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Summary

Pyrosequencing platforms have been widely used in
16S rRNA deep sequencing of organisms sampled
from environmental surveys. Despite the massive
number of reads generated by these platforms, the
reads only cover short regions of the gene, and the
use of these short reads has recently been called into
question for phylogeny-based and diversity analyses.
We explore the limits of the use of short reads by
quantifying the loss of information, and its effect on
phylogeny. Using available nearly-full-length reads
from published clone libraries and databases, and
simulated short reads created from these reads, we
show that for selected regions of the gene, short
reads contain a surprisingly high amount of biologi-
cal information, making them suitable to resolve an
approximate phylogeny. In particular, we find that the
V6 region is significantly poorer than the V1-V3
region in its representation of phylogenetic relation-
ships. We conclude that the use of short reads, com-
bined with a careful choice of the gene region used,
and a thorough alignment procedure, can yield phy-
logenetic information comparable with that obtained
from nearly-full-length 16S rRNA reads.

Introduction

Advances in sequencing technology allow researchers to
generate massive libraries of biological information. In
particular, high-throughput sequencing methods (Margu-
lies et al., 2005) are becoming widely used to analyse
microbial communities (Sogin et al., 2006; Turnbaugh
et al., 2006; 2009; Frias-Lopez et al., 2008; McKenna
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et al., 2008; Brazelton et al., 2010). One appealing aspect
of recent advances in technology has been the deep
environmental surveys of the microbial composition from
a wide variety of environments, ranging from ocean
(DeLong et al., 2006; Frias-Lopez et al., 2008), to soil
(Elshahed et al,, 2008), to mammal guts (Turnbaugh
et al.,, 2009). In addition, 16S hypervariable tag sequenc-
ing has exposed the existence of a so-called ‘rare bio-
sphere’ (Sogin et al., 2006), whose contribution to, and
impact in, the microbial environment are only now begin-
ning to be observable, quantified and appreciated (Bra-
zelton etal, 2010). The potential significance of a
previously unsuspected biosphere, rich in diversity but
low in abundance, is that it may offer a major clue as to
the response of ecosystems to change, and may well
control their ability to adapt, by providing a large reservoir
of genetic novelty to be tapped.

Despite this promise, the technology is still in its infancy.
In particular, the reads generated by hypervariable tag
pyrosequencing are short, spanning only hundreds of
nucleotides. In the case of 16S rRNA, this has forced
researchers to focus their studies on partial regions,
usually including one or more of its hypervariable regions
in an effort to capture the maximum possible amount of
useful biological information. Naturally, there have been
studies that compare the information obtained from these
short reads with that obtained from nearly-full-length
reads of SSU rRNA, quantifying the loss of information,
dependence on the region of 16S rRNA being studied,
and other possible biases (Liu et al., 2007; 2008; Huse
et al., 2008; Youssef et al., 2009). In particular, the effects
of the use of short reads in taxonomic assignments and
ecological diversity indices have been documented.
These studies make recommendations on which regions
of the SSU rRNA are better suited to minimize the arte-
facts based on the observations of their studies, yet
their recommendations are not fully consistent with each
other, underlining some of the many complexities of the
problem.

As pyrosequencing technology is maturing, the system-
atic artefacts that were present in earlier data sets have
become less of an issue (Sogin et al., 2006). These arte-
facts were by no means minor in terms of their biological
impact (Gomez-Alvarez et al., 2009; Quince et al., 2009;
Kunin et al., 2010). For example, point errors present in
reads and artificial replicates lead to spurious operational
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taxonomic unit counts and overestimation of abundances
in the operational taxonomic units (Gomez-Alvarez et al.,
2009; Quince et al., 2009; Kunin et al., 2010). Fortunately,
both of these artefacts can be easily removed with careful
preprocessing (Gomez-Alvarez et al., 2009; Quince et al.,
2009) and accurate alignment (DeSantis et al., 20063a;
Cole et al., 2009) of the libraries. As these artefacts are
being removed, we can grow more confident in pyrose-
quencing data and focus on the challenges imposed by
the intrinsic information loss present in these data sets.

The purpose of this paper is to quantify the amount of
phylogenetic information contained in short reads. In
order to do this, we estimate the correlation between the
phylogenetic information obtained using synthetic short
reads, to that from nearly-full-length reads. To this end, we
constructed an artificial clone library using 2000 nearly-
full-length bacterial SSU rRNA sequences, randomly
selected from the Greengenes (DeSantis et al., 2006b)
16S database, retrieved August 2009. The sequences in
the library were trimmed in length to simulate data
obtained using pyrosequencing, creating additional librar-
ies. The libraries were then used to construct maximum
likelihood (ML) phylogenetic trees. To quantify how much
information is preserved in the trees made with short
reads, a branch-length-based pairwise distance metric
(Farris, 1967; Farahi etal.,, 2004), supplemented with
Robinson—Foulds (RF) (Robinson and Foulds, 1981) and
weighted RF (Robinson and Foulds, 1979) metrics, was
used to correlate (Phipps, 1971; Farahi et al., 2004) and
compare the structures between the different trees. We
show that two different inferences of a phylogenetic tree
using the same short read library can show marked dis-
crepancies due to the stochastic nature of ML-based tree
reconstruction methods the nature of the region being
studied. We show that two different tree searches using
the same short read library can show marked discrepan-
cies due to the nature of the region being studied, given
the randomized starting trees used by RAXML to perform
such searches.

Then we show that, while a significant amount of infor-
mation is preserved in the short read-based trees, the
actual amount of information preserved seems to be not
only a function of the length of the read, but also a function
of the region sequenced. Our results indicate that the
V1-V3 hypervariable region is a good estimator of phylo-
genetic information, and would be the preferred target for
pyrosequencing assays of large communities, such as in
large-scale environmental metagenomic surveys.

Results

As we aimed to compare phylogenetic information
present in different regions of the 16S rRNA, we use a
metric that can appropriately compare phylogenetic trees
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created from the different regions. Our metric measures
the distance between a pair of sequences in the tree, and
compares it with the corresponding distance in the other
tree. The actual distance is computed as the length of the
shortest path in the branches of the tree that goes from
one member of the pair to the other one (Farris, 1967).
This distance accounts for the different branch lengths
calculated during the tree construction process. For a
whole tree, this distance is computed for all possible pairs
of sequences in the trees and it is stored as a distance
matrix.

Now, to compare two trees, we create a tuple of the
distances of corresponding pairs in both trees, and then
we calculate the Pearson correlation (PC) R2 for the set of
distances (Phipps, 1971). We chose this method because
it provides a balance between the computational expense
of calculating more detailed comparison metrics, and the
oversimplification of comparing single numbers coming
from each tree, numbers that do not necessarily provide
meaningful information, unless supplemented by extra
details, such as the distribution of possible distances
between randomly structured trees, which itself is some-
thing still very time-consuming to calculate.

We expect, for very similar trees, that the correlation R?
will be very close to 1.0. This is a consequence of how
close or far we expect different pairs of reads to be in
different trees. In an ideal case, reads that are found to be
close together in one tree are also expected to be found
close in the other tree. Likewise, if two reads are found to
be far apart in one tree, they are expected to be distant in
the other tree. Thus, if we plot the distances found in one
tree as a function of the distances found in a second tree,
we would obtain a straight line in the case of identical
trees, with R = 1.0. For trees that are slightly different, the
points will be scattered around this straight line. When the
correlation is very poor, this straight line behaviour would
be just a weak trend buried in a jungle of wildly scattered
points. That said, we do not expect a situation where we
observe very good, non-linear correlation, which can give
very low values of R2. We will call these graphs Sequence
Correlation Plots.

As a first calculation, we applied this metric to different
trees created from the same region. For the nearly-full-
length case, this measurement would yield the minimum
possible uncertainty in the structure of the resulting trees,
resulting from the ML procedure we used. Thus, we con-
struct an upper limit on the quality of our comparison
methodology. From the resulting value of R? and the graph
related to the comparison, we can base subsequent
explorations.

The short reads are between 120 and 400 base pairs
long, or approximately 15% and 30% of the full length of
the 16S gene, and it is reasonable to expect a loss of
phylogenetic information when using these reads. Now,
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when this distance metric is applied to trees created from
the simulated short reads, we expect more deviations
from the straight line behaviour of almost identical trees.
This is because the ML trees created from shorter reads
are harder to resolve — less sequence information leaves
greater ambiguities to be resolved. The ML problem in
these cases requires a more intense search of the solu-
tion space in order to converge to a solution, which itself
is one of many equally good approximations to the ‘real’
solution. This suggests an interesting possibility: if it is
harder to find a solution to the ML problem, which means
the sequences would contain less phylogenetic informa-
tion. This implies that the quality of a ML tree for fixed
computational effort could be used as a proxy for mea-
suring phylogenetic information content in the sequences
used to create the trees.

As a way to supplement the patristic correlation metric,
and also to gain further insight on the difference between
the trees, we also compared the trees using a RF metric
(Robinson and Foulds, 1981), and a weighted Robinson-
Foulds (WRF) metric (Robinson and Foulds, 1979). The
RF metric is the count of the splits present in one tree that
are not present in the other. In other words, it is the
symmetric difference of the sets of splits of the trees being
compared. The WRF metric, on the other hand, multiplies
each split count by a certain number. In our case, each
split is weighted by the support value of said split, where
the support value goes from 0 for no support, to 1.0 for full
support for the split. Besides providing another measure
of similarity between trees, using both RF and WRF
metrics provide us some insight on the nature of the
differences between the trees. If the RF distance is much
larger than the WRF distance, we can infer that the dif-
ferences between trees occur mostly on low-support sub-
trees, whereas if the WRF distance is closer to the RF
distance, then the differences are mostly due to rear-
rangements of high-support subtrees (Pattengale et al.,
2010).

From this kind of comparison, we can gain some insight
on two specific questions we have about the short reads:
(i) how much information is contained in the hypervariable
tag regions; and (ii) how the length of the read correlates
with the phylogenetic information contained in the nearly
complete gene. There has been previous work regarding
the latter question, exploring simulated data sets to
address the general question of length requirements for
tree reconstruction (Bininda-Emonds et al., 2001; Moret
etal, 2002), and although their concerns extend well
beyond the question of short reads and into large-scale
phylogeny in general, their findings are certainly relevant
to our case and add to our observation of the complexity
of the short reads situation.

In Fig. 1, we show Sequence Correlation Plots for the
nearly-full-length (FL) tree, as well as for all the consid-

ered regions. Distances in the plot are normalized to a
maximum value of 1.0 and, for clarity, they are also
binned. The bins have a width of 0.05 distance units
before normalization. The error bars correspond to the
standard deviation calculated during the binning
process.

In Fig. 1A, we show the comparison between two tree
searches performed on the alignment of nearly-full-length
reads. The correlation of these two trees is very high, and
this comparison can be thought of as an approximate
minimum of the possible uncertainty in determining the
phylogeny based on 16S rRNA, using RAXML as the
treeing tool, with the NAST-based alignments. There are
differences even in the nearly-full-length trees because of
the approximate, probabilistic nature of the solutions
found for the ML problem as solved by RAXML. Even in
this ‘benchmark’ case, there are a couple of notable fea-
tures in this plot. First, the error bars are very small in the
lower 20% of the pairwise distances in the plot, meaning
that the reads that were found to be close together in one
tree search stayed in similar positions in the other search.
As the pairwise distance is increased, there is an increase
in the size of the error bars, yet the error bars stay rela-
tively constant up to the maximum distance in the trees.
This indicates that the relationship between distantly
related pairs does not significantly deviate from the
average, indicating that the relationships between pairs
are preserved on average.

In Fig. 1B, we see a very similar situation for the reads
encompassing hypervariable regions V1 to V3 (V1-V3), a
library that can be experimentally obtained using 454 GS
FLX Titanium platforms. The rather surprising observation
is that the lower 15% of the pairwise distances are very
well preserved between tree searches on the same align-
ment, the error bars being comparable with those present
in Fig. 1A. Beyond this 15%, the error bars grow substan-
tially, but their magnitude remains more or less constant
throughout the set of pairwise distances, signalling some
loss of information compared with the FL trees, yet, at the
same time, still being able to resolve the long distance
relationships between reads for a majority of the pairs.
Interestingly, the PC in this case (R? = 0.89) is very similar
to that obtained when comparing the V1-V3 tree with the
nearly-full-length reads tree (Fig. 2). Overall, when com-
pared with the nearly-full-length situation, the V1-V3 has
produced very consistent trees, as indicated not only by
visually comparing the graphs, but also by the high value
of R2.

The situation for the other two regions appears very
different. There is poor consistency in the structures of the
different tree searches, and the error bars tend to grow as
the distance increases. In the V6 region graph, there is a
major change in behaviour at very large distances, sig-
nalling substantial differences in the tree structures.
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Fig. 1. Correlations between tree searches
performed on full-length and partial reads.
The sequence correlation plots show how
similar are two ML tree searches for the
different regions considered. The higher the
correlations, the more similar the solutions to
the ML problem. This measure can be used
as a proxy for phylogenetic information
content in the region used to construct the
tree. The dots correspond to the average
normalized distance in one tree as a function
of the corresponding distance in the other
tree, averaged over all distance pairs in a bin.
The shaded area corresponds to the standard
deviation for the points in each bin.

Figure 1C and D show the resulting plots for the short-
est reads analysed. Beyond the very closely related
reads, the error bars keep growing as the pairwise dis-
tances grow, in contrast to the FL and V1-V3 reads. This
likely indicates an inability to consistently resolve the rela-
tionship between distant reads across tree searches. In
particular, when focusing on the two trees we constructed
using the V6 region (Fig. 1D), there are major differences
between the distantly related taxa between both trees.
This, despite the fact that the trees constructed using the
short reads were calculated using more BS replicates
during the construction process, and it is likely that adding
more BS replicates to this process will not significantly
change the outcome.

We now apply the same comparison metric to trees
made from different regions to explore cross-correlation
between different regions of the 16S gene. Unlike the
previous case in which we used the correlation metric as
a proxy to estimate the intrinsic phylogenetic information
content of a given region, this cross-correlation between
different regions can be used to estimate the phylogenetic

information content from a region, relative to the informa-
tion present in another region.

Figure 2 shows the normalized pairwise distances
between the reads in one tree, as a function of the corre-
sponding distance of a second tree. The top row contains
all the comparisons against the nearly-full-length reads,
where the V1-V3 tree shows good agreement with the FL
tree. Other comparisons for this same region show simi-
larly high correlations (Table 1). A different picture can be
observed for V3 (Fig. 2A) and V6 (Fig. 2C), where corre-
lations are not as good. The values of the correlations also
vary with tree searches, such that the better match
between a short read and the nearly-full-length tree is
dependent on the found trees, signalling a rather impor-
tant loss of phylogenetic information.

The bottom row shows the comparison between the
different simulated short read libraries. As expected, com-
parisons with the V1-V3 region reads give a better cor-
relation, comparable even with the correlations with
nearly-full-length reads. But the comparison between the
V3 and V6 is not as good, highlighting substantial
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Fig. 2. Correlations between trees constructed using different regions. The top row shows pairwise distance correlations between trees from
the different regions and a full-length tree. The bottom row shows the correlations between all the trees made from the different regions.
These graphs illustrate the possible variations in tree correlation, ranging from very good (B) to poor (E). The dots correspond to the average
normalized distance in one tree as a function of the corresponding distance in the other tree, averaged over all distance pairs in a bin.

The shaded area corresponds to the standard deviation for the points in each bin.

Table 1. Correlations and distances between all trees studied.

Tree pair PC RF WRF Tree pair PC RF WRF

FL(1) vs. FL(2) 0.96 1012 150.98 V1-V3(1) vs. V3(1) 0.59 3302 746.68
FL(1) vs. V1-V3(1) 0.89 2700 861.52 V1-V3(1) vs. V3(2) 0.64 3336 750.52
FL(1) vs. V1-V3(2) 0.85 2724 871.21 V1-V3(1) vs. V6(1) 0.61 3634 942.84
FL(1) vs. V3(1) 0.59 3310 980.40 V1-V3(1) vs. V6(2) 0.53 3600 946.27
FL(1) vs. V3(2) 0.68 3308 969.56 V1-V3(2) vs. V3(1) 0.63 3306 746.42
FL(1) vs. V6(1) 0.69 3472 1083.62 V1-V3(2) vs. V3(2) 0.63 3322 744.12
FL(1) vs. V6(2) 0.60 3444 1083.58 V1-V3(2) vs. V6(1) 0.55 3638 943.23
FL(2) vs. V1-V3(1) 0.86 2702 871.29 V1-V3(2) vs. V6(2) 0.46 3596 946.51
FL(2) vs. V1-V3(2) 0.88 2742 886.41 V3(1) vs. V3(2) 0.78 2560 159.82
FL(2) vs. V3(1) 0.65 3300 979.69 V3(1) vs. V6(1) 0.34 3716 675.30
FL(2) vs. V3(2) 0.70 3292 969.87 V3(1) vs. V6(2) 0.33 3710 687.56
FL(2) vs. V6(1) 0.65 3476 1093.31 V3(2) vs. V6(1) 0.47 3704 666.35
FL(2) vs. V6(2) 0.58 3450 1091.76 V3(2) vs. V6(2) 0.42 3700 680.00
V1-V3(1) vs. V1-V3(2) 0.89 1578 171.42 V6(1) vs. V6(2) 0.76 2772 195.53

The table shows PC between all the trees used in this study, as well as their corresponding RF and WRF distances. The number in parentheses
represents the tree search used when multiple trees were made from the same library. We see that the PC values for the longest short read libraries
(V1-V3) are consistently high, and the corresponding values for the V3 and V6 regions show a high degree of fluctuation. Also of interest is the
increase of RF/WRF when moving from V1-V3 towards V6, noting that the differences between trees start involving high-support subtrees,
specially in the V6 case.
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differences between the structures of the trees created
using these regions.

The RF and WRF distances calculated for all tree pairs,
besides complementing the data obtained with the corre-
lations and giving us more insight on the differences
between the trees, should also be consistent with the
trends shown in the figures. Table 1 contains the PC, RF
distances and WRF distances for all tree pairs analysed in
this study. The number in parentheses indicates which of
the tree searches for that particular region is being com-
pared. The purpose of the table is to show all the range of
R? values present in the data set, and also compare them
with the corresponding RF and WRF distances. The first
point we want to show is the range of differences for trees
created from the same alignment. The PC values drop
from the FL trees down to the V3/V6 case, as the RF
distances increase, and the WRF distances only show a
slight increase. We can interpret these differences as an
increasing discrepancy between topologies and branch
lengths as the size of the regions being used to construct
the trees become shorter, but given the WRF distances
most of the differences seem to be concentrated on the
low-support subtrees. The next trend we notice is that the
R2? values between the V1-V3 trees and the FL trees are
consistently high, ranging from 0.85 to 0.89. Their corre-
sponding RF distances are very similar, ranging from
2700 to 2742, and their respective WRF distances also
follow this pattern. These numbers show that, while there
is quantifiable phylogenetic information loss, the tree
structure is rather well resolved and consistent across
tree searches. The next point we want to highlight is the
fluctuation of the R? values for the trees found for V3 and
V6, when correlated to the FL trees. From these numbers
alone we cannot reliably tell if one of these regions is
more suitable than the other. However, by looking at the
RF and WRF values, we can see that the topological
differences between the trees are due to rearrangements
of high-support subtrees. The fact that the RF and WRF
distances don’t fluctuate as much compared with the PC
values shows that, while the differences in subtree struc-
ture might be relatively comparable, the branch length
differences have a measurable effect, signalling poten-
tially damaging loss of phylogenetic information for these
regions. The final point is that the magnitude of the values
of R? for the V3 and V6 trees, when correlated with the
V1-V3 trees, are only slightly lower than for the FL case,
the corresponding RF distances are similar, and their
WRF distances are slightly lower, meaning that the topo-
logical differences are slightly more biased towards lower-
support subtrees, giving another point of support for
V1-V3 as being a good proxy for the FL reads.

Finally, we can say something about the trees them-
selves. In Table 2 we see the tree lengths, defined as the
sum of all branch lengths in the trees, and the logarithm of

Suitability of 16S rRNA short reads for phylogeny 3005

Table 2. Parameters characterizing the trees.

Tree Length LogLk

FL(1) 189.38 -473754.97
FL(2) 188.15 —473750.26
V1-V3(1) 252.90 -494070.55
V1-V3(2) 254.76 -493119.36
V3(1) 172.54 -519286.99
V3(2) 187.78 -520317.05
V6(1) 132.72 -552733.64
V6(2) 136.26 -550485.72

The table shows the tree length, defined as the sum of all branch
lengths of the tree, and the logarithm of the likelihood for the tree
(LogLk) using the full-length alignment as the input data, as calcu-
lated during the tree search using a maximum likelihood method. The
tree lengths don’t seem to follow a trend with decreasing read length.
The likelihood values, on the other hand, indicate that the trees made
with short reads get worse at describing the relationships inferred
from the full-length alignment as the reads become shorter.

the likelihood (LogLk) value for the trees, as calculated
using the original full-length alignment. The values of the
tree lengths don’'t seem to follow a particular trend with
respect to the read length. On the other hand, the LogLk
values seem to get closer to zero as the read length
decreases, meaning that the trees obtained are a pro-
gressively worse description of the data in the full-length
alignments, when decreasing the read lengths, thus
adding another layer of support to the observations about
the discrepancies when using shorter reads.

Discussion

We have examined trees created from simulated short
read libraries that were constructed using a random
sample from the Greengenes database, comparing them
using a Pearson Correlation of patristic distances
between leaves of the trees, supplemented with RF and
WREF distances. This comparison give us insight on the
phylogenetic information content of the short reads, and it
is a complement to other studies that quantify the pros
and cons (Quince etal.,, 2009; Kunin etal., 2010) of
pyrosequencing technology. This is specially relevant
now, in the light of the huge influx of environmental data
coming from big projects such as the ocean environmen-
tal studies (Shi et al., 2009), Human Microbiome Project
(Costello et al.,, 2009; Turnbaugh et al., 2010) or studies
on other more particular environments (Jones et al., 2010;
Koopman et al., 2010) that would be difficult to accom-
plish if not for pyrosequencing.

We have also only considered focusing on a de novo
approach to constructing phylogenetic trees, instead on
doing a survey on all popular methods for reconstructing
phylogenies, including insertion of reads into a pre-
existing tree. Although the question of the reliability and
comparison of large-scale phylogenies is certainly inter-
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esting, as evidenced by published studies on the subject
[for example Liu et al., (2008)] we wanted to focus on a
specific problem of phylogenetic information loss, not
doing a comparison of methods used in community analy-
sis, which is beyond the scope of this paper.

Our study identifies in detail the limitations of the short
reads, from a phylogenetic information point of view,
complementing other short read studies (Huse etal.,
2008; Liu et al., 2008; Youssef et al., 2009), which con-
clude that short reads less than 200 bp long show signifi-
cant topological differences between tree searches,
signalling phylogenetic information loss. From this obser-
vation, we can say that any conclusions derived using
phylogeny-based tools [most notably Unifrac (Lozupone
et al., 2006)] that used very short reads and de novo
phylogenies as their input data, have to be interpreted
with some significant degree of uncertainty, independent
of the region of 16S sequenced. Similar concerns have
also been expressed elsewhere in the published literature
(Schloss, 2010).

On the other hand, based on the results shown here,
the prospect looks much better when using appropriately
chosen longer reads, which are already accessible using
FLX Titanium pyrosequencing technology. These longer
reads make it possible to extract phylogenetic information
with high degree of reliability. The type of analysis we
performed can be extended to other genes of interest,
such as proteorhodopsins (Frigaard et al., 2006), which
show a high degree of environmental correlation.

Conclusion

In this paper, we generated synthetic short reads from
complete 16S rRNA databases, and compared the com-
plete phylogenetic trees with those obtained from the
synthetic short reads. Our results show unequivocally
that the different hypervariable regions are not equally
suitable for this purpose, and that the V1-V3 region is the
one that represents the best proxy for the complete 16S
rRNA gene.

Experimental procedures
Selection of sequence sample and alignment

The single data set used in this study consisted of 2017
bacterial, nearly-full-length 16S rRNA sequences randomly
selected from the Greengenes database (DeSantis et al.,
2006b), as of August 2009. The reason for choosing 2017
sequences as the sample size of the database comes from
the desire to perform a realistic comparison in the light of the
sizes of existing read libraries obtained for nearly-full-length
16S sequences (for example, using Sanger sequencing).
Although pyrosequencing is now able to create libraries with
sizes in the order of millions of reads, a comparison study is

Table 3. PC, RF and WRF metrics for a non-masked (NM) and
Lane-masked versions of a test alignment.

Tree pair PC RF WRF

NM(1) vs. NM(2) 0.97 1042 179.50
NM(1) vs. LM(1) 0.93 1934 512.35
NM(1) vs. LM(2) 0.94 1900 495.39
NM(2) vs. LM(1) 0.94 1910 503.73
NM(2) vs. LM(2) 0.95 1864 484.81
LM(1) vs. LM(1) 0.96 1304 183.44

certainly not realistic due to the lack of full-length libraries of
that size in studies, and also bumping the separate problem
of creating a phylogeny for such a big number of reads. Thus,
we chose to limit ourselves to a simple case and small size,
which is relevant to already published studies.

Itis customary to perform Lane-masking (Lane et al., 1985)
of 16S rRNA alignments when constructing neighbour-joining
trees. In our work, we use the more accurate ML algorithms.
No masking of the alignment is needed, because a ML
approach would place little weight on extremely variable
regions. To demonstrate this point, a Lane-masked version of
an almost-full-length 16S rRNA alignment was tested using
the standard RF and WRF metrics. The RF metric measures
the number of splits present in one tree that are not present
in the other tree, that is, the symmetric difference of the two
sets of splits. The WRF metric has the extra feature of weight-
ing the splits by their support value. This alignment was used
in two tree searches, and the corresponding results com-
pared using these metrics. As shown in Table 3, the trees
from the Lane-masked alignment show a RF distance of
1304, whereas the trees from the non-masked alignment
show a RF distance of 1042. In the case of the WRF distance,
the Lane-masked trees show a distance of 179.50, and the
non-masked version shows a distance of 183.44. Although
there is greater variation in the Lane-masked trees found by
ML, these differences have low-support values, as evidenced
by the very similar WRF distances for both the Lane-masked
and non-masked trees. This shows that Lane masking
creates a measurable deterioration of the quality of the tree
from a topological point of view, and therefore would create
an uncontrolled artefact in our topologically focused analysis.
For these reasons we do not use Lane masking.

Influence of sequence alignment on tree metrics

The sequences extracted for this study were obtained from
the Greengenes database, and as such those sequences are
profile-aligned using NAST to Greengenes own 16S rRNA
alignment template. If, for example, we profile-align the same
sequences to a different template, such as the SILVA bacte-
rial template, or an altogether different method, such as the
Infernal aligner present in the Ribosomal Database Project’s
16S pipeline, it is reasonable to expect differences between
the obtained phylogenies. In this study we are interested in
the relative differences between phylogenies processed
using the same pipeline, so a valid question is, what differ-
ences can we expect in the tree comparison metrics if we use
different alignment strategies?
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Table 4. Greengenes (GG) and SILVA (S) alignment templates com-
pared using the PC, RF and WRF metrics.

Tree pair PC RF WRF

GG(1) vs. GG(2) 0.98 936 157.11
GG(1) vs. S(1) 0.95 1766 648.35
GG(1) vs. S(2) 0.92 1782 646.06
GG(2) vs. S(1) 0.96 1820 663.00
GG(2) vs. S(2) 0.92 1780 644.58
S(1) vs. S(2) 0.96 890 193.67

Two tree searches were made from each alignment.

To this end, we set up a simple control test to measure the
differences between two different alignment templates, the
Greengenes template and the SILVA template, starting from
the same original data. We expect trees constructed using
different alignments of the same library to be somewhat dif-
ferent, of course, but it is essential that trees resulting from
searches performed on the same alignment should be more
similar to each other (for full-length 16S trees) than to trees
from a different alignment.

To see if this is the case, we realigned the full-length library
to the SILVA bacterial profile using Mothur's NAST and com-
pared the resulting trees with each other and with the trees
from the ‘unaligned’ library. The results are shown in Table 4.
The trees were compared using Pearson Correlation, RF and
WRF metrics. All three distance metrics between different
alignments are greater than those for trees from the same
alignment. This analysis shows that indeed there is consis-
tency between trees made from the same alignment, and
thus realignment is not necessary.

Although the RF scores of the SILVA and Greengenes
alignments are comparable, the WRF scores are significantly
different, presumably reflecting the presence of subtrees in
the SILVA trees with higher support values than the Green-
genes trees. This may also be reflected in the slight differ-
ence in the PC. In summary, realignment is not necessary for
our analysis, and we proceed just using the original Green-
genes alignment.

Trimming of sequences to create the libraries of
simulated short reads

The trimming procedure necessary to create the artificial
libraries was performed after the alignment of the source
sequences was completed, instead of arbitrarily set the
lengths before alignment, which would indiscriminately
remove some information give the uneven starting and
ending points for the reads. The reason for doing this is to
maximize the information content of the reads, and also to
use the standard starting and ending points for the studied
regions, which are defined by the primers used at sequencing
time. Also, for the almost-full-length library, the end points
were trimmed in such a way to maximize the overlap between
all reads.

The selected sequences were imported into the alignment
manipulation program Jalview (Waterhouse et al., 2009). The
sequences were then trimmed to the lengths expected for
pyrosequencing reads coming from the 454 Life Sciences
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Genome Sequencers GS 20, GS FLX Standard and GS FLX
Titanium platforms, making sure they contain the hypervari-
able regions of interest.

Construction of phylogenetic trees

To construct the ML phylogenetic trees from the sequences in
the libraries, we used RAxML (Stamatakis, 2006b) version
7.0.4, multithreaded using the Pthreads library (Ott et al.,
2007), using the rapid bootstrap (Stamatakis et al., 2008)
option and the CAT model of rate heterogeneity (Stamatakis,
2006a). The trees constructed using the nearly-full-length
sequences were created from 300 BS replicates, and the
ones created from the simulated short reads were created
using 1000 BS replicates. We performed two tree searches
for each library in the set using different seeds for RAXML’s
random number generator, which then we used to calculate
pairwise distances.

The actual command line used for the tree searches reads
as:
raxmlHPC-PTHREADS -T <threads> -fa -m GTRGA
MMA -N <replicates> -x <seedl> -p <seed2> -s
<alignment> -n <name>
where ‘threads’ is the number of threads per computer node,
‘replicates’ is the number of BS replicates in the tree search,
‘seed1’ and ‘seed2’ are integer numbers used to seed
RAXML’s random number generators, ‘alignment’ is the align-
ment file name, and ‘name’ is a name to identify the output file.

Distance and correlation calculations

To compare the different trees, we used a definition of pair-
wise distance, which depends on the structure of the tree.
The pairwise distance between two sequences is defined as
the sum of the branch lengths of the shortest path connecting
the leaves representing the sequences in the tree (Farris,
1967). For each tree we calculated the pairwise distances
between all possible pairs of sequences, with branch-lengths
calculated under GAMMA, thus creating a patristic distance
matrix for a particular tree.

Then we calculate the PC for all possible pairs of patristic
distance matrices. For that, we create tuples from the corre-
sponding elements in a pair of matrices, and then we calcu-
lated the PC R? for this set of tuples.

We also supplemented this metric with standard metrics for
tree comparison, namely the RF metric (Robinson and
Foulds, 1981) and a WRF metric (Robinson and Foulds,
1979). The RF distance between two trees is the number of
splits present in one tree that are not present in the other tree,
that is, the symmetric difference of the two sets of splits. The
WRF distance differs from the unweighted RF distance in that
it assigns a weight to each of the splits present in the sym-
metric difference, and the actual value is then the sum of
these weights. To calculate these distances between all trees
created we used RAXML version 7.2.6, which uses the
support values of the splits as the weight for WRF distances.

Plotting of distance data

As a data reduction step, we took the tuples created from the
two distance matrices being compared, and proceeded to do

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 13, 3000-3009



3008 P Jeraldo, N. Chia and N. Goldenfeld

a binning step. This step consisted in performing an average
over intervals of size 0.01 distance units, and also obtaining
the standard deviation for each interval. After normalizing the
maximum distance to 1.0, and rescaling the standard devia-
tions accordingly, the data sets were now ready for plotting.
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