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In turbulent Rayleigh-Bénard convection, a large-scale circulation (LSC) develops in a nearly vertical

plane and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers.

Rare but large fluctuations in the LSC amplitude can lead to extinction of the LSC (a cessation event),

followed by the reemergence of another LSC with a different (random) azimuthal orientation. We extend

previous models of the LSC dynamics to include momentum and thermal diffusion in the azimuthal plane

and calculate the tails of the probability distributions of both the amplitude and azimuthal angle. Our

analytical results are in very good agreement with the experimental data.
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When a fluid is heated from below in the presence of a
gravitational field, the static state with thermal conduction
can become unstable towards a succession of instabilities,
ultimately leading to turbulence if the buoyancy-induced
driving force is sufficiently greater than the viscous drag
and diffusion of heat. This balance is quantified by the
Rayleigh number Ra ¼ �0g�TL

3=��, where �0 is the
isobaric thermal expansion coefficient, g is the gravity
field, �T is the temperature gap between the bottom and
top layers, L is the height of the fluid container, � is the
thermal diffusivity, and � is the kinematic viscosity. For
large Ra, thermal boundary layers become unstable by
emitting hot (on the bottom) or cold (on the top) plumes
which, due to buoyancy, migrate upwards (hot) or down-
wards (cold) [1–3]. In addition to their vertical motion,
plumes drift along the top and bottom boundaries in oppo-
site directions, contributing to a large-scale circulation
(LSC) flowing in a nearly vertical plane, which spans the
diameter of the container. The horizontal velocity of the
plumes oscillates rapidly compared to the reorientation
dynamics of the large-scale circulation [4–6], which, in a
cylindrical geometry, undergoes both rotational diffusion
and orientational jumps following irregular cessation of the
entire flow [4,7]. Such laboratory experiments provide a
well-controlled setting in which to study the statistical
properties of cessation, reversal, and reorientation events
similar to those that occur in many flows of practical
significance, including atmospheric [8] and oceanic circu-
lation [9], the dynamo driving planetary magnetic fields
[10], and in the cores of stars [11].

In order to interpret high quality data on the statistics of
cessations and azimuthal rotation, a nonlinear stochastic
model that retains physically relevant aspects of the
Navier-Stokes equations was developed and shown to re-
produce many aspects of the statistics of the azimuthal
dynamics and the temperature fluctuations in the LSC
plane [12,13]. The stochastic variables in the model are

the amplitude of azimuthal temperature variations, �, in-
duced by the LSC and the azimuthal orientation angle �0 of
the nearly vertical LSC plane. Although the model predic-
tions are in good agreement with the experimental results
for typical fluctuations of the system [13], the model does
not account quantitatively for the rare large fluctuations
responsible for the cessation statistics and for the broad-tail
probability distribution function (PDF) of the azimuthal
velocities.
The purpose of this Letter is to extend the stochastic

model to capture the tail of the PDFs of the temperature
amplitudes and azimuthal velocities. We make three con-
tributions here. First, we show that the equation for the
amplitude � needs to explicitly include a constant term,

known to scale as Ra5=4. Such a term was already proposed
in Ref. [13] as arising from boundary layer thermal diffu-
sion, but its significance for the asymptotics of the PDF had
not been emphasized. Second, we show that the description
of the azimuthal velocities needs to include viscous diffu-
sion in the boundary layer near the wall. Such a term is
generally small compared to the other terms in the equation
of motion for _�0 but becomes the dominant contribution
when the amplitude � is small, as in a cessation event.
Third, we compute the PDFs for both � and _�0, predicting,
respectively, an exponential dependence at small � and a
power law of�4 for the large angular velocity asymptotics
of _�0. A careful analysis of the experimental data is in very
good agreement with these predictions.
Evolution equation for the LSC amplitude.—For com-

pleteness, we briefly summarize the derivation of the
physical model for LSC fluctuations, largely following
Refs. [12,13] but with minor differences noted below.
The LSC amplitude evolution is derived from the equation
satisfied by the velocity component in the LSC plane, u�,

where only the buoyancy and diffusion terms are retained.
Here, � is the angle in the vertical circulation plane of the
LSC. The turbulent advection term is discarded on the
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basis that the convection due to azimuthal motion is small
relative to the other terms and the self-advection is re-
placed by random fluctuations. A spatial average in a
direction perpendicular to the main axis of the cylinder
(radial average) is performed. The buoyancy term acts
everywhere in the LSC plane; hence, the average keeps
the same form. On the other hand, momentum diffusion is
assumed to dominate only in the viscous boundary layer, so
that the average of this term gives a prefactor �=L, where �
is the viscous boundary layer thickness. The viscous layer
thickness can be estimated on dimensional grounds as the
length scale where the convective forces balance out
the diffusive forces, giving U2=L ’ �U=�2, where UðtÞ is
the maximum speed just within the viscous boundary layer,
and thus is an estimate for the typical turnover velocity of

an eddy spanning the LSC plane. Hence �ðtÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�L=U

p
,

and the spatial average of the diffusion term is estimated as

h�r2u�i ’ ��U=ðL�Þ ’ ��1=2U3=2=L3=2. Furthermore,

we assume that the amplitude of azimuthal temperature
variation, �, is proportional to the large-scale typical ve-
locity of thermal convection rolls U, in the approximation
that momentum acceleration is due to buoyancy forces;
this proportionality argument is different from the one used
in Ref. [13], where buoyancy is balanced against diffusion.
Finally, a delta-correlated Gaussian stochastic forcing
f�ðtÞ with amplitude D� is included to simulate the effect
of turbulent fluctuations. As noted in Ref. [13], the result-
ing equation incorrectly accounts for the small � behavior,
where the thermal boundary layer cannot be neglected.

Thermal diffusion leads to a constant driving term _� ¼ A

empirically [7] found to scale as Ra5=4. This has the
effect of driving the system back to the vicinity of
� ¼ �0, where the mean LSC amplitude is denoted by

�0 � �T�Re3=2=Ra and � ¼ �=� is the Prandtl number.

By rescaling time t ! t=	�, where 	� � L2=ð�Re1=2Þ is
the typical turnover time, and defining a dimensionless
amplitude 
 ¼ �=�0, we arrive at the following Langevin
equation for the LSC fluctuations 
:

_
 ¼ ~Aþ �
� �
3=2 þ ~f
ðtÞ; (1)

with ~A ¼ A	�=�0. Here the rescaled (dimensionless) dif-
fusion coefficient is ~D� � D�	�=�

2
0, representing the

amplitude of the scaled noise ~f
ðtÞ. We have included

numerical prefactors �;� ¼ Oð1Þ to account for the geo-
metric coefficients from the spatial volume averaging
procedure. These constants will be determined below by
demanding that the maximum and the width of the PDF are
consistent with experimental results.

Evolution of the azimuthal velocity.—The equation for
the horizontal motion is obtained from the Navier-Stokes
equation for the azimuthal velocity (u� ’ L _�) by retaining
the advection and momentum diffusion terms. Previously
[12,13], the viscous drag term was neglected on the basis
that it is typically small. This approximation is valid in
the regime of a well-defined LSC but breaks down near

cessations, since the momentum transport from the LSC
also becomes very small. The viscous drag is dominant in
the viscous boundary layer, so that a spatial average along
an arbitrary direction in the horizontal plane gives
h�r2 _�0i � �� _�0=ðL��Þ. The viscous boundary layer
thickness �� is estimated from balancing the advection
force with the momentum diffusion force U _�0=L�
� _�0=�

2
�; together with the proportionality U=	� � �g�,

we find that �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L�0=ðU�Þp

. In addition to these de-
terministic forces, the self-advection term is mimicked by a
delta-correlated Gaussian noise f _�ðtÞ with amplitude D _�.
By rescaling time by the typical time 	� � L2=ð�ReÞ for
crossing a boundary layer of thickness �� and � by �0, the
equation of motion for the azimuthal fluctuations is

€� 0 ¼ �
�
�1
þ �1

	�
	�

ffiffiffi



p �
_�0 þ ~f _�ðtÞ; (2)

where the rescaled diffusion coefficient is ~D _� ¼ D _�	� and
�1; �1 ¼ Oð1Þ account for geometrical factors due to vol-
ume averaging. From the definition of the time scales,

	�=	� ¼ Re�1=2 � 1, and hence the viscous drag term
becomes important when 
 � ð�1=�1Þ2Re�1, i.e., near
cessations.
Probability distribution for �.—Since the Langevin

equation for 
 is decoupled from that of _�, we first analyze
Eq. (1) separately. In order to obtain the stationary PDF
Pð
Þ at long times, we use the equivalent Fokker-Planck
equation of Eq. (1). It reads [14]

@Pð
; tÞ
@t

¼ � @

@

½ð ~Aþ �
� �
3=2ÞPð
; tÞ�

þ ~D�

2

@2Pð
; tÞ
@
2

: (3)

The stationary solution of this equation is

Pð
Þ ¼ C exp½�2Vð
Þ= ~D��; (4)

with

Vð
Þ ¼ � ~A
� �

2

2
þ �

2

5

5=2: (5)

Note that Eq. (4) predicts that logPð
 � 1Þ / 
 as ob-
served in the experiment. Denoting the logarithmic deriva-
tive of the experimental PDF at small 
 by B, using (4) we

find that ~A ¼ B ~D�=2. Here B and ~D� are the tuning
parameters of the theory and will be extracted from the
experimental data.
We now determine the constants � and � by requiring

that the PDF has a maximum at 
 ¼ 1 and width equal toffiffiffiffiffiffiffi
~D�

q
and fix the constant C by normalizing Pð
Þ in its

Gaussian regime close to 
 ¼ 1. Expanding Pð
Þ [see
Eq. (4)] in the vicinity of 
 ¼ 1 up to second order, we

find that ~Aþ �� � ¼ 0 for the maximum to be at 
 ¼ 1
and ð3=2Þ�� � ¼ 1=2 for the variance to be ~D�. This

yields � ¼ 1–3 ~A and � ¼ 1–2 ~A. With ~A ¼ B ~D�=2, the
final normalized result for the PDF reads as
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Pð
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ~D�

q e�3B=10�1=ð5 ~D�Þ

� eB
þ ~D�1
�

½ð1–3B ~D�=2Þ
2�ð4=5Þð1�B ~D�Þ
5=2�: (6)

The only free parameters in this result are B and ~D�. These
are estimated from the 
 � 1 asymptote of (6):

Pð
 � 1Þ ’ ð2� ~D�Þ�1=2e�3B=10�1=ð5 ~D�ÞeB
: (7)

By fitting the logarithm of the experimental PDFs to a line
from the logarithm of Eq. (7), we extract B and ~D� for each
experimental data set. In Fig. 1, we show comparisons of
experimental results and PDF (6) using the parameters B
and ~D� extracted from experimental results; very good
agreement is evident for a wide range of Ra numbers. In
this figure and henceforth, the medium and large samples
refer to cylindrical containers with heights 24.76 and
50.61 cm and an aspect ratio of �1 [13].

Having calculated the complete PDF of the LSC ampli-
tudes, we now extract the cessation frequency. The latter
can be found by analyzing the following first-passage
problem: Starting from the vicinity of the fixed point

 ¼ 1, what is the mean time it takes to reach the vicinity
of 
 ¼ 
0 � 1, where 
0 � 1 is the amplitude which
defines the experimental cessation threshold? By using
the backward Fokker-Planck equation [14], the mean
time to cessation is given by

Tð
; 
0Þ ¼ 2
Z 



0

dy

c ðyÞ
Z 1

y

c ðzÞ
~D�

dz;

c ðzÞ ¼ e�f2½VðzÞ�Vð
0Þ�= ~D�g; (8)

where 
 ’ 1 is the effective initial condition, and the

potential satisfies (5) with ~A ¼ B ~D�=2. Using the small-
ness of ~D� (typically ranging between 10�2 and 10�1), we
can evaluate the inner integral by using the saddle point
approximation. By doing so, we arrive at a result indepen-
dent of y, which permits the evaluation of the outer integral
using a Taylor expansion of the integrand about y ¼ 
0

[15]. This procedure leads to the final result for the
mean time to cessation Tcð
0Þ to reach a point 
0 � 1
(see also [13]):

Tcð
0Þ ’ 	� ~D�

jV0ð
0Þj

ffiffiffiffiffiffiffi
2�
~D�

s
e2

~D�1
�

½Vð
0Þ�Vð1Þ�; (9)

where we have multiplied the result by 	� to present the
time in physical units and used the fact that V 00ð1Þ ¼ 1=2.
Given a threshold for cessation 
min as is done experimen-
tally, in order to mimic the binning procedure of the
experimental data, we have to average over 
0 in Eq. (9)
from 0 to 
min, which yields the cessation frequency

!�1
c ’ 1


min

Z 
min

0
d
0Tcð
0Þ: (10)

To obtain a theoretical prediction for !c as a function of
Ra, we use the extracted values of B, ~D�, and 	� from the
experimental data [13]. By doing so, we can plot the
theoretical prediction for !c as a function of Ra, as shown
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FIG. 1 (color online). Theoretical (solid line) and experimental
(triangles) PDFs for the normalized amplitude 
 versus ð
�
1Þ=� (� ¼

ffiffiffiffiffiffiffi
~D�

q
), for different Ra numbers, with (a)–(h) for the

medium sample and (i)–(p) for the large sample. The Ra num-
bers are 3:78� 108 (a), 8:16� 108 (b), 1:1� 109 (c), 2:3� 109

(d), 4:5� 109 (e), 7:9� 109 (f), 1:02� 1010 (g), 1:51� 1010

(h), 4:75� 109 (i), 7:16� 109 ( j), 1:22� 1010 (k), 2:43� 1010

(l), 4:71� 1010 (m), 5:68� 1010 (n), 7:51� 1010 (o), and
1:04� 1011 (p). In each subfigure the parameters ~D� and B
were computed by fitting the left tail of the experimental PDF to
Eq. (7).
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FIG. 2 (color online). Cessation frequency (per day) as a
function of Ra for the medium (a) and large (b) samples.
Experimental results (triangles) [13] are compared to theoretical
prediction (10). The latter are bound within the two solid lines.
The experimental cessation was defined to occur when �=�0 <

min; that is, we have averaged over the time intervals between
events where the system has undergone cessation with 
 < 
min;
see Eq. (10). Here, 
min ¼ 0:15 for the medium sample, and

min ¼ 0:2 for the large sample. Similar agreement was obtained
for thresholds of 
min between 0.15 and 0.3.
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in Fig. 2. Here, the theoretical predictions (10) agree well
with the experimental data [13], for both the medium and
large samples. The error bars in the experimental results
originate from the binning method, while the errors in
the theoretical curves come from the uncertainties in the
extracted values of B and ~D�.

Probability distribution for _�.—Now we turn to the
calculation of Pð _�Þ. As the Langevin equation for _�
[Eq. (2)] depends on 
, for a given 
 we can first determine
the steady state conditional PDF Pð _�0j
Þ. Using (2), we
find

Pð _�0j
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ~D _�

q e�ð�1
þ�1

ffiffiffiffiffiffiffiffi

=Re

p
Þ _�2

0
= ~D _� : (11)

Given the PDF Pð
Þ from Eq. (6), we then determine the
complete PDF Pð _�0Þ of the azimuthal velocity by the
following relation:

Pð _�0Þ ¼
Z 1

0
d
Pð _�0j
ÞPð
Þ; (12)

which is valid when the relaxation time scale of _� is much
faster than that of �, namely, 	� � 	�. That is, Eq. (12)
holds when the conditional PDF Pð _�0j
Þ equilibrates much
faster than the typical time scale of change of 
.

Integral (12) can be evaluated in the Gaussian regime of
the PDF, where 
 ’ 1, which yields the statistics of reor-
ientations due to rotations of the LSC plane. In this case, to
leading order one can simply put 
 ¼ 1 in Eq. (2), which

gives Pð _�0Þ � e��1
_�20=

~D _� . By comparing it with the experi-
ments, �1 ¼ 1 in agreement with Ref. [13].

The cessation events correspond to the right-hand tail
of the PDF (12). Indeed, when the system undergoes
cessation and 
 � 1, the integrand is dominated by

e��1

ffiffiffiffiffiffiffiffi

=Re

p
_�20=

~D _� . Therefore, the right-hand tail of the PDF
given by Eq. (12) satisfies

Pð _�0Þ � _��4
0 : (13)

This power-law prediction for the tail of Pð _�0Þ is consistent
with the earliest analysis of the experimental data [7,12]
(reporting an exponent of �3:8) but differs from the nu-
merical calculations presented in Ref. [12], which obtained
a power law with an exponent of�2. The difference arises
as our equation of motion includes momentum diffusion
that allows accurately accounting for the tail of Pð _�0Þ. In
Fig. 3, we plot the experimental PDFs for ��� _� and
show that they do indeed exhibit a power-law behavior at
the tails with an exponent of approximately �4:3 in very
good agreement with our prediction.
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