century France, f was the subject of
large-scale experiments carried out in connection with the design
of a waterworks for the city of Paris19,20. In 1883 it was predicted21,
and subsequently confirmed by numerous experiments, that in pipe
flows f depends on the Reynolds number Re = Ud/ν, where d
is the diameter of the pipe and ν is the kinematic viscosity of the
fluid. For pipe flows of moderate turbulent strength (starting from
Re≈2,500 and up to Re≈100,000) the experimental results are well
described13 by the Blasius empirical scaling, f ∝Re−1/4. (Through-
out this letter, the symbol ‘∝’ may be changed to the symbol ‘=’ by
introducing a dimensionless proportionality factor, for example,
f = CRe−1/4.) The celebrated theory3,5 of the frictional drag was
formulated 80 years ago by Ludwig Prandtl, the founder of tur-
bulent hydraulics, and numerous variants5,13,22 and alternatives23,24
of Prandtl’s theory have since been proposed. Although Prandtl’s
theory and its variants and alternatives yield disparatemathematical
expressions for f as a function of Re, for moderate values of
Re they all give predictions in good numerical accord with the
Blasius empirical scaling. Yet these theories have been predicated on
dimensional analysis and similarity assumptions, without reference
to the spectral structure of the turbulent fluctuations. As a result,
these theories cannot be used to reveal the missing link between the
frictional drag and the turbulent spectrum.
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The turbulent spectrum is a function of the wavenumber
k, E(k). The physical significance of E(k) can be grasped
from the expression3 us ∝ (

∫
∞

1/s E(k) dk)
1/2, which gives the

characteristic velocity us of a turbulent eddy of size s in the
flow. For the spectrum of the spectral exponent α we can write16
E(k)∝U 2L(1−α)k−α , and therefore

us∝U (s/L)(α−1)/2 (1)

where U is the mean velocity of the flow and L is a characteristic
length. A single type of spectrum is possible in three-dimensional
(3D) flows: the ‘energy cascade,’ for which α= 5/3 (ref. 12). Thus,
for example, in turbulent pipe flows the spectral exponent is 5/3 and
L= d , the diameter of the pipe. Two-dimensional (2D) turbulence
(a type of turbulence thatmay be realized in a soap film) differs from
3D turbulence in several crucial respects, most notably in that in
two dimensions there is no vortex stretching. As a result, a different
type of spectrum is possible in 2D flows: the ‘enstrophy cascade’, for
which α= 3 (refs 9,10). Thus, for example, in turbulent soap-film
flows the spectral exponent is 3 andL=w , thewidth of the soap film.

To study soap-film flows we hang a soap film between two long,
vertical, mutually parallel wires a few centimetres apart from one
another (Fig. 1a). Driven by gravity, a steady vertical flow soon
becomes established within the film. In this case, the thickness h
of the film is roughly uniform on any cross-section of the film,
typically h≈ 10 µm, much smaller than the width w and the length
of the film (Fig. 1a). As a result, the velocity of the flow lies on the
plane of the film, and the flow is 2D.

Wemake the flow turbulent by piercing the film with a comb, as
indicated in Fig. 1a, so that the flow is stirred as it moves past the
teeth of the comb. To visualize the flow, we cast monochromatic
light on a face of a film and observe the interference fringes that
form there. These fringes (Fig. 1b) reflect small changes in the local
thickness of the film. (The thickness is constant along a fringe; it
differs by a fraction of the wavelength of the light, or a fraction
of a micrometre, between any two successive fringes.) The small
changes in thickness in turn reflect small changes in the absolute
value of the instantaneous velocity of the flow8. Thus, Fig. 1b may
be interpreted as a map of the instantaneous spatial distribution of
turbulent fluctuations downstream of the comb.

We compute the spectrum E(k) at numerous points on the film
from measurements carried out with a laser Doppler velocimeter
(LDV; see the Methods section). In Fig. 1c we show a few typical
log–log plots of E versus k. The slope of these plots represents
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Figure 1 | Experimental set-up used to study steady, gravity-driven, 2D
soap-film flows. a, Wires WL and WR are thin nylon wires (diameter
=0.5 mm) kept taut by weight W. The film hangs from the wires; its width
increases from 0 to w over an expansion section, then remains constant
and equal to w over a section of length≈1 m. Reservoir RT contains a soapy
solution (2.5% Dawn Nonultra in water; ν=0.01 cm2 s−1), which flows
through valve V and into the film. After flowing through the film, the soapy
solution drains into reservoir RB and returns to reservoir RT through pump
P. Turbulence is generated by comb C, of tooth diameter≈0.5 mm and
tooth spacing≈2 mm. We carry out all measurements at a distance of at
least 10 cm downstream of the comb. Axis y (0≤ y≤w) has its origin at
wire WL, as indicated. b, Interference fringes in yellow light (wavelength
=0.589 µm) make it possible to visualize the generation of 2D turbulence
from the comb. c, Typical log–log plots of the spectrum E(k), from LDV
measurements carried out on points of the film close to one of the wires
and (inset) along the centreline of the flow.

the spectral exponent α; in our experiments the slope is slightly
larger than 3, consistent with previous experiments with soap-
film flows8,25 and close to the theoretical value of α for the
enstrophy cascade (α= 3).

By using the same LDV we measure the mean (time-averaged)
velocity u at any point on the film (see the Methods section).
Successive measurements of u along a cross-section of the film give
the ‘mean velocity profile’ u(y) of that cross-section. In Fig. 2a we
show a few typical plots of u(y) over the entirewidth of the film (that

is, fromwire to wire, or for 0≤ y≤w). From amean velocity profile
we compute the mean velocity of the flow as U = (1/w)

∫ w
0 u(y) dy ,

and the Reynolds number of the flow as Re=Uw/ν.
In Fig. 2b we show a few typical plots of u(y) close to one

of the wires, where u depends linearly on y on a narrow (about
0.2mm) viscous layer. We have verified that the Reynolds shear
stress vanishes in the viscous layer (Fig. 2c,d). We have also
verified that the thickness of the film is nearly uniform in the
viscous layer (Fig. 2e,f).

From the slope G of a mean velocity profile in the viscous layer
(for example, Fig. 2b), we compute the shear stress between the
flow and the wire as τ = ρνG. The frictional drag follows from the
definition, f = τ/ρU 2, as f = νG/U 2.

An apparent slip velocityUS is conspicuous in the plots of Fig. 2b,
and is likely to represent 3D and surface-tension effects associated
with the complex flow at the contact between a film and a wire. The
value of US tends to lessen where we use thinner wires or brand
new wires. By using a variety of wires, we have been able to realize
several flows with the same value of Re but widely differing values
of US. We have verified that the frictional drag of these flows is the
same within experimental error (for example, Fig. 3), in spite of
the widely differing values of US. We conclude that the frictional
drag does not depend on the apparent slip velocity (except perhaps
through the Reynolds number).

In Fig. 4 we show a log–log plot of f versus Re. The plot consists
of five sets of data points from numerous turbulent soap-film
flows; four sets were taken at Pittsburgh, and one at Bordeaux in
an independent experimental set-up. The cloud of data points is
consistent with the scaling, f ∝ Re−1/2, and inconsistent with the
Blasius empirical scaling, f ∝ Re−1/4, which is known to prevail in
turbulent pipe flows.

Our experimental results may be explained using a recently
proposed theory of the frictional drag14–16. In this theory, the
frictional drag is produced by turbulent eddies that transfer
momentum between the wall or wire (where the fluid carries a
negligiblemomentum per unit mass) and the turbulent flow (where
the fluid carries a sizable momentum per unit mass). The theory
is applicable to flows on rough walls, but where the walls are
smooth (as in our experiments), the theory predicts that f ∝ uη/U
(refs 14–16,22,26–29). Here η is the size, and uη the characteristic
velocity, of those eddies with an intrinsic Reynolds number of 1,
so that uηη/ν = 1. By setting s= η in (1) and combining the result
with uηη/ν = 1 and Re = UL/ν, we conclude that if the energy
spectrum of the flow has the spectral exponent α, then the scaling,
uη∝URe(1−α)/(1+α), must hold. It follows that

f ∝Re(1−α)/(1+α) (2)

and the functional dependence of the frictional drag on the
Reynolds number is set by the spectral exponent α. For pipe
flows α = 5/3, and (2) yields15 f ∝ Re−1/4, consistent with
the Blasius scaling. In contrast, for soap-film flows α = 3,
and (2) yields16 f ∝ Re−1/2, consistent with our experimental
results (Fig. 4).

From our experiments with 2D soap-film flows we infer that the
long-standing and widely accepted theory5 of the frictional drag
between a turbulent flow and a wall is incomplete. This classical
theory does not take into account the structure of the turbulent
fluctuations, and cannot distinguish between 2D and 3D turbulent
flows. Our data on soap-film flows, as well as the available data
on pipe flows, are, however, consistent with the predictions of a
recently proposed theory of the frictional drag14–16. This new theory
perforce relates the frictional drag to the turbulent spectrum, and is
sensitive to the dimensionality of the flow through the dependence
of the turbulent spectrum on the dimensionality. Our findings lead
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Figure 2 | The mean velocity profile u(y), the Reynolds shear stress profile τRe(y) and the thickness profile h(y) in turbulent soap-film flows. a, Typical
plots of u(y) in a film of width w= 12 mm, for Re= 7,890, 17,600 and 25,900. From LDV measurements (see the Methods section). b, The same as in a but
close to one of the wires. In the viscous layer the slope of u(y) is constant, du(y)/dy=G. Points on the film closer than≈20 µm (the diameter of the beam
of the LDV) to the edge of the wire cannot be probed with the LDV; thus, the first data point, which we position at y=0, is at a distance of≈20 µm from
the edge of the wire. c, Plot of τRe(y) in a film of width w= 12 mm, for Re= 17,600. From LDV measurements (see the Methods section). d, The same as in
c but close to one of the wires. The Reynolds shear stress vanishes in the viscous layer (compare with the plots in b). e, Typical plots of h(y) in a film of
width w=8 mm, for Re=9,430 and 13,000. From fluorescent-dye measurements (see the Methods section). f, The same as in e but close to one of the
wires. The thickness of the film is nearly uniform in the viscous layer (compare with the plots in b).
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Figure 3 | Log–linear plot of the frictional drag f versus the apparent slip
velocity US in 2D turbulent soap-film flows of Reynolds number
Re= 20,000.

us to conclude that the macroscopic properties of both 3D and
2D turbulent flows are closely linked to the turbulent fluctuations.
In addition, our findings serve to underscore the value of using 2D
soap-film flows to test and extend our understanding of turbulence.
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Figure 4 | Log–log plot of the frictional drag f versus the Reynolds
number Re in 2D turbulent soap-film flows of Reynolds number
1,300≤Re≤46,000, from independent experiments carried out in
Pittsburgh and Bordeaux. The cloud of data points may be represented as
a straight line of slope 1/2, consistent with the scaling f∝Re−1/2. The
straight dashed line of slope 1/4 corresponds to the Blasius empirical
scaling, f∝Re−1/4.
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Methods
To measure the components u(t ) (along the mean flow) and v(t ) (transverse to the
mean flow) of the instantaneous velocity at a point on the film, we use an LDV with
a sampling rate of 5 kHz. By carrying out measurements over a time period of about
200 s, we collect time series u(ti) and v(ti). From these time series we calculate
the local mean velocities u and v as the time averages, u≡ 〈u(ti)〉 and v ≡ 〈v(ti)〉.
To compute the local turbulent spectrum (more precisely, the longitudinal
turbulent spectrum), we invoke Taylor’s frozen-turbulence hypothesis6 to
carry out a space-for-time substitution t→ x/u on the time series (u(ti)−u).
This space-for-time substitution gives the space series, u′(xi)≡ (u(xi/u)−u),
where xi = uti. (The frozen-turbulence hypothesis is justified because in all our
experiments the root mean square of the velocity fluctuations is less than 20%
of u (ref. 30).) The spectrum E(k) is the square of the magnitude of the discrete
Fourier transform of u′(xi). We compute the local Reynolds shear stress as
τRe = ρ〈(u(ti)−u)(v(ti)−v)〉. To measure the thickness h of the film, we mix the
soapy solution with a fluorescent dye and focus a blue laser beam of diameter
20 µm on a spot of the film. The spot becomes fluorescent, and we monitor
the intensity of the fluorescence by means of a photodetector with a counting
rate proportional to h.
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