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Fluctuation-driven Turing patterns
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Models of diffusion-driven pattern formation that rely on the Turing mechanism are utilized in many areas
of science. However, many such models suffer from the defect of requiring fine tuning of parameters or an
unrealistic separation of scales in the diffusivities of the constituents of the system in order to predict the
formation of spatial patterns. In the context of a very generic model of ecological pattern formation, we show that
the inclusion of intrinsic noise in Turing models leads to the formation of “quasipatterns” that form in generic
regions of parameter space and are experimentally distinguishable from standard Turing patterns. The existence
of quasipatterns removes the need for unphysical fine tuning or separation of scales in the application of Turing
models to real systems.
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I. INTRODUCTION

The study of the emergent spatiotemporal patterns in
physical or biological systems is an exciting and fruitful line
of research in physics and many other disciplines such as
chemistry, ecology, animal biology, and neuroscience [1–5].
Examples include patterns on animal coats [6], engineered
bacterial systems [7], chemical pattern formation [8], mussel
population densities [9], and Rayleigh-Benard convection in
fluids [10].

One particularly satisfying aspect of these studies is that
insight into the origins of one kind of pattern often yields
insight into the origins of patterns in entirely different
systems. A key example is the Turing mechanism [3]. Turing’s
argument, which will be described in detail below, showed
how diffusion, which is typically thought of as a randomizing
influence, can give rise to spatial pattern formation when there
are two or more classes of degrees of freedom (species) with
“activator” and “inhibitor” dynamics. This mechanism has
been proposed as an explanation for an enormous variety of
systems including short (<10 m) length scale patchiness in
planktonic ecosystems [11–14], patterning in plant-resource
systems [15], patchiness in insect abundance [16], stripe
and spot patterns on the coats of animals [6], patterns in
mussel beds [9], and even the geometric visual hallucinations
experienced by shamans and users of hallucinogenic drugs
[4,17].

However, in spite of the seeming success of the Turing
mechanism in explaining patterns across many disciplines,
the partial differential equations representing the dynamics of
systems with Turing patterns typically require unphysical fine
tuning of parameters or separation of scales in the diffusivities
of the different species in order to predict pattern formation
[5,8,11,18–21]. The requirement that the system either have
fine tuning of kinetic parameters or a separation of scales in
diffusivities in order to predict patterns is unphysical for many
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applications. Both the of these issues will be referred to below
as the “fine tuning problem,” even though fine tuning is only
strictly needed when a separation of scales in diffusivities is
not present. To resolve the fine-tuning problem for Turing
patterns we show that a full statistical mechanical treatment of
Turing patterns, where fluctuations due to the discrete nature
of the degrees of freedom in the system—intrinsic noise—are
included, the fine-tuning problem is resolved [21].

It may seem counterintuitive to claim that including fluctu-
ations resolves the fine-tuning problem for Turing patterns
because fluctuations are generally expected to destabilize
ordered states such as spatial patterns. This is the rule
in standard statistical mechanics [22] and many statistical
mechanical models in ecology [23,24]. However, exceptions
exist in systems out of equilibrium. For example, careful
experiments on Rayleigh-Benard convection have shown that
fluctuations can drive the formation of convection rolls in fluid
dynamics that would not form in the absence of fluctuations
[25]. In ecology, recent theoretical work and careful data
analysis have shown that the observed cyclic population
dynamics of predator-prey systems can be explained in many
cases by fluctuation driven cycles in time [26–29]. Similar
phenomena have been predicted in evolutionary game theory
and systems biology [30,31]. In cell biology, simulating the
interactions of individual proteins in discrete time and space
in a model of proteins that regulate cell division in E. coli
results in pattern formation over a wider range of parameters
than the corresponding reaction-diffusion partial differential
equations [32]. Thus it seems possible that a full many-body
treatment of the Turing mechanism that incorporates intrinsic
noise will resolve the fine-tuning problem.

The purpose of this paper is to present an analysis
of the Turing mechanism with intrinsic noise included to
resolve the fine-tuning problem. The analysis results in a
derivation of a phase diagram and to power spectra with
experimentally distinctive and relevant properties. This paper
is an expansion and elaboration of our paper [21] which
originally reported the resolution of the fine-tuning problem
of Turing instabilities through the incorporation of intrinsic
noise. We will first review the Turing mechanism, and then
present an extremely simple model of the Turing mechanism
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for planktonic predator-prey populations that we then analyze
in detail. The results of the analysis show that in large regions
of parameter space predicted by deterministic modeling to
have only trivial spatial states, a new kind of spatial pattern
that we call a “quasipattern” emerges. The quasipattern
state is analogous to intrinsic noise-driven “quasicycles”
recently discovered in the time domain [26]. Quasipatterns are
recognizable immediately as spatial patterns, but with a few
important, experimentally relevant differences from patterns
predicted with deterministic analysis. The final sections of the
paper will focus on possible experimental tests and extensions
of the theory developed in the body of the paper. We focus on a
model of planktonic predator-prey interactions throughout the
paper for simplicity and also because predator-prey systems
have been extensively analyzed theoretically [11,12,18,20,33]
and there is beginning to be an experimental literature [16,19].
However, we emphasize that the goal of this paper is insight
into the general interactions of intrinsic fluctuations with
the Turing mechanism for pattern formation, and that the
results should be valid for most models of Turing instabilities.
Evidence for this assertion is provided by the recent replication
of our results on the Brusselator model of chemical pattern
formation [34], which additionally pointed out that the phase
boundary can differ for different species of reactants, a
model of embryonic pattern formation [35], as well as our
own forthcoming results on pattern formation on the visual
cortex [17].

II. THE TURING MECHANISM

The Turing mechanism in its most basic form requires
two different species that react and diffuse. One species, the
“activator,” diffuses relatively slowly, and catalyzes (activates)
both its own production and the production of the second
species. The second species, the “inhibitor,” diffuses faster,
and reduces (inhibits) the concentration of both the activator
species and itself. These combined mechanisms lead to pattern
formation from random initial conditions. We illustrate the
mechanism with the example of predator-prey dynamics with
random initial conditions:

1. Random regions of activator (prey) with higher local
concentrations reproduce rapidly, leading to dense clumps of
activator species that then begin to diffuse.

2. Rapidly diffusing inhibitors (predators) are produced in
the neighborhood of the high-density autocatalyzing clumps
of prey.

3. The predators inhibit the spread of the prey clumps
through their production in the neighborhood of prey clumps.
The autoinhibitory nature of predators prevents them from
overwhelming the prey population.

These steps, summarized in Fig. 1, show how activator-
inhibitor dynamics can lead to spontaneous pattern formation
[3]. As was noted above, formalizing this argument into
standard deterministic reaction-diffusion equations results in
models that only exhibit Turing patterns if the predator
(inhibitor) diffusivity is much larger than the prey (activator)
diffusivity or the parameters are fine tuned [3,8,11,18–20].
Note that consistent with the existence of pattern-forming
systems which do not apparently display very large separation
of diffusivities [15,16], the qualitative argument made above

FIG. 1. (Color online) Illustration of the steps of the Turing
mechanism as described in the text. The figure should be viewed
from top to bottom. The prey (activators) are represented by small
black dots, and the predators (inhibitors) are represented by large red
dots.

for pattern formation does not depend on very large differences
in diffusivities, nor on additional kinetic details.

III. TURING PATTERNS IN THE LEVIN-SEGEL MODEL

One of the simplest models of Turing patterns is drawn from
ecological pattern formation and was originally introduced
to model plankton-herbivore dynamics [11]. The reaction
diffusion equations for this model are

∂tψ = μ∇2ψ + bψ + eψ2 − (p1 + p2)ψϕ,
(1)

∂tϕ = ν∇2ϕ + p2ϕψ − dϕ2,

where the plankton population ψ is the activator, as can be
seen by the nonlinear growth term eψ2, and the herbivore
population ϕ is the inhibitor due to the predation terms pψϕ

and the competition term −dϕ2. The nonlinear growth term
eψ2 was originally introduced to be a proxy for predator
satiation [11] but can also be interpreted as an Allee effect,
wherein many species have enhanced reproduction at higher
concentrations (for a review, see [36]).

Setting p1 = 0 and p2 = p, the model contains a stable
homogeneous coexistence state when

p > e and p2 > de (2)

with stationary fixed-point populations given by

ψs = bd

p2 − de
, ϕs = bp

p2 − de
. (3)
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It contains a Turing instability if [11]

ν

μ
>

(
1(√

p/d − √
p/d − e/p

)
)2

. (4)

The model is only valid when the coexistence fixed point
is stable. Outside of that regime, a plankton regulation term
such as −f ψ3 is required to make the model valid. For the
present analysis, we assume that f ψ3 is sufficiently small
to be ignored. The fine-tuning problem can be illustrated in
this model by taking the set of O(1) kinetic parameters b =
1/2, e = 1/2, d = 1/2, and p = 1. With these parameters
Eq. (4) shows that nongeneric diffusivities, ν/μ > 27.8, are
required for pattern formation. Similar results are obtained for
other generic parameter sets.

A. Extrinsic noise-driven pattern formation

To gain preliminary insight into the effects of intrinsic
noise on the Levin-Segel model, we can analyze the effects
of unconserved extrinsic noise on the linearized dynamics of
the Levin-Segel model as in previous studies of extrinsic noise-
driven pattern formation [21,37–39]. While not identical,
expansion schemes such as the system size expansion [40]
indicate that the effects of extrinsic noise and intrinsic noise
on the linearized dynamics of reaction diffusion systems are
closely related. Additionally, we will use the calculation of
the effects of extrinsic noise on the Levin-Segel model to
predict observable differences between unconserved extrinsic
and intrinsic noise-driven pattern formation.

To calculate the effects of extrinsic noise, we look at the
Fourier-transformed dynamics of the fluctuations from the
coexistence fixed point with added white noise ξ , variance
C. These dynamics are given by

−iωx = Ax + ξ. (5)

The matrix A is the Fourier-transformed stability matrix and
x is the vector of deviations from equilibrium of predator and
prey populations, respectively,

A =
(−νk2 − pψs pϕs

−pψs −μk2 + eψs

)
. (6)

Simple manipulations yield the average power spectrum

P (k,ω) = C
[
p2ϕ2

s + (eψs − μk2)2
]

{[
pbψs + μνk4 − ω2 − ψsk

2eν
(

1 − pμ

eν

) ]2

+ω2[(e − p)ψs − (μ + ν)k2]

}−2

. (7)

To a crude approximation, Eq. (7) predicts that patterns
(indicated by peaks in the power spectrum) form whenever
eν > pμ, and that without noise and away from a classical
Turing instability the power spectrum is zero. As anticipated,
the condition eν > pμ can be satisfied easily and avoids
the fine-tuning problem. However, the calculation with the
extrinsic noise considered here differs in important ways from
the intrinsic noise case, such as the determination of the

strength of the noise and the presence of diffusive noise. As
will be shown below, these differences lead to experimentally
distinguishable differences in the resulting spatiotemporal
patterns.

IV. PREDATOR-PREY MODEL WITH INTRINSIC NOISE

To systematically include the effects of intrinsic noise
requires a model defined at the level of individual organisms,
since intrinsic noise is generated by the stochastic nature of
individual birth and death events as well as the stochastic
interactions between individual organisms. Such a description
of the dynamics at the individual level is called an individual
level model (ILM). One simple way to define an ILM is
to specify the reactions that can take place in a well-mixed
patch of volume V . To include space, a lattice of patches
can be considered with additional reactions corresponding
to movement of predator and prey organisms between the
patches. With parameters to specify the relative rates of the
reactions, a model of individual level interactions on a single
patch that incorporates intrinsic noise is fully specified.

For an ILM version of the Levin-Segel model we consider
the following reactions:

P
b→ PP,

PP
e/V→ PPP,

PH
p1/V→ H, (8)

PH
p2/V→ HH,

HH
d/V→ H,

where P denotes plankton and H denotes herbivores, with the
parameters as described above. Stochastic trajectories of H

and P , enumerated by m and n, respectively, are described by
the master equation

∂tP (m,n) = b[−nP (m,n) + (n − 1)P (m,n − 1)]

+ e

V
[(n − 1)(n − 2)P (m,n − 1)

− n(n − 1)P (m,n)] + p1

V
[−mnP (m,n)

+ (m)(n + 1)P (m,n + 1)] + p2

V
[−mnP (m,n)

+ (m − 1)(n + 1)P (m − 1,n + 1)]

+ d

V
[(m + 1)mP (m + 1,n)

−m(m − 1)P (m,n)]. (9)

The master equation, which is exactly equivalent to the
specification of the model as a collection of reactions in Eq. (8),
can then be used to analyze the ILM version of the Levin-Segel
model by applying techniques from nonequilibrium statistical
mechanics.

A. Field theory representation of the model

While several options exist for analysis of the master
equation, such as direct expansion of the master equation
[40], we analyze the master equation by a mapping to field
theory, because it is convenient for handling spatially extended
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systems. To analyze the master equation using the techniques
of field theory, we introduce the operators

a|m,n〉 = m|m − 1,n〉,
â|m,n〉 = |m + 1,n〉,

[a,â] = 1,
(10)

c|m,n〉 = n|m,n − 1〉,
ĉ|m,n〉 = |m,n + 1〉,

[c,ĉ] = 1,

and the state |ψ〉 = ∑
P (n)|n〉. These definitions allow the

master equation to be mapped to a bosonic field theory [41–45].
As an explicit example of how to convert the master equation
to a field theory, consider the master equation corresponding
to the second reaction in Eq. (8) alone:

∂tP (n) = e

V
[(n − 1)(n − 2)P (n − 1) − n(n − 1)P (n)]. (11)

Ignoring V for now, we multiply both sides by |n〉 and sum
over n:∑

n

∂tP (n)|n〉 = e
∑

n

[(n − 1)(n − 2)P (n − 1)

− n(n − 1)P (n)]|n〉. (12)

We next shift the sums, and manipulate the first term in the
sum. Let n′ = n − 1 → n = n′ + 1:

e
∑
n′

n′(n′ − 1)P (n′)|n′ + 1〉,n′ → n

= eĉ3c2
∑

P (n)|n〉
= eĉ3c2|ψ〉. (13)

We now work out the second term in the sum:

e
∑

n

n(n − 1)P (n)|n〉

= eĉĉcc|ψ〉. (14)

This yields

∂t |ψ〉 = e[ĉ3 − ĉ2]c2|ψ〉. (15)

Similar analyses lead to second quantized forms for the
rest of the master equation. We can now assemble the entire
Hamiltonian. We start by writing the master equation in second
quantized form:

∂t |ψ〉 =
[
b(ĉ2 − ĉ)c + e

V
(ĉ3 − ĉ2)c2 + p1

V
(âac − âaĉc)

+ p2

V
(â2ac − âaĉc) + d

V
(1 − â)âa2

]
|ψ〉. (16)

Since the standard definition of the Hamiltonian is

∂t |ψ〉 = −Ĥ |ψ〉, (17)

we have

−Ĥ = b(ĉ2 − ĉ)c + e

V
(ĉ3 − ĉ2)c2 + p1

V
(âac − âaĉc)

+ p2

V
(â2ac − âaĉc) + d

V
(1 − â)âa2. (18)

According to the standard mapping using coherent states
between Hamiltonians represented by bosonic operators and
functional integral representations of the same dynamics with
Lagrangians, we can write down the Lagrangian, generalized
to space. As in quantum mechanics, the mapping can be
worked out for general Hamiltonians [44,46]. To generalize
to space, we implement a random walk between patches
of volume V for every organism as a reaction with rate τi

where i is an index for species. Appropriately rescaled [28],
the continuum limit and mapping to the functional integral
formulation yields the Lagrangian

L = â∂ta + ĉ∂t c − νâ∇2a − μĉ∇2c

+H (ĉ,â,c,a). (19)

In the Lagrangian formulation of Eq. (19), â, ĉ, and their
conjugate variables are no longer operators, but functions that
are integrated over as in standard bosonic functional integrals.
The starred variables loosely correspond to noise and the
unstarred to values of predator and prey, but direct physical
interpretation is not trivial [47,48]. The initial conditions are
ignored, because the focus of this paper is the long time limit
and there is only one attractor in the system.

To transform to more physical variables, the standard
Cole-Hopf transformation can be applied to transform the
field variables to direct number and noise representations. This
transformation is given by

a = ze−ẑ,
(20)

â = eẑ,

c = ρe−ρ̂ ,
(21)

ĉ = eρ̂ .

The new field variables z and ρ can be heuristically interpreted
as the numbers of predator and prey, respectively [the precise
interpretation is that their expectation values correspond, i.e.,
〈f (ρ,z)〉 = 〈f (NP ,NH )〉], and the auxiliary fields denoted by
carets generate the intrinsic noise, as will be seen below by
showing that the minimum of the action, which corresponds
to mean-field theory is at ρ̂ = ẑ = 0. The Lagrangian in the
new variables is

L = ẑ∂t z + ρ̂∂tρ − νẑ∇2z − μρ̂∇2ρ

− νz(∇ẑ)2 − μρ(∇ρ̂)2 + bρ(1 − eρ̂)

+ e

V
ρ2(1 − eρ̂) + p1

V
zρ(1 − e−ρ̂)

+ c

V
zρ(1 − eẑ−ρ̂) + d

V
z2(1 − e−ẑ). (22)

B. System size expansion

We now can carry out the system size expansion in the field
theoretic formalism. Other than notation, it is identical to the
direct expansion of the master equation reviewed in [40]. We
expand the fields as

ẑ → ẑ√
V

, ρ̂ → ρ̂√
V

,

(23)
z = V ϕ +

√
V η, ρ = V ψ +

√
V ξ.
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To perform this expansion to consistent order, it is necessary
to expand the exponentials out to second order. This is because
the expansion will promote second-order terms to first order.
The result is an expansion of the Lagrangian in the form

L =
√

VL1 + L2 + O(1/
√

V ). (24)

We once again carry out the expansion explicitly for the
term coupled by e/V :

e

V
ρ2(1 − eρ̂)

= e

V
(V ψ +

√
V ξ )(V ψ +

√
V ξ )

×
[

1 −
(

1 + ρ̂√
V

+ ρ̂2

2V

)]

= −e

(√
V ψ2ρ̂ + ψ2ρ̂2

2
+ 2ξ ρ̂

)
+ O(1/

√
V ). (25)

Collecting terms of leading order,
√

V , we have

L1 = ρ̂∂tψ + ẑ∂tϕ − νẑ∇2ϕ − μρ̂∇2ψ − bψρ̂ − eψ2ρ̂

+ bϕψρ̂ − cϕψ(ẑ − ρ̂) + dϕ2ẑ. (26)

It is trivial to extract the mean-field partial differential equa-
tions by using the Euler-Lagrange equations. The equations
that result are

δL1

δẑ
= ∂tψ − μ∇2ψ + bψ + eψ2 − (p1 + p2)ψϕ = 0,

(27)

which is the first of the equations for the Levin-Segel model.
The second equation is

δL1

δρ̂
= ∂tϕ − ν∇2ϕ + p2ϕψ − dϕ2 = 0, (28)

again reproducing the Levin-Segel model equation of motion.
Note that the auxiliary fields have zero expectation value
at mean field, which confirms the interpretation that they
correspond to noise. Now L2 can be assembled. The terms
in L2 that are linear in η or ξ correspond to the stability
matrix of the mean-field theory. Terms that are quadratic in the
hatted variables ρ̂ and ẑ are noise terms and will be considered
next.

Proceeding, we have

L2 = ẑ∂tη + ρ̂∂t ξ − ẑν∇2η − ρ̂μ∇2ξ + p1ηψρ̂

−p2ηψ(ẑ − ρ̂) + 2dηϕẑ + bξ ρ̂ + 2eξψρ̂ + bξϕρ̂

−p2ξϕ(ẑ − ρ̂). (29)

We convert this into a Fourier-transformed matrix form that
includes time and space,

L2 = yT ∂t x − yT Ax − 1
2 yT B y, (30)

with vectors given by

x =
(

η

ξ

)
, y =

(
ẑ

ρ̂

)
(31)

so that the predator variables are on top. The matrix A is the
Jacobian of the MFT with space and is given by

A =
(−νk2 + p2ψ − 2dϕ p2ϕ

−(p1 + p2)ψ −μk2 + b + 2eψ − (p1 + p2)ϕ

)
. (32)

The matrix for the correlations of the noise is given by

B =
(

dϕ2 + p2ϕψ + νϕk2 −p2ϕψ

−p2ϕψ bψ + eψ2 + bϕψ + p2ϕψ + μψk2

)
. (33)

We also now note that L2 is in the form of a Lagrangian in the
Martin-Siggia-Rose (MSR) response function formalism for
Langevin equations [49,50].

C. The power spectrum

We now extract the stochastic differential equations (SDEs)
that govern the dynamics of the fluctuations, and calculate the
power spectrum of the fluctuations. The Langevin equations
from the response function formalism are

iωx = Ax + γ (ω),
(34)

〈γi(ω)γj (−ω)〉 = Bij .

We solve formally to obtain

x = (A + iω)−1γ (ω) ≡ D(ω)−1γ (ω). (35)

The power spectrum is

〈x1x
∗
1 〉 = 〈(D22γ1 − D12γ2)(D∗

22γ1 − D∗
12γ2)〉

| det(D)|2

= |D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

| det(D)|2 . (36)

To find the phase diagram, take p1 → 0, p2 = p. This
simplification does not substantially change the dynamics
of the model. In terms of elements of the stability matrix
J ≡ A(k = 0,ω = 0), the denominator of the power spectrum
is

det(D) = (J11 + iω − νk2)(J22 + iω − μk2) − J12J21

= det(J ) + iω[Tr(J ) − (μ + ν)k2]

− (J11μ + J22ν)k2 + μνk4 − ω2. (37)
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The full expression for the power spectrum is

P (k,ω) = |D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

[det( J) + μνk4 − ω2 − ( J11μk2 + J22νk2)]2 + ω2[Tr( J) − (μ + ν)k2]2
. (38)

Recall that the fixed-point values at coexistence are

ϕ = pb

p2 − de
,

(39)

ψ = db

p2 − de
.

Using the fixed-point values, the matrix A can be further
simplified to

A =
(−νk2 − pψ pϕ

−pψ −μk2 + eψ

)
. (40)

Now we evaluate the determinant of the ordinary differential
equation stability matrix ( J above) and the trace

det( J) = pψb. (41)

The trace is

Tr( J) = (e − p)ψ. (42)

Simplifying the denominator in Eq. (38) yields

| det(D)|2 = [det( J) + μνk4 − ω2 − ( J11μk2 + J22νk2)]2

+ω2[Tr( J) − (μ + ν)k2]2

= [pbψ + μνk4 − ω2 − ψ(−pμk2 + eνk2)]2

+ω2[(e − p)ψ − (μ + ν)k2]2

=
[
pbψ + μνk4 − ω2 − ψk2eν

(
1 − pμ

eν

)]2

+ω2[(e − p)ψ − (μ + ν)k2]2. (43)

The form of the denominator for ω = 0 is (A − Bk2 + Ck4)2,
which has a minimum at nonzero k. This minimum corre-
sponds to an emergent length scale, and is the first indication of
pattern formation. Systematic demonstration of the emergence
of pattern formation requires accounting for the k dependence
in the numerator. The noise matrix B can be simplified to

B =
(

2pϕψ + νϕk2 −pϕψ

−pϕψ 2pϕψ + μψk2

)
. (44)

Notice the symmetry in the noise correlations. We now can
expand out the numerator of Eq. (38):

|D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

= |eψ − μk2 + iω|2(2pϕψ + νϕk2)

+ 2pϕ(eψ − μk2)(pϕψ) + p2ϕ2(2pϕψ + μψk2)

= (eψ − μk2)2(2pϕψ + νϕk2) + ω2(2pϕψ + νϕk2)

+ 2p2ϕ2ψ(eψ − μk2) + p2ϕ2(2pϕψ + μψk2). (45)

This gives the final form of the power spectrum:

P (k,ω) = (eψ − μk2)2(2pϕψ + νϕk2) + ω2(2pϕψ + νϕk2) + 2p2ϕ2ψ(eψ − μk2) + p2ϕ2(2pϕψ + μψk2)[
pbψ + μνk4 − ω2 − ψk2eν

(
1 − pμ

eν

)]2 + ω2[(e − p)ψ − (μ + ν)k2]2
. (46)

V. ANALYSIS OF THE POWER SPECTRUM

A. Phase diagram for quasipatterns

The expression for the power spectrum in Eq. (46) is not
very illuminating, and does not simplify a great deal. To
find quasipatterns we note that the highest power of k in the
denominator of Eq. (46) is larger than the highest power in the
numerator. That means that for sufficiently large k, the power
spectrum is always decreasing. Thus, to show the existence of
a maximum, it is sufficient to show that for small k, the power
spectrum is increasing. This can be shown by computing dP

dk2

and evaluating at k2 = 0 and ω = 0. When this expression
is greater than 0, there is pattern formation. This yields the
analytical criterion

ν

μ
>

p3(5p2 + 7de)

e(4p4 + 5p2de + 3d2e2)
. (47)

This criterion is much less stringent than the criterion
for Turing instabilities. The conditions for a Turing insta-

bility are

ν

μ
>

(
1√

p/d − √
p/d − e/p

)2

. (48)

For the generic parameters b = 1/2, p = 1, d = 1/2, e =
1/2 the criterion (47) yields ν/μ > 2.48, while the Turing
condition yields ν/μ > 27.8. This behavior is typical of
generic parameters. The phase diagram of the system bears
out this conclusion as shown in Fig. 2.

An additional feature of the model is that oscillations
and spatial pattern formation are essentially decoupled. This
means that the model predicts global population oscillations
and spatial pattern formation, but not traveling waves. The
mathematical origin of this can be seen in Eq. (7). The k2 term
with a negative coefficient at ω = 0 is quickly overwhelmed
by the positive k2 dependence of the ω2 term as the frequency
begins to grow. In the power spectrum (Fig. 3) this can be seen
as the deep valley between the peaks in k and ω.
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FIG. 2. (Color online) Phase diagram over stable parameter
region in p/d . The shaded region contains fluctuation-driven quasi-
patterns, the region above contains mean-field pattern formation, and
below the shaded region is a spatially homogeneous phase.

The existence of the spatial patchiness predicted in the
power spectrum is confirmed by numerical simulations using
the Gillespie algorithm [51], shown in Fig. 4.

B. Wavelength of fluctuation-driven patterns

To a fairly good approximation, the wavelength of the
Turing quasipatterns can be calculated. The wavelength corre-
sponds to the wave vector that maximizes the power spectrum.
To calculate that value, consider the denominator of the power
spectrum only at ω = 0:[

pbψ + μνk4 − ψk2eν
(

1 − pμ

eν

)]4
. (49)

The minimum of this expression will correspond with
reasonable accuracy to the real wavelength and can be obtained
through straightforward calculation to be

λm = 2π

km

=
√

2μ

ψ

(
1 − cμ

eν

)
. (50)

This shows that for a fixed ratio of diffusivities, the wavelength
increases as the square root of the diffusivity. In addition, while
the phase diagram of the system (Fig. 2) and therefore the
presence of Turing quasipatterns depends on diffusivity only

FIG. 3. (Color online) Power spectrum with p = 1, ν/μ = 15.

through the ratio ν/μ, the wavelength of the patterns depends
on the values of the diffusivities.

This calculation also implies that the wavelength of the
quasipatterns is closely related to the wavelength of patterns in
the region of the phase diagram where patterns are generated at
mean field. In the standard theory of Turing patterns, patterns
are formed when the homogeneous steady state is unstable
to perturbations with a specific set of wave vectors k. The
wavelength is then the wavelength corresponding to the mode
that is most unstable. In the calculation above, we have picked
out the mode that in mean-field theory corresponds to the
slowest-decaying mode as the wavelength of the quasipatterns.
This is because the denominator of the power spectrum is equal
to the product of the eigenvalues of the stability matrix squared.
This product is smallest for the slowest-decaying mode, which
is also the mode that will go unstable in mean-field theory
first as parameters are varied. Therefore the wavelength of the
quasipatterns corresponds to the wavelength of the mean-field
patterns.

C. Period of quasicycles

A similar calculation to the calculation above for the
wavelength of the quasipatterns can be carried out for
the period of the quasicycles. Consider the denominator of
the power spectrum with k = 0:

(pbψ − ω2)2 + ω2[(e − p)ψ]2. (51)

Analogous to the wavelength calculation, we seek the mini-
mum in ω. Simple calculation yields a period of

T = 2π

ωm

= 4π√
2bpψ − (e − p)2ψ2

. (52)

Similar arguments to those for the wavelength indicate that
the period for the quasicycles is approximately the period for
the stable spirals present in mean-field theory [26].

VI. DISTINGUISHING QUASIPATTERNS AND
QUASICYCLES FROM OTHER SPATIOTEMPORAL

PATTERNS

To distinguish spatiotemporal patterns generated by in-
trinsic noise from those generated by feedbacks alone (i.e.,
mean-field patterns) or by extrinsic noise, it is necessary to
develop theoretical predictions that differ for each of these
cases. Previous work has focused primarily on time series
data, focusing on problems such as distinguishing quasicycles
from limit cycles [29] as well as the task of simply determining
the amount of extrinsic vs intrinsic noise in ecosystems [52].
This work has confirmed that both extrinsic noise and intrinsic
noise are important in real ecosystems for populations such
as temperate songbirds in Norway and the beetle species
Tribolium [52–54], and that quasicycles are present in real
ecological time series data [29]. The work also confirms
that the importance of intrinsic noise decreases as population
density increases, in line with the expectation that the scale
of intrinsic noise depends on the scale of the population
density [54].

While separate signatures of quasicycles and quasipatterns
will be discussed below, one common feature that distinguishes
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FIG. 4. (Color online) The left-hand panel is a population map of prey in a two-dimensional Levin-Segel model with intrinsic fluctuations.
The kinetic parameters are as elsewhere in the paper, and μ/ν = 16, so the simulation is in the quasipattern phase, as indicated by the patchiness.
The right-hand panel is the same data, except that the position of each site in the simulation was shuffled after the simulation terminated. If the
patchiness in the left-hand panel were a statistical artifact, it would be preserved in the right-hand panel. This demonstrates that the patchiness
in the left panel is not artifactual, but dynamically significant. The axes are the linear size of the simulations, and the color bar is identical for
both images.

quasicycles and quasipatterns from their counterparts in mean-
field theory is that they depend on the concentration of the
population being studied. To leading order only the fluctuations
have patterns, implying that the local populations can be
written as mean value plus fluctuations scaled by the size of
a locally well-mixed region (see below). Thus the amplitude
of the patterns relative to the mean population size of the
fluctuation driven patterns will change as the size of a locally
well-mixed area changes, while the relative amplitude of
mean-field patterns and limit cycles would not change. Such
a variation of the size of a locally well-mixed area could
presumably be used to detect quasipatterns and quasicycles.

A. Distinguishing quasicycles from limit cycles

Given a population that has oscillatory abundance in time,
theory indicates that the oscillations can come from either
quasicycles driven by noise or from population density-
dependent feedbacks alone, perturbed by noise (mean-field
cycles). The key difference mathematically is that the power
spectrum of limit cycles has a pole at its frequency while the
power spectrum of quasicycles does not. In the time domain,
this means that the cycles driven by intrinsic noise have
a short correlation time while limit cycles have an infinite
correlation time. Since poles do not exist in real population
data due to stochasticity, finite size populations, measurement
error, etc., what this means for real data is that there is a
separation of scales between the correlation time of limit
cycles and quasicycles. This was first pointed out in detail
by Pineda-Krch et al. [29]. These authors also showed that
wolverine population cycles are likely quasicycles, while the
celebrated lynx-hare cycles from the Hudson Bay Company’s
trapping records are most likely limit cycles [29].

Other studies of the role of intrinsic noise have focused
on intrinsic noise contributions compared to extrinsic noise
contributions as a function of local population size [52,54]. In
frequency space, the best frequencies to analyze to distinguish
the relative importance of noise are high frequencies, corre-
sponding to the short timescale fluctuations of the system. To

extract predictions for the case of intrinsic noise, we look at the
large ω asymptotics of the power spectrum Eq. (46) at k = 0,

P (k = 0,ω) = 2pψϕ

ω2
, ω 
 ωm, (53)

where ωm is the modal frequency of the quasicycles. For
cycles driven by extrinsic additive noise, we look at the
same asymptotics for the power spectrum from the heuristic
calculation, which, as we noted above, can be considered as
a calculation for extrinsic noise. In this case, the asymptotic
form is

P (k = 0,ω) = p2ψ2 + e2ϕ2

ω4
〈ξξ 〉, ω 
 ωm, (54)

where the variance 〈ξξ 〉 is independent of population density
and ωm is the frequency of the quasicycles. While in this
case, both the expressions depend on the square of population
density, the decay in ω has a power of 2 for intrinsic noise, and
of 4 in the case of extrinsic noise. Thus the tails can be easily
distinguished in real data.

B. Distinguishing quasipatterns from mean-field patterns

Similar considerations can be applied to quasipatterns.
While further study is needed, the finite peak in the power
spectrum for quasipatterns indicates that quasipatterns gener-
ically have a shorter correlation length than mean-field
patterns, which have a pole in their power spectrum at the
wavelength of the pattern. Thus the techniques outlined above
for distinguishing mean-field limit cycles from quasicycles and
applied to real populations in [29] translate directly into the
space domain from the time domain.

For distinguishing unconserved extrinsic noise and intrinsic
noise contributions, the asymptotics for short-wavelength
fluctuations can again be derived for the intrinsic and extrinsic
noise cases. For intrinsic noise, we have

P (k,ω = 0) = k−2 ϕ

ν
, k 
 km, (55)
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where km is the wave vector of the mode of the power spectrum.
For extrinsic noise, we have

P (k,ω = 0) = k−4

ν2
〈ξξ 〉, k 
 km, (56)

where the variance 〈ξξ 〉 is independent of population density.
Like the quasicycle case, the scaling in k differs by a power of
2 between the extrinsic and intrinsic noise cases. Contrary to
quasicycles in the previous section, the extrinsic and intrinsic
noises lead to different powers of population density for large
k. This provides a useful tool for distinguishing between
the effects of unconserved extrinsic noise and intrinsic noise
on the formation of patterns especially if the density of the
populations can be varied through comparative study of field
data in different ecosystems, or through experiments. These
considerations are quite broad, and should qualitatively apply
to other systems, such as chemical reaction systems in which
quasipatterns or cycles may be present, such as the Brusselator
model of chemical pattern formation [34].

Another possibility beyond those considered here is noise
manifested through stochasticity in the kinetic parameters of
the system as is common in ecological models [55]. Systematic
study of such a model is well beyond the scope of this paper,
and is an interesting subject for future research. However, a
simple model of the effects of weak parameter noise on the
linearized dynamics shows that the tail of the power spectrum
will still be dominated by the effects of extremely weak
extrinsic noise so that the k−4 tail of the power spectrum is
retained with very small k−8 corrections (see Appendix A)
indicating that weak parameter noise is not a qualitatively
important factor in the analysis of quasipatterns. Absent weak
extrinsic noise, there is no evidence that weak parameter noise
generates quasipatterns on its own. Rather, it seems to only
add corrections to the approach to the mean-field steady state.

VII. THERMODYNAMIC LIMIT

To compare to data, we also must be able to estimate the
conditions under which the fluctuation driven effects described
above are important. While the considerations that follow are
mathematically elementary, they are important for the analysis
of real data and have not always been clearly elucidated in the
ecological literature, where it has sometimes been assumed
that intrinsic noise effects are only important if the total
population of each species is small [55]. In fact, the scale
of fluctuations is governed instead by the population size in a
volume (indicated by the parameter V in the calculation above)
sufficiently small that the time to diffuse out of the volume is
smaller than the typical time between reactions per particle.
The confusion arises because when space is neglected, the
organisms are all confined to such a volume, so the scale of
fluctuations is determined by the total population size [26,56].

The present calculation shows that there are two separate
limits in the construction of reaction-diffusion models. One of
these limits yields a particular kind of mean-field theory, and
the other, corresponding to what would traditionally be called
the thermodynamic limit in statistical physics, does not yield a
mean-field theory at all. Only in d = 0 do these limits coincide.
Recall that the theory was constructed by creating a lattice of
patches, each patch of volume V , and then taking the limit of

an infinite number of patches, and looking at the continuum
version of the theory. The thermodynamic limit corresponds
to the limit as the number of patches goes to infinity, while
the mean field limit corresponds to taking the volume of each
patch, V , to infinity.

The parameter V can be estimated by noting that the time
required on average to diffuse out of a volume V ∼ Ld can
be estimated to be t ∼ L2/D with diffusivity given by D.
If a characteristic reaction rate for single particles (possibly
depending in complex way on concentrations) is R, then the
size of a well-mixed volume is constrained by

L2

D
<

1

R
. (57)

Rearranging, the size of a well-mixed volume is estimated by

V ∼
(

D

R

)d/2

. (58)

Multiplying the size of a locally well-mixed volume by the
smallest local population density will provide an estimate of
how far the system is from the mean-field limit. However, care
should be taken because of amplification effects as discussed
in the following section. Further information about how far
the system is from the mean-field limit can be obtained by
examining the properties of the power spectrum or correlation
functions as discussed above.

VIII. EXPLAINING THE FAILURE OF MEAN-FIELD
THEORY

From the above calculation, as well as related calculations
ranging from zero-dimensional models of ecosystems to
models of biochemical oscillations [21,26,30,31] it is clear
that in many applications where the fundamental physics
contains intrinsic noise, mean-field theory fails to describe the
oscillatory dynamics in time and space of the system even for
relatively large systems with many degrees of freedom far from
a critical point. Qualitatively, this failure can be understood
quite generally by considering the nature of mean-field theory.

While there are many ways to derive mean-field theories
[22], to understand the failure of mean-field theory, the
simplest approach for systems described by a master equation
is to note that there are two essential steps to deriving a
mean-field theory: averaging and neglecting correlations.

Consider the first step, averaging. The average of the
trajectories is given by

ϕ = 〈N (t,x)〉 = lim
Mζ→∞

1

Mζ

∑
ζ

Nζ (t,x), (59)

where ζ is the index for realizations of the discrete Markov
process for the population dynamics, Mζ is the number of
realizations sampled, and Nζ (t,x) is the realization of the
discrete Markov process. Each individual realization may be
oscillatory, but the oscillations will have a great deal of noise
in their amplitude and phase. Summing over these oscillatory
contributions will under many conditions lead to an average, ϕ,
that is no longer oscillatory because the variance in amplitude
and phase between different realizations ζ of the stochastic
process will lead to cancellations of the oscillatory parts in
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FIG. 5. (Color online) Sample trajectories of the Markov process
for predator-prey dynamics. Note that while each is roughly oscil-
latory, a mean-field theory derived from the average of many such
trajectories would not contain oscillations.

the sum for the average above. That is, the sum of noisy
oscillations is not always oscillatory. Since mean-field theory
considers the dynamics of averages, it will not capture the
oscillations present in individual realizations of the dynamics
unless the feedbacks that generate the oscillations are much
more important than fluctuations (see Fig. 5).

IX. APPLICATION TO FIELD DATA AND EXPERIMENTS

While the calculation above was intended primarily to shed
light on the broad theoretical question of the fine-tuning prob-
lem in Turing instabilities rather than the Levin-Segel model
alone, it would still be satisfying to match the predictions above
to plankton data. Such an application to current field data in
planktonic systems is very difficult. In part this is because data
on plankton patterns are primarily gathered for large-scale
spatial patterns that are driven by turbulent stirring, rather than
biological interactions as in the theory presented here [14].
Convection accounts for most of the spatial heterogeneity of
plankton at scales above tens of meters [14]. However, there do
exist some limited data on plankton population heterogeneity
at meter and shorter length scales [13]. Further data on the
motility of plankton suggest that the ratio of diffusivities
for predator-prey pairs is of order 10 [57]. We calculated
above that with generic parameters, the criterion 47 yields
ν/μ > 2.48, while the Turing condition yields ν/μ > 27.8.
Under these conditions, it is likely that some populations
have fluctuation-driven patterns, if the Turing mechanism is
responsible for the pattern formation. Current data are not, to
our knowledge, adequate to go much further.

There are several additional problems with applying the
current theory to real planktonic systems, even if the data were

to be much higher resolution. The first is that plankton are
enormously diverse, with many species interacting with many
others, and body sizes and behaviors spanning several orders
of magnitude [58,59]. A second problem is that the current
theory is so simplified that there is no clear connection between
many of the parameters in the model and what is measured in
real populations. The best way to carry out the identification of
quasipatterns is probably not to engage in detailed modeling of
the population dynamics, but rather to use model independent
predictions, such as the density dependence of the correlations
described above, and the power of k and ω for large values
of k and ω in the power spectrum. Data sets associated with
plant systems are likely to be amenable to such analysis [15].
Additionally, laboratory experiments in engineered microbial
[7] or even chemical systems (see above comments on the
thermodynamic limit) may provide more controlled ways to
detect quasipatterns.

X. CONCLUSIONS AND PROSPECTS FOR FUTURE
RESEARCH

We conclude by noting that our analysis of the model in
Eqs. (1) has demonstrated that Turing patterns are much more
generic than is to be expected on the basis of mean-field
theory, partial differential equation analysis. We also have
pointed out some possible ways in which the fluctuation driven
spatiotemporal patterns discussed can be identified in real
data. While this paper focused on a single model, we wish
to emphasize again that the model was deliberately chosen
to be generic with the goal of providing broad insight into
the statistical mechanics of the Turing mechanism that can be
widely applied. As noted in the introduction, the conjectured
wide applicability of this result has received some support
from calculations on the Brusselator model [34] and a model of
Turing patterns in neuronal networks studied in the following
paper [17]. Further applications of this theory are potentially
as wide as the applicability of the Turing mechanism, which,
as was pointed out in the introduction, has been used to
explain patterns in an enormous variety of systems. In fact, we
conjecture that perhaps many or most observed Turing patterns
are the quasipatterns predicted in this paper. To demonstrate
this conjecture, the next step is to apply the concepts in this
paper to an experimentally well-characterized system, such
as an engineered bacterial system with Turing feedbacks.
Another important avenue of investigation is to further explore
ways to distinguish between quasipatterns and mean-field
patterns. Further theoretical progress may also be made by
addressing with a similarly detailed theory other noise-driven
spatiotemporal patterns such as intrinsic noise-driven epidemic
waves, which seem to be present in measles and dengue fever
epidemics [60,61].
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APPENDIX: INFLUENCE OF PARAMETER NOISE ON
QUASIPATTERNS

To calculate the effects of parameter noise on Turing models
to a first approximation, we take the linearized mean-field
dynamics,

−iωx = Ax, (A1)

and generalize to

−iωx = Ax + εξ x + x0, (A2)

where x0 is an initial deviation from mean-field equilibrium, ε
is a small parameter, and ξ is a diagonal matrix of white noise,
variance one. Only contributions to the power spectrum that
are independent of x0 persist in the long time limit.

Rearranging Eq. (A2) yields

x = − (A − εξ1)−1 x0. (A3)

For small ε, this can be expanded to yield

x = A−1
(
1 + ε A−1ξ

)
x0 + O(ε2). (A4)

Taking the dot product and averaging yields the sum of the
power spectrum for the predator and prey species, which is
sufficient for detecting the presence or absence of quasipat-
terns:

〈x†x〉 = (A−1x0)†(A−1x0) + ε2(A−2x0)† A−2x0. (A5)

Note that this power spectrum depends term by term on the
initial conditions x0, indicating that the power spectrum is
dominated completely by the effects of transient patterns
at times shorter than the relaxation time to the steady
state. Parameter noise only has the effect of correcting the
approach to steady state. Any qualitatively important effects
of parameter noise on quasipatterns are thus present only in a
nonlinear analysis.
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