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Effect of Coulombic friction on spatial displacement statistics
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The phenomenon of Coulombic friction enters the stochastic description of dry friction between two solids
and the statistic characterization of vibrating granular media. Here we analyze the corresponding Fokker-Planck
equation including both velocity and spatial components, exhibiting a formal connection to a quantum mechanical
harmonic oscillator in the presence of a delta potential. Numerical solutions for the resulting spatial displacement
statistics show a crossover from exponential to Gaussian displacement statistics. We identify a transient
intermediate regime that exhibits multiscaling properties arising from the contribution of Coulombic friction.
The possible role of these effects during observations in diffusion experiments is briefly discussed.
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I. INTRODUCTION

Since Langevin’s early investigations [1,2], the motion of
mesoscopic particles has been studied by equations basically of
the Newtonian type, supplemented by random stochastic force
terms. Through well-known and straightforward formalisms,
these “Langevin equations” are connected to the continuum
descriptions of the Fokker-Planck type [3–5]. The latter give
access to the corresponding stochastic distribution functions,
stationary or time-dependent.

In the simplest setup within this framework, the velocity
component of a one-dimensional stochastic motion is inves-
tigated [6]. Here, we consider the second-simplest example.
That is, we include both the velocity and spatial component of
the one-dimensional motion of a single particle [5]. Numerous
studies are related to this scenario, when the particles are
additionally exposed to nonharmonic spatial potentials [7–10].
On the contrary, however, investigations on particles exposed
to forces that are nonlinear in the velocity component are much
less frequently encountered [11]. An example of the latter type
forms the subject of this paper.

More precisely, we refer to frictional forces of the Coulom-
bic type [12]. They form a very basic example of nonlinear
frictional behavior, in contrast to conventional linear viscous
frictional forces. Only very recently have they been included
into the stochastic characterization of the Langevin and
Fokker-Planck type by de Gennes [13], who studied the dry
friction between two solids, and Kawarada and Hayakawa [14],
who were interested in the statistics of vibrating granular
media. In both studies, the authors consider only the velocity
component. The same is true for a more formal study using
the path integral formalism [15].

Examples of studies in which the impact of Coulombic
frictional forces on the spatial displacement statistics is taken
into account are even rarer. So far, such investigations have
been performed numerically in the context of contact line
motion of water droplets on vibrating solid substrates [16]
and of stick-slip motions of solid particles on vibrating
substrates [17].
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The purpose of this paper is to present results of further
analytical considerations of the underlying equations. We find
that the velocity-dependent part of the corresponding Fokker-
Planck equation is formally connected to the Schrödinger
equation for the quantum mechanical harmonic oscillator in the
presence of a delta potential. The spatial distribution function
is then obtained by numerically solving the corresponding
Brinkman hierarchy [18]. We will present the details of this
analysis in Sec. III of this paper, after a short review of the
underlying equations in Sec. II.

Starting from a sharp spatial distribution, a direct numerical
integration of the Fokker-Planck equation in time reveals a
crossover from a subsequent exponential to a Gaussian spatial
distribution function, as shown in Sec. IV. The exponential tails
in the spatial distribution function result from the influence of
the Coulombic friction. This has been found before, using a
less direct way of numerical calculation [16,17] compared to
the one applied here. We show that a data collapse of the
resulting spatial distribution curves at different times is not
possible by a simple rescaling procedure. Taking into account
higher moments of the spatial distribution function, we identify
an intermediate regime of multiscaling.

Originally, the concept of Coulombic friction was in-
troduced to describe the interactions between rigid solids.
However, as pointed out in Sec. V, Coulombic friction
may also play a role in systems that feature an apparently
regular diffusive behavior. This is because the mean-square
displacement still increases linearly in time. Higher-order
moments of the spatial displacement distribution function must
be analyzed to identify the impact of Coulombic friction. The
last section is left for the conclusions.

II. STOCHASTIC EQUATIONS

Coulombic friction was introduced into the Langevin
equation by considering the term −�σ (v) in addition to the
viscous frictional force [13]. Here, σ (v) is the sign-function

σ (v) =

⎧⎪⎨
⎪⎩

+1 if v > 0,

0 if v = 0,

−1 if v < 0,
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and � is the strength of the Coulombic frictional force (not the
Laplace operator). Including the spatial component, we obtain
for the one-dimensional stochastic motion of a single particle
the coupled system of equations

m
dv

dt
= −m

v

τ
− �σ (v) + γ (t), (1)

dx

dt
= v, (2)

where m is the mass of the particle and the first term on the
right-hand side of Eq. (1) includes the viscous force with τ

the corresponding relaxation time. The last term, γ (t), gives
the stochastic force, which is assumed to be δ correlated and
of Gaussian type: 〈γ (t)〉 = 0, 〈γ (t) γ (t ′)〉 = 2KkBT δ(t − t ′),
with K characterizing the strength of the force, kB being the
Boltzmann constant, and T the temperature. We can scale out
m, τ , and kBT through the transformation v′ = (m/kBT )1/2 v,
x ′ = 1/τ (m/kBT )1/2 x, t ′ = t/τ , �′ = τ/(mkBT )1/2 �, and
K ′ = τ/(mkBT ) K , where primes are neglected in the
following.

Comparing the magnitude of the terms on the right-
hand side of Eq. (1), de Gennes identified three different
regimes [13]. We summarize them in the “line phase diagram”
in Fig. 1. If � is small enough, the viscous frictional forces
dominate and the behavior of the system is similar to the
case originally studied by Langevin [1,2]. Above a crossover
value �∗ = K1/2, the Coulombic dry friction dominates the
viscous force. This regime is called the “partly stuck regime”
if the particle is not yet completely stuck. The latter happens
beyond a value F = (2K/τc)1/2, where Coulombic friction
also outweighs the stochastic force γ (t). Here, τc is the
correlation time of the stochastic noise. In a strict sense, this
regime is never reached when the spectrum of the stochastic
force is purely white (τc → 0).

Numerically integrating the coupled Langevin equations
(1) and (2) forward in time requires a specific update scheme.
In principle, the time steps must be infinitely small in order
to respect the singular behavior of the −�σ (v) term at v = 0.
We will concentrate on the continuum picture in the following
by investigating the corresponding Fokker-Planck equation.

Scaling out m, τ , and kBT , this equation becomes

∂tf = { − v∂x + ∂v[v + �σ (v)] + K∂2
v

}
f. (3)

In our case, f = f (x,v,t) is the space-, velocity-, and time-
dependent probability distribution function. The stationary,
velocity-dependent solution of this equation reads

fst(v) = e
− 1

K

(
v2

2 +�|v|
)

√
2πKe

�2
2K

(
1 − erf

{
�√
2K

}) . (4)

viscous partly stuck stuck

0 Δ∗
=K

F
=(2K

τ )
τc: noise corr. time

Δ

FIG. 1. (Color online) Qualitative “line phase diagram” following
de Gennes [13]. The three different regimes “viscous,” “partly stuck,”
and “stuck” are shown as a function of the strength of the Coulombic
frictional force �.

FIG. 2. (Color online) Examples for the shape of the velocity-
dependent stationary solution of the Fokker-Planck equation (3). With
increasing strength � of the Coulombic frictional force, the cusp
singularity at v = 0 becomes more and more pronounced.

As expected, we retrieve the Gaussian shape in the absence of
the Coulombic frictional contribution, � = 0. Increasing the
Coulombic frictional parameter � leads to the emergence of a
cusp singularity at v = 0 (see Fig. 2).

We will consider two different scenarios to fix the value
of the strength of the stochastic force, K . On the one hand,
we may define a particle temperature in the stationary state
from the averaged square velocity 〈v2〉. fst(v) from Eq. (4) is
used to calculate this average. If we set the resulting particle
temperature equal to the overall temperature of the system, we
obtain a fluctuation dissipation relation between the strength
of the stochastic force, K , and the strength of the Coulombic
frictional force, �:

K + �2 −
√

2K
π

�e− �2

2K

1 − erf
{

�√
2K

} = 1. (5)

FIG. 3. (Color online) Numerical solution of Eq. (5): the strength
of the stochastic force K as a function of the strength of the Coulombic
frictional force �.
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Numerical solution of this equation reveals a roughly linear
relation between � and K in the interesting parameter regime,
as shown in Fig. 3. Further remarks on this relation are included
in the Appendix.

On the other hand, we may set K = 1. This is the
value corresponding to the fluctuation dissipation theorem for
conventional Brownian motion in the absence of Coulombic
friction. The latter choice implies that the dissipative process
of Coulombic friction does not alter the nature of the stochastic
force on the particle.

We will come back to these two different scenarios in
Sec. V. In both cases, we are left with only one independent
parameter, �. We remark that the parameter K can also be
scaled out of Eq. (3) as indicated at the beginning of the next
section.

III. ANALYTICAL CONSIDERATIONS

We now turn to the further investigation of Eq. (3), pointing
out analytical relations not recognized so far. For this purpose,
we note that the parameter K can be scaled out through
the transformation x̂ = x/

√
K , v̂ = v/

√
K , and �̂ = �/

√
K .

This implies f̂ (x̂,v̂,t) = Kf (x,v,t) due to normalization. In
favor of readability the caret (ˆ) will be omitted.

The Fokker-Planck operator on the right-hand side of
Eq. (3) can then be split into a reversible and a nonreversible
part,

Lrev = −v∂x, (6)

Lir = ∂v[v + �σ (v)] + ∂2
v . (7)

Via the usual transformation [19], L → L̄ = √
fst

−1
L

√
fst,

we obtain

L̄rev = −v∂x, (8)

L̄ir = 1
2 [1 + 2�δ(v)] − 1

4 [v + �σ (v)]2 + ∂2
v . (9)

This result is based on the relation ∂vσ (v) = 2δ(v). Formally,
the latter follows from σ (v) = 2	(v) − 1, where the Heaviside
function 	(v) is given by 	(v > 0) = 1, 	(v < 0) = 0, and
	(v = 0) = 1

2 .
Now, L̄ir in Eq. (9) is Hermitian. This makes it possible for

us to find the solutions to the eigenvalue problem

L̄irψμ(v) = −μψμ(v) (10)

and then expand the transformed probability distribution
function f̄ (x,v,t) as

f̄ (x,v,t) =
∑

μ

cμ(x,t)ψμ(v). (11)

The advantage of this formulation is that the variables (x,t)
can be separated from the velocity v. Inserting the expansion
(11) into the transformed version of Eq. (3) leads to a
hierarchy of coupled partial differential equations for the
expansion coefficients cμ(x,t) [18,19]. The benefit of this
procedure results from noting that c0(x,t) corresponds to the
time-dependent spatial distribution function [19],

c0(x,t) =
∫ ∞

−∞
f (x,v,t) dv, (12)

the quantity we are looking for.

We derive the solutions to the eigenvalue problem Eq. (10)
by first concentrating on the regime v � 0. A simple transfor-
mation ṽ := v + � (ṽ � �) leads to

−∂2
ṽ ψμ(ṽ) + {

1
4 ṽ2 − �δ(ṽ − �)

}
ψμ(ṽ)

= (
μ + 1

2

)
ψμ(ṽ). (13)

This transformation shows that the Hamiltonian L̄ir is related
to the case of a quantum mechanical harmonic oscillator in the
presence of an additional pinning δ potential.

The harmonic oscillator potential and the pinning δ poten-
tial separately found their way into virtually every introductory
course on quantum mechanics. It is amusing to note that the
combination of both cases appears only relatively recently in
the literature [20–22]. Performing an analysis similar to the one
presented in Ref. [21] (z0 = � and −a = � in Ref. [21]), and
including the regime v � 0, we find: (i) Even eigenfunctions
are given by ψμ(v) = C Dμ(|v| + �), the corresponding
eigenvalues μ are determined by the relation Dμ+1(�) = 0.
(ii) Uneven eigenfunctions are given by ψμ(v) =
C σ (v) Dμ(|v| + �), and the corresponding eigenvalues μ

are determined by the relation Dμ(�) = 0. (iii) The small-
est eigenvalue is given by μ0 = 0, with the eigenfunction
ψ0(v) = [fst(v)]1/2. Here, Dμ(v) are the parabolic cylindrical
functions, and C = [

∫ ∞
−∞ Dμ(|v| + �)2 dv]−1/2. The eigen-

functions ψμ(v) form an orthonormal set. In the limiting case
of � → 0 they correctly tend to the eigenfunctions of the
harmonic oscillator denoted by φn(v) in the following.

Using these results and expansion (11) in the transformed
Eq. (3), we obtain

∑
μ

ψμ(v) ∂tcμ(x,t) = −
∑

μ

μψμ(v) cμ(x,t)

−
∑

μ

v ψμ(v) ∂xcμ(x,t). (14)

The separation of the variable v from (x,t) is not completed
due to the factor v in the last term.

For � = 0, this case was solved by noting that [19]

L̄revf̄ = −v∂x f̄ = −[b+∂x + b∂x]f̄ , (15)

where b+ and b denote the creation and annihilation operators
corresponding to the case of the harmonic oscillator. By
climbing in the harmonic oscillator spectrum, the factor v can
be suppressed since

b+φn(v) = [ − ∂v + 1
2v

]
φn(v) = √

n + 1φn+1(v), (16)

bφn(v) = [
∂v + 1

2v
]
φn(v) = √

nφn−1(v). (17)

When � 	= 0, an analogous treatment is not possible,
since the eigenvalues are not separated by integer values. We
therefore expand the eigenfunctions ψμ(v) into the harmonic
oscillator eigenfunctions φn(v), then apply the creation and
annihilation operators to get rid of the factor v, and, finally,
expand the φn(v) back into our eigenfunctions ψμ(v). This
leads to a Brinkman hierarchy of the form

∂tcμ(x,t) = − μcμ(x,t) −
∑

ν

eμν∂xcν(x,t) (18)
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with the expansion coefficients

eμν =
∑
m

〈φm|ψν〉{
√

m〈ψμ|φm−1〉 + √
m + 1〈ψμ|φm+1〉}.

(19)

For � → 0, these expansion coefficients correctly tend to the
analytical harmonic oscillator solutions, eμν → √

ν δμ,ν−1 +√
ν + 1 δμ,ν+1, with δαβ the Kronecker delta. eμν = 0 if both,

μ and ν are either even or uneven. The latter excludes advective
terms of the same order.

As an example, we numerically solved the Brinkman
hierarchy up to third order for two different cases of Coulombic
friction. First, we set � = 6. The value of the strength K of
the stochastic force was chosen as K ≈ 5.40 according to the
fluctuation dissipation relation (5). Second, we set � = 1.1.
Here, we chose K = 1 corresponding to its value for a freely
moving Brownian particle. We started from a narrow Gaussian
spatial distribution and then iterated it forward in time to
find the respective spatial distribution function c0(x,t) [see
Eq. (12)]. In Fig. 4, we compare to the case of conventional
diffusion without Coulombic friction (� = 0, K = 1) but
with identical initial conditions. The effect of the Coulombic
frictional force term is obvious, and the two chosen cases of
Coulombic friction lead to similar results.

FIG. 4. (Color online) Semilogarithmic plot of the spatial dis-
tribution functions c0(x,t), calculated numerically from the corre-
sponding Brinkman cascades. The narrower (solid blue and dashed
orange) curves correspond to two different cases of Coulombic
friction (� = 6, K ≈ 5.40 and � = 1.1, K = 1, respectively). No
Coulombic friction was present in the case of the broader (grayish)
curve (� = 0, K = 1), which therefore represents the case of
conventional Brownian motion. All three curves follow from the same
narrow Gaussian initial distribution after an equal amount of iterating
time steps. (Technical details: variance of the initial Gaussian spatial
distribution σ 2 = 0.05; 5000 lattice points of distance dx = 0.1;
25 000 time steps of step size dt = 0.005. In the expansion (19) the
first 40 harmonic oscillator eigenfunctions were used to calculate the
corresponding coefficients eμν . The shape of the curves is obtained
after initial transient exponential tails have moved outward.)

IV. DIRECT NUMERICAL INTEGRATION

In the next step, we numerically integrated Eq. (3) forward
in time over the x-v space. We started from an initial dis-
tribution function f (x,v,t = 0) = “δ(x)”fst(v), where “δ(x)”
was represented by a narrow Gaussian spatial distribution and
fst(v) by Eq. (4). The spatial distribution function c0(x,t) then
follows via Eq. (12) at each time step. Again we considered
two different scenarios of Coulombic frictional strength of
� = 6, K ≈ 5.40 and � = 1.1, K = 1. Some resulting spatial
distribution functions at different times are shown in Fig. 5.

For smaller times, exponential tails are identified within
the observation window. With increasing time and broadening
of the distribution, these exponential tails move outward
and the curves within the observation window take on a
Gaussian shape. In that sense, we observe a crossover from
an exponential to Gaussian behavior.

There is a subtle difference in the statistic properties of the
transient exponential compared to the final Gaussian behavior.
This becomes clear when we try to rescale the different
distribution curves in Fig. 5 to make them collapse onto a
single curve. For that purpose, the positions of the values
of the distribution function are shifted from x to x/

√
t for

each curve, respectively. The magnitude of the respective
distribution function is increased by log10

√
t to keep the

normalization. As Fig. 6 shows, a reasonable data collapse is
easily achieved for times t > 50. In that regime, the curves in
the observation window are of predominantly Gaussian shape.

To achieve a better data collapse in the central region and
stress the presence of the exponential tails for the smaller
times, we have used t = 0.4 instead of t = 1, t = 3.9 instead
of t = 5, and t = 14 instead of t = 15 to do the rescaling.
However, for the smaller times, the simple data collapse fails.
The reason for this failure becomes evident when we look at
the time dependence of the moments of the spatial distribution
functions. Since they are even functions in x, all uneven
moments vanish: 〈xn〉 = 0, if n is an uneven integer.

For the positive even integer values n we write

〈xn〉 ∝ t ζ (n) (20)

in order to parametrize the breakdown of the simple data
collapse. In the Gaussian case, ζ (n)/n is constant, which we
can refer to as single scaling. This is what we observe for the
later times. However, we find that in the early time regime
ζ (n)/n is a function of n. In other words, we have found a
transient regime that can be represented as multiscaling.

Looking at the time dependence of ζ (n), we can find a
crossover time from the exponential to the Gaussian regime.
For that purpose, we calculated for each time step the function
ζ (n) = d(log 〈xn〉)/d(log t), n = 2,4,6,8,10,12. The resulting
time-dependent functions 2ζ (n)/n are plotted in Fig. 7 for the
different values of n.

In the Gaussian regime, the values of 2ζ (n)/n should fall on
one point at each time step. This becomes true asymptotically
at long times t , reflecting the data collapse in Fig. 6 for the
long-time distribution functions. We observe that the values of
2ζ (n)/n split for different values of n at small times t . This
defines an intermediate regime of multiscaling. It results from
the influence of the Coulombic frictional term. In Fig. 6 it
corresponds to the noncollapsing curves at smaller times.
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(a) (b)

FIG. 5. (Color online) Semilogarithmic plot of spatial distribution functions c0(x,t), calculated directly from numerically integrating the
Fokker-Planck equation (3) forward in time. For short times exponential tails are observed due to Coulombic friction. They move outward with
increasing time, leaving a Gaussian shape in the observation interval. The parameters were set to (a) � = 6, K ≈ 5.40 and (b) � = 1.1, K = 1.
(Technical details: variance of the initial Gaussian spatial distribution σ 2 = 0.005; 20 000 lattice points in x direction of distance dx = 0.01;
400 lattice points in the v direction of distance dv = 0.05; 1 × 104, 5 × 104, 15 × 104, 50 × 104, 150 × 104, 300 × 104 time steps of step size
dt = 0.0001, respectively.)

As shown by Fig. 7, in the intermediate regime the values of
2ζ (n)/n relax toward their common Gaussian value. We have
fitted their intermediate behavior by straight lines. At ln t ≈ 4
and ln t ≈ 4.5, respectively, where these lines approximately
cross the asymptotic Gaussian value of 1, we can roughly
define a crossover point between the two regimes. The values
of 2ζ (n)/n, plotted as a function of n, are well fitted by a
parabolic curve, as depicted in Fig. 8.

The initial behavior in Fig. 7 for t → 0 is related to the
fact that we use a narrow Gaussian distribution as an initial
condition. We have checked our numerics by comparing to
the case where Coulombic friction is absent (� = 0, K = 1).
Then Gaussian behavior is obtained at all times: all values of
2ζ (n)/n for different n fall onto one data point at each time
step t .

In conclusion, the nonlinear Coulombic frictional force
leads to apparent multiscaling on intermediate time scales.
This is revealed by the failure of a simple data collapse when

the data are rescaled only on a single scale. It becomes even
more evident from the varying time dependence of the different
moments of the spatial distribution function.

V. DISCUSSION

In this section, we shortly discuss the observability of
Coulombic frictional effects during experiments on diffusive
motions. More precisely, we refer to particle tracking in
systems at thermal equilibrium. The usual quantity evaluated
in such experiments is 〈x2〉, the mean-square displacement. A
diffusion coefficient D is then derived from the linear increase
of the mean-square displacement with time, 〈x2〉 = 2Dt .

We have calculated the time dependence of the mean-square
displacement as the second moment of the spatial displacement
distribution functions. The results are shown in Fig. 9 for the
same parameter values as for those used to obtain Figs. 4–8.
As in the case of conventional Brownian motion, we find a

(a) (b)

FIG. 6. (Color online) Simple rescaling of the data curves of Fig. 5 as given by the axes labels and the main text. The data collapse works
well for the Gaussian parts. However, it fails in the exponential regimes. Values of the parameters were set to (a) � = 6, K ≈ 5.40 and
(b) � = 1.1, K = 1.
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(a) (b)

FIG. 7. (Color online) 2ζ (n)/n as a function of ln t , where the exponent function ζ (n) is defined by 〈xn〉 ∝ t ζ (n). At long times, all curves
converge to one value, characteristic for Gaussian statistics. Below a crossover time, however, Coulombic friction leads to explicit non-Gaussian
behavior. The two cases correspond to (a) � = 6, K ≈ 5.40 and (b) � = 1.1, K = 1.

linear increase of the mean-square displacement during the
whole time of observation. Consequently, to clarify the nature
of the underlying frictional mechanism during an experiment,
the evaluation of the mean-square displacement alone is not
sufficient. It would be important to evaluate the higher-order
moments from the measured distribution functions. Although
the 12th moment listed in Fig. 7 is certainly not realistic, the
fourth or maybe sixth moment should be possible. A spreading
of the function 2ζ (n)/n for different values of n would reveal
more about the underlying frictional process. In this context,
we mention two experiments on soft matter systems. In both
cases, a linear increase of the mean-square displacement was
found. An analysis of the higher-order moments as outlined
above may be interesting.

The first example is the diffusive motion of tethered vesicles
on supported lipid bilayers [23,24]. The vesicles were tethered
by DNA strands chemically attached to the hydrophilic head
groups of single lipid molecules. One of these lipids was part
of the vesicle membrane, and the other was part of the lipid
bilayer. Interestingly, the properties of the motion could be
changed by controlled addition of salts or polymers.

It was pointed out that effective frictional forces may play a
significant role for the motion observed. These frictional forces

should mainly result from the interaction between the vesicles
and the bilayer membrane (and probably not from dragging
the anchoring lipid molecule through the supported bilayer
membrane) [24]. Besides, intermediate trapping by defects in
the supporting bilayer should slow down the diffusive motion
of the vesicles. An analysis of the higher-order moments and
the corresponding exponents ζ (n) could reveal more about the
contributions of each of these processes.

The other example is the one-dimensional diffusive motion
of colloidal polystyrene particles on top of straight bilayer
membrane tubes [25]. These tubes were adsorbed on a solid
substrate and not moving in the lateral direction. On top of
the tubes, particles of roughly the same diameter (∼100 nm)
were adsorbed. They were repelled from the substrate due to
electrostatic interactions. Their motion in a fluid environment
(mainly water) was recorded by methods of single particle
tracking [26]. The time-dependent spatial distribution func-
tions were found to have the same qualitative appearance in
shape as the ones shown in Fig. 5. In particular, a crossover
from exponential to Gaussian shape of the distribution function
was identified within the observation window. The adsorption
on top of the tubes reduced the diffusion coefficient D by a
factor of 1/5 when compared to the nonadsorbed case.

(a) (b)

FIG. 8. (Color online) Values of 2ζ (n)/n as a function of n at time ln t ≈ 2.5 and fitted by a parabola for (a) � = 6, K ≈ 5.40 and (b)
� = 1.1, K = 1.
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(a) (b)

FIG. 9. (Color online) Mean-square displacement as a function of time for (a) � = 6, K ≈ 5.40 and (b) � = 1.1, K = 1. We find a linear
relationship 〈x2〉 ∝ t in the major part of the inspected time interval. The inset (same axes labels) stresses that this linear relationship also
prevails at the early times where we observed the exponential tails within the observation window.

We must remark at this point that the length and time scales
accessible by our numerical calculations differ by several
orders of magnitude from the ones in these experiments. In
particular, it is not clear by which speed the exponential tails
of the distribution function would move outward on these
experimental time scales. (In other words, on the experimental
time scales the exponential tails due to an effective Coulombic
friction may have left the observation window already, and the
exponential tails observed in Ref. [25] may have a different
source.) At this stage, a direct connection between our results
and the above experimental results is therefore not possible.
Again, this stresses the importance of analyzing the higher-
order moments of the experimentally obtained distribution
functions.

The sets of parameter values (a) � = 6, K ≈ 5.40 and
(b) � = 1.1, K = 1 used in Figs. 4–9 both lead to a reduction
of the diffusion coefficient D by a factor of 1/5 when compared
to the absence of Coulombic friction � = 0, K = 1. On the
one hand, in case (a), we followed the fluctuation dissipation
relation Eq. (5). On the other hand, in case (b), we kept
the strength of the stochastic force K the same as without
Coulombic friction. These are the two scenarios outlined at
the end of Sec. II. The crossover value �∗ is calculated for the
two scenarios as �∗ ≈ 2.33 and �∗ = 1, respectively. Since
� > �∗, both cases probe the partly stuck regime (see Fig. 1).

We want to close this discussion with general remarks on
the nature of Eq. (1). As always when dealing with frictional
behavior in a phenomenological way [12], Eq. (1) should
be regarded as a simple qualitative approach to effectively
describe the more complicated underlying processes at a
lower level of description. From underlying rate processes,
the correct stochastic differential equation can be described.

When the Langevin equations (1) and (2) are used to
characterize experimental results, only two degrees of free-
dom, x and v, are retained from the underlying many-body
system description. In general, however, they are coupled
to the other degrees of freedom of the system. Therefore,
we implicitly assume that these other degrees of freedom
have been integrated out (see Refs. [27–30] for a well-known
treatment). The coupling to the environment is only reflected

in the values of the parameters τ , �, and K , as well as
the functional form of the frictional and stochastic forces.
We must perform this integration procedure explicitly, if we
wish to obtain detailed functional forms for the frictional
and stochastic forces from more microscopic models. Such
a procedure would determine the precise relation between the
strengths of the frictional and stochastic forces.

Here, we have followed a purely phenomenological ap-
proach. We discussed two cases for the strength of the
stochastic force. On the one hand, the fluctuation-dissipation
relation Eq. (5) marks an upper limit for the strength of the
stochastic force K in a system at thermal equilibrium (see the
Appendix). On the other hand, the value K = 1 corresponds
to its value in the absence of Coulombic friction. Within the
narrow window accessible to the direct numerical calculations,
both of these two scenarios lead to qualitatively identical
results.

VI. CONCLUSIONS

The effect of Coulombic frictional forces in stochastic
equations of motion formed the central topic of this paper.
We have mainly studied the statistical properties of the spatial
distribution functions resulting from the related Fokker-Planck
equation.

As a first step, we have revealed the connection of the
underlying equation to the case of a quantum mechanical
oscillator in the presence of a pinning delta potential. This
allowed us to derive the coefficients in the corresponding
Brinkman hierarchy. The latter then offers the possibility
of numerically calculating the spatial distribution functions
in an approximate but time-efficient way. In addition, we
numerically integrated the Fokker-Planck equation forward
in time directly.

We have found exponential tails in the spatial distribution
functions that move out of the observation window with
increasing time. In the intermediate time regime, where these
exponential tails are present, effective multiscaling has been
detected for the spatial distribution functions. The data collapse
through a simple rescaling procedure fails. This becomes more
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evident when the time dependence of the different moments
of the distribution is inspected and contrasted with the purely
Gaussian case. Such a procedure serves to identify the regime
where Coulombic friction dominates, and a crossover time can
be extracted.

Finally, we have discussed the possibility of observing
the influence of Coulombic friction during experiments on
diffusive motions. Our central conclusion is that it is important
to determine and analyze the behavior of the higher-order
moments of the experimental distribution functions to learn
more about the underlying physical processes.

After this work had been completed, a related manuscript
appeared [31]. The authors of this manuscript also find the
eigenfunctions to Eq. (1) and present details on the analysis of
the corresponding spectra. A spatial component corresponding
to Eq. (2), however, is not taken into account in Ref. [31].
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APPENDIX: FLUCTUATION DISSIPATION RELATION

In this Appendix, we discuss the issue of deriving a
fluctuation dissipation relation for a system in thermal equi-
librium that obeys the Langevin equations (1) and (2) or the
corresponding Fokker-Planck equation (3). In other words, we
are looking for an expression for the strength of the stochastic
force K as a function of the friction parameters (we restrict
ourselves to constant values of K in this study). For that
purpose it is sufficient to concentrate on the velocity-dependent
part of the equations. Then the only degree of freedom in the
model is the velocity of the particle v.

We start from the equipartition theorem
〈
v
∂H

∂v

〉
= 1 (A1)

in rescaled units. H is the Hamiltonian that characterizes the
current energetic state of the system.

Performing the ensemble average using the stationary
velocity distribution function fst (v) from Eq. (4), we obtain
the condition∫ ∞

−∞
dv e− 1

K
( v2

2 +�|v|)v
∂H

∂v
=

√
2πKe

�2

2K

(
1 − erf

{
�√
2K

})
.

(A2)

This relation is satisfied, if the Hamiltonian reads

H (v) = 1

K

(
v2

2
+ �|v|

)
. (A3)

At this point, we must note that H (v) does not correspond
to the kinetic energy of the particle itself, although v describes
its velocity. Equations (1)–(3) and (A3) must rather be
interpreted as effective phenomenological equations for one
single remaining degree of freedom v. “Effective” here means
that all the other degrees of freedom that are present in more
microscopic characterizations and describe the energetic state
of the environment of the particle have been integrated out.
The energetic effect on the environment due to frictional
interactions, however, is expressed as a function of the
magnitude of v and enters into expression (A3).

In the viscous case of a freely moving Brownian particle
(� = 0), the Hamiltonian H (v) is set equal to the kinetic
energy of the particle. From Eq. (A3) we then find the usual
textbook example K = 1 (or K = 1/τ , if we do not scale
out the viscous relaxation time τ ) [5]. Here, since deriving
microscopic models is beyond the scope of this study, we do
not know the value of the proportionality constant K . What we
do know on physical grounds is that the mean kinetic energy of
the particle itself, 〈v2/2〉, in a passive system cannot be larger
in the presence of Coulombic friction than without it:

〈v2〉 � 1. (A4)

Performing the ensemble average, again using fst(v) from
Eq. (4), leads to the fluctuation dissipation relation (5) and
thus sets an upper limit for the strength of the driving stochastic
force K .
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