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In the cat or primate primary visual cortex (V1), normal vision
corresponds to a state where neural excitation patterns are driven
by external visual stimuli. A spectacular failure mode of V1 occurs
when such patterns are overwhelmed by spontaneously generated
spatially self-organized patterns of neural excitation. These are ex-
perienced as geometric visual hallucinations. The problem of iden-
tifying the mechanisms by which V1 avoids this failure is made
acute by recent advances in the statistical mechanics of pattern for-
mation, which suggest that the hallucinatory state should be very
robust. Here, we report how incorporating physiologically realistic
long-range connections between inhibitory neurons changes the
behavior of a model of V1. We find that the sparsity of long-range
inhibition in V1 plays a previously unrecognized but key functional
role in preserving the normal vision state. Surprisingly, it also
contributes to the observed regularity of geometric visual halluci-
nations. Our results provide an explanation for the observed spar-
sity of long-range inhibition in V1—this generic architectural
feature is an evolutionary adaptation that tunes V1 to the normal
vision state. In addition, it has been shown that exactly the same
long-range connections play a key role in the development of
orientation preference maps. Thus V1's most striking long-range
features—patchy excitatory connections and sparse inhibitory con-
nections—are strongly constrained by two requirements: the need
for the visual state to be robust and the developmental require-
ments of the orientational preference map.

evolution | fluctuations

he primary visual cortex, V1, represents external stimuli as

patterns of neural excitation. In the normal state, patterns
of excitation on V1 are driven by sensory stimuli generated in
the retina mapped to V1 from the visual field by the retinocortical
map (1, 2). Patterns seen as visual hallucinations arise in excep-
tional circumstances when external stimuli are overwhelmed
by internally generated spontaneous patterns of neural excitation.
This situation occurs when the circuit parameters governing the
dynamics of V1 are changed, for example, through the influence
of psychotropic drugs that may act in part through effectively
weakening cortical inhibition (3). The mechanism governing
spontaneous pattern formation has been shown in previous
studies to be closely related to that of diffusion driven pattern
formation in chemical and other biological systems, known as
the Turing mechanism (4-6). Compelling evidence for this me-
chanism has been provided by previous studies that have shown
that precisely the four basic classes of geometric visual hallucina-
tions (or form constants) and no others, commonly reported by
subjects (7), follow directly from the Turing mechanism and spon-
taneous symmetry breaking of the basic approximate symmetries
of V1 associated with translation and orientation preference (6).
Here we show that V1 is specially configured to avoid the forma-
tion of visual hallucinations and remain stable under typical op-
erating conditions in the visual state. Together with recent reports
of developmental plasticity in V1 (8), and the apparent univers-
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ality of the self-organizing principles behind the structure of its
orientation columns (9), our results imply strong constraints on
the key features and evolution of its global architecture at inter-
mediate length scales.

We analyze and compare two classes of model for the spatio-
temporal dynamics of neural excitation in V1. The first model is
subject to network connections that are similar to the real V1
network, whereas the second model represents a family of a priori
physiologically plausible alternative network structures. We show
that the alternative network structures substantially degrade
normal visual function, thereby illuminating the functional advan-
tages of the network structure actually realized in V1. Similar
approaches have been successfully applied to other robust
phenomena in biology, such as embryonic pattern formation (10),
bistable genetic switching (11), and the generation of temporal
oscillations of gene expression (12). In these cases, the require-
ment that the network dynamics robustly preserve some function
under variation of parameters or noise led naturally to the elu-
cidation of key features such as the coupling of positive and ne-
gative feedback loops to generate robust oscillations in the level
of gene expression (12). We will show that the requirement that
V1 activation be primarily driven by external sensory stimuli
strongly constrains the topology of its connections by allowing
only sparse long-range inhibition. This feature of V1 is well-
established empirically (13), but has not yet been explained. In
other parts of the cortex where the function is presumably differ-
ent, there is some evidence that sparse long-range connections do
exist that provide some lateral disinhibition (14, 15). By combin-
ing this requirement with the recent experimental confirmation of
calculations that predict that long-range interactions between V1
neurons are essential for stabilizing the development of orienta-
tional preference maps (9), we obtain sufficient constraints on V1
network structure to strongly constrain the character of its long-
range connections.

Geometric visual hallucinations arise through a variant of the
Turing mechanism for pattern formation (4). In V1, spatial pat-
terns arise when the range of local excitatory to inhibitory con-
nections (E-I) is sufficiently longer than the range of excitatory to
excitatory (E-E) connections. Thus when there is a local burst of
excitation, the longer-ranged connections to inhibitory neurons
contain the burst. Fluctuations of activity are then confined over
some characteristic length scale, leading to spatial pattern forma-
tion. The difference in length scale of E—E connections versus
E-I connections results in an effective “Mexican hat” potential
if inhibitory neurons are integrated out, exactly as required for
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Fig. 1. (A) Simplified Douglas—-Martin microcircuit. The blue circle corre-
sponds to inhibitory neurons, and the red circle to excitatory neurons. Simi-
larly, excitatory connections are shown as red arrows from their source and
inhibitory connections as blue arrows. Inputs to the microcircuit vary and are
not shown. (B) Simplified representation of patchy connections between

hypercolumns in V1. Each hypercolumn is represented by a circle, with both
E—E and E-/ connections between hypercolumns indicated by red arrows.
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the successful development of a stable orientation preference
map (9).

Model

We model each local hypercolumn using the most general possi-
ble wiring, consistent with the physiological separation of excita-
tory and inhibitory neurons. Alternatively, the local structure can
be viewed as many copies of a simplified version of the Douglas—
Martin canonical microcircuit (16). This microcircuit is shown
schematically in Fig. 14.

We now introduce a model of V1 as a two-dimensional lattice
of canonical microcircuits. To capture the lattice structure, we dis-
tinguish two length scales. The first length scale is local and is the
one on which canonical microcircuits, each of which has a width
of approximately 100 um, interact with their neighbors. We model
this local scale as comprising all the approximate 10 microcircuits
in one V1 hypercolumn (1). Based on neuroanatomical data, our
model includes excitatory and inhibitory connections between all
microcircuits within a hypercolumn (17).

The second length scale is longer ranged. On this length scale,
hypercolumns are coupled together by patchy excitatory connec-
tions. These connections have a range of approximately 4 mm
with axonal arbors every 1 mm or so (18). Thus they are between
hypercolumns. If we take the lattice spacing between individual
microcircuits to be L mm, then the spacing between hypercol-
umns is y/aL mm where a is the number of microcircuits per
hypercolumn. Thus the connections between differing lattice sites
support a mixture of both local and nonlocal or lattice scale ex-
citation and inhibition. These couplings are as shown in Fig. 1.
For even longer-ranged connections, which would provide a third
length scale, the best evidence to date (19) suggests that they are
small world (20). However, in this paper, we do not consider their
effects. The model presented here is a special case of that intro-
duced to analyze the formation of geometric visual hallucinations
(6). As we note later, it is also closely related to a model of the
cortex introduced to study the development of stable orientation
preference maps (9, 21).

These assumptions yield variants of the Wilson—Cowan equa-
tions (22) for local density of neural excitation of excitatory (¢)
and inhibitory (y) neurons (see SI Text). On length scales much
greater than the lattice scale, the Wilson—-Cowan equations
reduce to the partial differential equations

9 =—apg + (1= )felsf] =~y +(1-y)fls]] [1]
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with currents given by

sp =wgp(1 +8LpA)p —wg (1 +81A)w + h
sp=wip(1+g18)p —wy (1 + g/ Ay + hy. [2]

The functions f; and f are sigmoidal and capture the saturating
response of neurons to external stimuli. The symbol A represents
the continuous Laplacian in two dimensions. The matrix W cap-
tures the local synaptic interactions as in Fig. 14; for example, w;g
denotes the synaptic weight of E-I connections. The parameters
gl-‘j are effective length scales of the indicated connections, and we

take gy = g1 = g;- For the purposes of this study of spontaneous
pattern formation, external stimuli / are set to zero. Although
most of the key conclusions of the present work are analytical,
typical simulation parameters are wgg = 1.3 with all other
w =1, a; = ag = 0.1. The lattice scale spacing is taken in units

of /gL Previously cited neuroanatomical data (13) indicates

that g} < g}

Results

Provided couplings that promote excitation, such as wgg, are suf-
ficiently large compared to relaxation and inhibitory couplings,
Eq. Eq. 1 with lattice scale effects neglected l'] = 0), support
a stable fixed point at nonzero excitation levels of both excitatory
and inhibitory neurons. When such effects are restored, normal
vision corresponds to a stable homogeneous steady state. Failure
of normal vision to geometric visual hallucinations occurs when
the homogeneous steady state becomes unstable to spatially in-
homogeneous perturbations, leading to regular pattern formation
(see Fig. 24).

The exotic spiral structure of hallucinations reported by
patients (7) and shown in Fig. 2B arises from regular pattern
formation through the retinotopic map. The retinotopic map
transforms coordinates of excitation on V1 into visual field coor-
dinates through an approximate logarithmic conformal map, as
demonstrated experimentally in ref. 2. When regular patterns
are subjected to a logarithmic conformal map, they are trans-
formed into logarithmic spiral patterns, implying that regular
pattern formation on V1 results in the logarithmic spiral patterns
observed in geometric visual hallucinations (5).

In the full model above, with g} /gL < 1 as physiologically
motivated, geometric hallucinations occur when

1
+0 (j—’) , [3]
EE

where all functions, derivatives, and concentrations of firing in-
hibitory neurons are evaluated at the homogeneous fixed point
(see SI Text). Such conditions may possibly be achieved through
the effects of hallucinogenic drugs (5, 7).

How would V1 behave if extensive lattice scale /-I connections
were present? This extensive lattice scale inhibition means that
inhibitory activity in one microcircuit suppresses inhibition in
distant microcircuits, leading to more excitatory activity in the
distant site: /-I connections tend to enhance negatively corre-
lated fluctuations in activity. We introduce such connections by
relaxing the requirement that g} < gl.. Linear stability analysis
shows that a sufficient condition for the normal visual state to
be unstable to spontaneous spatial order is

8 weela +fr + (1 =y)fwi]
8k wer (1= w)fwie

1 1— !
81_1 S (1-9)f E;WEE [4]
ger - (I=w)fiwn
(see ref. 23). The right-hand side of the above inequality is typi-
cally less than one for reasonable parameters. Because, in the
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Fig. 2. (A) Turing pattern of neural excitation in visual cortex coordinates.
(B) The same pattern represented in visual field coordinates (i.e., in the co-
ordinates that a patient undergoing geometric visual hallucinations would
see). The logarithmic map between visual field and V1 is responsible for
the dramatic logarithmic spiral structure of the hallucination. Although
the image shown here is from computation, its qualitative features are very
similar to those reported by patients (7). Figure generated with the para-
meters indicated in the text plus gj; = 6.5, gj, = 0.1 with all other g}, = 1.

absence of fine tuning, the existence of extensive lattice scale /-
connections requires the left-hand side of inequality 4 to be O(1)
or greater (to avoid dangling axons between hypercolumns), we
can conclude that the requirement that V1 represent visual sti-
muli through patterns of excitation is incompatible with such
I-I connections. Only with fine tuning could such /- connections
be constructed so as to not generate spontaneous spatial order.
Because changing conditions in the brain make such fine tuning
impossible, the organization of V1 for robust visual function re-
quires that lattice scale I-I connections be sparse. Experimental
support for this statement is provided by data on the connections
made by a special class of inhibitory cells called large basket cells
(LBC), which have long axons and so can provide lattice scale
inhibition (14): A recent count (13) of the number of lattice scale
inhibitory synapses found on V1 LBC indicates that such connec-
tions are sparse compared with the number of lattice scale exci-
tatory synapses found on such neurons and on V1 pyramidal
neurons.

The spatial structures that occur in the presence of extensive
lattice scale I-I coupling differ from those observed in geometric
visual hallucinations and contrast with the usual scenario by
which a single characteristic length scale emerges from a pat-
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tern-forming process. In such a case, the homogeneous steady
state is typically unstable for some bounded region of wave vec-
tors greater than zero. Surprisingly, in the case of lattice scale /-1
connections, the instability occurs for all spatial frequencies
greater than some threshold, so that the long wavelength approx-
imation breaks down (see SI Text). These effects originate in the
suppressive nature of inhibition, captured in the negative sign
of the Laplacian for inhibitory connections in Eq. 2. Laplacian
operators with positive signs are associated with signals from
excitatory neurons. When the long-range connections are primar-
ily from excitatory neurons, the overall sign of the Laplacian is
positive, and the dynamics are those associated with normal dif-
fusion: spatial smoothing if primarily excitatory neurons are ex-
cited at long ranges, and Turing patterns if primarily inhibitory
neurons are excited at long ranges. When the long-range connec-
tions primarily are associated with inhibitory neurons, the overall
sign of the Laplacian is negative, leading to reverse diffusion.
Reverse, or backward diffusion, has exactly the opposite effect
of normal diffusion. Where normal diffusion leads to smoothing
of excitations, reverse diffusion leads to clumping of excitations at
ever shorter length scales (see Fig. 3). These dynamics rely on the
unusual spatial distribution of /-I connections. When an inhibi-
tory neuron fires, connected inhibitory neurons at distant lattice
sites become less active, allowing excitatory neurons at that site
to become more active. Meanwhile, the level of excitation at the
original lattice site may be maintained by local feedbacks with
excitatory neurons. Close to each of these sites, excitatory activity
is suppressed via short range /-E or E-I connections, unless E-E
connectivity is strong enough to counteract the overall effect.
This local feedback leads to increasingly incoherent local excita-
tions, with activity patterns nearby lattice sites less strongly cor-
related. If the long-range connections in the network are
dominated by /-] connections, then increasingly localized clump-
ing of excitations results.

Recent theoretical studies of Turing patterns in reaction-diffu-
sion systems have shown that intrinsic and extrinsic noise en-
hances the stability of Turing patterns (24-26) through an
extension of the quasi-cycle mechanism of McKane and Newman
(27, 28). If such results were to hold for pattern formation in V1,
achieving robust visual function would be very difficult. We have
investigated the effects of noise on the dynamics of our model of
V1 and found that, when lattice scale /-I connections are sparse,
noise does not enlarge the set of parameters that support pat-
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Fig. 3. Schematic representation of how long-range inhibition leads to
instability in strips of visual cortex. An excess of excitatory over inhibitory
activity is indicated in red and the converse in blue. A illustrates dynamics
with normal visual cortex architecture, where long-range inhibition is forbid-
den. These dynamics are analogous to normal diffusion. The upper row
shows an initial distribution of activity and the lower row shows the evolu-
tion of this distribution at a later time. The spatial distribution of activity is
smoothed. B illustrates dynamics with added long-range inhibition, whose
dynamics are analogous to backward diffusion. The upper row shows the
same initial distribution of activity, and the lower row shows the evolution
of this distribution at a later time. Under reverse diffusion, the spatial
distribution of activity becomes less smooth, leading to short length scale
spatial structures.
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terns. However, when extensive lattice scale /-I coupling is intro-
duced, fluctuation-induced “quasi-patterns” incompatible with
normal visual function are generated (see SI Text). A further func-
tional role of forbidding such connections may then be avoidance
of quasi-pattern generation. We also note that the Turing patterns
that do occur in our model of the visual cortex with realistic con-
nectivity are deterministic and highly regular. This behavior is in
contrast to most Turing systems, where quasi-patterns dominate
and substantial fluctuations in the patterning are expected (24—
26). However, it was shown in ref. 29 that Turing patterns gen-
erated by noise can be pinned to an underlying lattice provided
by the lattice scale patchy E—E connections described earlier. The
lack of extensive lattice scale inhibitory connections contributes
to the stability of such a pinning, and helps to explain, for exam-
ple, why subjects report seeing geometric visual hallucinations
that are highly regular (7).

It should be noted that, although the model we present in
Egs. 1 and 2 is highly simplified, the results are based only on
the elementary features of the bifurcation structure of the model.
It is well known that the bifurcation structure of models in
statistical mechanics and dynamical systems is sensitive to only
primitive, detail-independent considerations such as symmetry,
fluctuations, range of interaction, and spatial dimension (30, 31).
Thus it can be expected that the results will be largely unchanged
in more detailed models of V1, which include other standard for-
mulations, such as integrodifferential equations (5) and versions
where the lattice structure is explicitly considered.

Discussion
Results on the development of the orientational preference map
(9, 21) can be combined with our work to constrain the evolution
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of several of the basic features of the network anatomy of V1. In
refs. 9 and 21, it was shown that, for the orientational preference
map of V1 to develop correctly, a lattice scale Mexican hat inter-
action is required—i.e., short-range amplification and long-range
suppression. To achieve this in a two-population excitatory-inhi-
bitory model, either long-range inhibition or long-range E-I con-
nections must dominate long-range activation of excitatory
neurons. Because our work suggests that extensive lattice scale
inhibitory connections are detrimental for normal vision, the only
network structure that is consistent with both of these results
must have only sparse lattice scale inhibitory connections, and
the lattice scale E—I connections must have greater effective
range than the lattice scale E-E connections. However, to avoid
hallucinations, the lattice scale E-I range must not greatly exceed
the local E-E range. These V1 circuit properties apply to both the
avoidance of hallucinations in normal vision and to the develop-
ment of orientation preference maps. In fact, both connectivity
properties deal with exactly the same problem: breaking the sym-
metry of translation and orientation preference.

In summary, in V1 the lattice scale network’s most elementary
features—patchy excitatory connections and sparse inhibitory
connections—are completely constrained by two considerations:
the need for the visual state to be robust and the developmental
requirements of the orientational preference map.
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SI Text

In this supplement, we provide a mathematical treatment of the
results reported in the main paper. These results are based upon
our analysis of quasi-patterns in the Wilson—-Cowan model of
the visual cortex. Quasi-patterns are spatial patterns triggered
by fluctuations in finite-size networks. Here we show how they
can arise in neural networks comprising coupled excitatory and
inhibitory populations of simplified model neurons. We then ana-
lyze the conditions for such spatial pattern formation, and we
show that, depending on the level of long-range inhibition, there
are two scenarios. In the first, mean-field effects dominate, and in
the second, fluctuation-driven effects.

A Simplified Canonical Microcircuit for Cortical Modules. We first look
at modular circuitry. Details of the functional anatomy of a sim-
plified version of the Douglas—Martin canonical microcircuit (1)
(our choice for the subblocks of modular circuitry) are shown in
Fig. S1). In order to analyze the action of such a circuit, we
introduce master equations and actions for neural networks.
We first introduce a simple Markov model of the action of a sin-
gle neuron (2). Each neuron can be in one of two states, quiescent
(g) or activated (a). The rate for the transition g — a is f[s] where
f is a smooth saturating function of the input current s, above a
current threshold sty. The rate for the transition a — ¢q is a con-
stant o.

Following ref. 3, the master equation for P, , (t), the probabil-
ity of finding m active excitatory neurons, and # active inhibitory
neurons at time ¢ can then be written as

dP,, ()

dt :a"E[(”n+ I)Pm+l,n

—mP,, |

+ (M =m+ Dfglse(m = 1n)|P, 1,

— (M —m)fglsg(m.n)|P ,

+a[(n+ 1Py i1 —nPp ]

+ (N =n+ Dflsi(mn = 1)]Py,

= (N =n)f[s(m.n)|Py . [S1]

where

sp(mn) =wpm —wyn + hy
[S2]

SE(m,n) = Wgpm — Wgin + hEy

are the currents driving the neurons.
Using standard methods (4-7), an equivalent action can be
written in the density representation, as

S= / dM{ (rom + pop + agm(1 —e~0))

—p(e™P) — 1)f p[sg])
+7(A0n + Gog + agn(1 — e~ =D) — gD — 1)f/[s;])}.
[S3]

where y = N/M = 0.25, m and n are densities of active neurons,
p and g are densities of quiescent neurons, and 1, 71, p, and §
represent the effects of intrinsic fluctuations. Note also that
the action S[m.m;n.n;q.q;p.p) is that of a single cortical micro-
circuit, and that 6§ = Zdt where < is the neural network
Lagrangian.
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Neocortex as a Two-Dimensional Lattice. We now introduce a model
of an extended slice of neocortex as a two-dimensional lattice of
canonical microcircuits, however, we first need to distinguish two
length-scales. The first we call local, which is the length-scale on
which canonical microcircuits interact with their neighbors. We
assume that this local scale comprises all the microcircuits in
one module. In the simplified model described in this article,
we assume that there are nine such microcircuits per module.
Thus there are about 1.67 x 10* cells per microcircuit, of which
1.33 x 10* cells are excitatory and 0.33 x 10* cells are inhibitory.
Based on neuroanatomical data, we assume that intramodular ex-
citatory and inhibitory connections exist between all microcircuits
within a module (8). However, it is also possible, depending on
which inhibitory interneurons we choose to model, that the local
inhibition is longer ranged than the local excitation.

The second length-scale we call intermediate. On this length-
scale, modules are coupled together by patchy excitatory connec-
tions. These connections have a range of about +£4 mm with
axonal arbors every 1 mm or so (9). Thus they are intermodular.
If we take the lattice spacing between individual microcircuits to
be L mm, then the intermodular spacing is v/aL. mm, where a is
the number of microcircuits per module. There are also some
data on the connections made by a special class of Basket cells
called large basket cells, which have long axons and so can pro-
vide intermodular inhibition (10). Thus the connections between
differing lattice sites support a mixture of both local and inter-
mediate excitation and inhibition, and the currents driving neo-
cortical neurons are now functions of position [i.e., sz — s (m.n),
s; — sl (m.n)] and the intra- and intermodular couplings are as
shown in Figs. S2 and S3, respectively.

We can extend both the master equations and the actions
derived for a single canonical microcircuit to that of a lattice
of such microcircuits simply by indexing them for position in
the lattice. Let Q be the number of microcircuits in the lattice,
and letj = 1,...,Q denote the lattice coordinates of any microcir-
cuit. Then, for example, the generalization of the action given in
Eq. S3 is

Q
/dtM Z{(rﬁ]afmj +p’\]()tpj + aEmj(l _ e—(rﬁ]—ﬁj))
Jj=1

—Pj(e(mf_ﬁ") - 1)fE[S,'E])
+y(R;0m; + giog; + ayn;(1 - e ti=4)) — ‘]j(e(ﬁ/_qf) - Df; [Sﬂ)}~
[S4]

For a lattice of coupled columns containing microcircuits, the
currents given in Eq. S2 can be written in the form

s

=&

(m.n) = ge(A)Wwgpm; — g/ (A)wgn; + hE
st(m.n) = gp(D)wigm; — g (A)wyn; + hl, [S5]

where gz(A) and g;(A) are given by

ge(A) = (14w + ) + A + 5 AS
gr(A) = (1 + i + b)) + W AT + 5 A [S6]

with
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J# J J# i

AE and AL are, respectively, the discrete nine- and five-point
Laplacian operators in d dimensions, and A}, A} are defined
as the five-point operators

Af :%Z—Z@-j, AQ:%Z—Z(ZJ. [S8]

J# J J# J

The form of Eq. S6 with terms such as u + pA is required so that
the couplings to neighboring lattice sites can be represented by a
Laplacian operator A without having on site subtractions (i.e., to
cancel the }6; term in the Laplacian operator). The separate u;
and u, terms represent the intra- and interlattice diffusions.
In the balance of this supplement, these parameters will be
combined.

Writing Eqs. S6 with the Laplacian operator rather than with
explicit indexing allows for simple extraction of continuum equa-
tions valid in the long wavelength limit. The continuum represen-
tation is convenient for the study of spatial pattern formation
carried out in this manuscript.

System-Size Expansion of the Lagrangian. We now carry out the van
Kampen system size expansion of the master equation (11). We
carry out this expansion on the Lagrangian representation. Alter-
natively, the master equation can be directly expanded as

1
ME=NMME, + ME,+ O (JTW) [S9]

To carry out the expansion, we assume that the state of the system
characterized by (m,n) is at a stable fixed point (¢pg,p). We then
assume that there are Gaussian fluctuations (#,£) about this state,
so that in general

&l gl

W+

=39+ 0+ [S10]

<P X[3
g~ g
s 2=

Additionally, the hatted variables are divided by v/M and v/N as
appropriate (see ref. 6 for details of a very similar calculation).
Using Eq. S10 and expanding the exponentials, we obtain the
expanded Lagrangian in the form

1
F=VMZ* + & +0<7>,
1 2 \/M

where M /N = y remains constant as we increase both M and N,
and

[S11]

o
Zy =Y o) + ;oS + apw; (i — ;) — (i = by )f lsF ]
=

+ V10w + §00; + agy;(; — §) — 0;(; — §,)f 1 [s7])}
[S12]
where

sF = gp(A)wgpe; — g1 (A)wgpy; + hE
st =gp(A)Wipg; — g1 (D)wyy; + hl [S13]

and
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Q

~ ~ 2 9 1 7y D
&= Z{ {mjamj + P0G + apn;(m; — p;) — EaE‘”j(mj -p)
=1

Gy = b= 80y~ Y51~y =) )|

. W LA 1 PO
+r |:njat5j + 40 + (i = G) = 5 e (7 — 4)’

iy = el ) = 30,y PH1-0,y -4, )

[S14]

where

5sF = gp(Awgen; — g1(A)wgr& /[y

8s] = gp(A)wien; — &1 (AW &/ /7. [S15]

Variational Derivatives of the Lagrangians. If we now form varia-
tional derivatives of the Lagrangian, we obtain at O(vVM)

A

%A[_l = 09; + app; — 9 [sF]

o0&

?,‘1 = 0,9; — apg; + 9 p[sF]

A

5ﬁ_1 = V70w + app; — 0if 1[s]))
1

I A

551_1 = 7(0,6; = arw; + Of1s]]).

[S16]

Similarly, at O(1), we obtain

4 N R
5—A2 = om; + apn; — ap@i(m; —p;) — CifE[SiE]
m;
= 8;(m; = p;)fp — 9% - (5SiE)
4 N ~
g_z = 0,8; — apn; + apg;(m; — p;) + Cif sF]
1
+ 8;(r; — pi)f g + 9 - (85F)
-q) —)(zfl[sﬂ
- 0:(; — q;)f 1 — 6:(f7 - (5%[)}
4 A A
—= = y[0; — & + appi (A — §;) + xif 1157

8q;
+ 6,(7; — G;)fr + O, - (8sD)].

4 ~
5—A2 =7[0& + & — aup; (7
n;

[S17]

Mean-Field Wilson-Cowan Equations. At a minimum, all these
variations are zero, whence we obtain at O(v/M) the equations

0p; = —app; + 9 [sF] 0,9; = app; — 9fg[s¥]

o = —apy; +6f fs]] 96 = +apy; — Of [s]]. [S18]
Evidently, we have
o +9;)=0.  o(y; +6)=0. [519]
It follows that we can set
@; + 9 = constant = 1, y; +6; =constant =1,  [S20]
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and therefore we can eliminate the equations for the quiescent
states p and g, and we are left with the mean-field equations

o = —aqy; + (1 —y,)f[s]].
[S21]

0,9 = —agg; + (1 — ¢;)f gsF]

With appropriate rescaling, these are the Wilson-Cowan mean-
field equations (12), extended to include interactions between
patches.

Langevin Equations. In similar fashion, functional derivatives of
the O(1) equations yield
o = —apn; + ape;(; —p;) + Cif p[sf]
+ 8, = pi)f e + 9% - (55F)
0 = +agn; — apg;(m; = p;) = Sf st
— 8 (7 = p)f e — 8 - (85F)
0&i = —ar&; + apy; (A = G;) + xif 1151
+60,(; — §)f 1 + 07 - (55)
outi = ar&i — aqyi(A; = G;) — xif 1151

= 0, = §i)f 1 = Oif - (8s). [S22]
Evidently,
o(m+¢) =0, (& +x) =0, [S23]
so that we can set
n; + ¢; = constant = 0, & + yi = constant = 0 [S24]

because all the fluctuations have zero mean.

We can use all these constraints to eliminate the fluctuations ¢
and y, and the noise densities p and g. Lett =m —p,v=n —q,
and let { = —n, y = —&. Eq. S22 now reduce to the pair

at’7i = —agn; + aE‘/’il}i - ’7ifE [Sﬂ
+ (1= @)ife + (1 = @)f - (55F)
0&i = —ar&i + apyV; — &f 1[s]]

+ (L= y)ofs + (L=} - (6s1). [s25]

To obtain fluctuation or Langevin equations, we Fourier trans-
form Eq. 25 with respect to time, and then rewrite the equations
of motion for the fluctuations in vector form as

iwx = Ax + By, [S26]
assuming x(0) = 0, and where
_(n _(u
) () e

the fluctuation or Langevin equations around homogeneous
mean-field steady states ¢ and y, and the matrices 4 and B
are given as

—agp —fg+

(1 - @) ege(A)wgg
(1 —w)fige(A)wg

A= —(1 = ) g&r(A)wer /7
—ay —fr = (L =y)figr(A)wr / /v

[S28]
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and
(- agp + (1 - )fe ) >
BB ( ) ay+ (1 =), )" [S29]

These equations describe the dynamics of the fluctuations of
the activity # and £ in terms of the mean-field variables ¢ and
y, and the variables & and v. As noted in ref. 13, & and v are
the components of the response field in the Martin-Siggia—Rose
response function formalism, and can be therefore considered to
be delta-correlated white noise in the direct Langevin equations.
The Langevin equations are linear and can therefore be directly
solved for moments of the fluctuations. Generalization to fluctua-
tions around more complex mean-field solutions is straightfor-
ward, but is not required in the following analysis.

The Emergence of Quasi-Patterns. To calculate the conditions that
lead to quasi-patterns, we compute the autocorrelation function
(xkx|.) where xy is the Fourier transform of x. The result is that
the autocorrelation of the fluctuations of excitatory neurons can
be written as

*\ o + ﬂsz
() = -y T [S30]
where
o = An(k)* - 2appy + A (k) - 205y,
Br = 2
Q/% = Ay, (k)Ay (k) — Az (k)A5 (k)
Iy = Ay (k) +Axn(k), [S31]

where fy is obtained from Eq. S29 evaluated at the fixed point
(po.wo), and the A(k) and B coefficients are obtained from
Eqgs. S28 and S29 after a Fourier transformation.

The power spectrum of the fluctuations (for real (mn;)) is
obtained simply as

n ’71:> 2 a + prw’
Prlhkow)=2( —F—=—"F)=—— """
£(ko) <mm M@ - Q) + 7

This expression is written in the same format as those in refs. 13
and 14. There is a peak in this spectrum at approximately €.
There is no corresponding peak in the mean-field power spec-
trum, because there are no fluctuations or oscillations about
the mean-field fixed point, which is, in this case, a stable focus.

[S32]

Mean-Field Conditions for Pattern Formation. The conditions for
mean-field spatial pattern formation were worked out initially
in ref. 15, and in more detail in ref. 16. The main result is that
the lateral inhibition of excitatory cells must be of longer range
than that of self-inhibition, and the lateral excitation of inhibitory
cells must be of longer range than that of self-excitation. We re-
peat the analysis within the current formulation, by introducing
an additional parameter in the model, the length scale of the in-
termodular excitation of inhibitory neurons. This additional
length scale means that the model must be modified so that in-
stead of a single function gz(A), we now have two functions,
gie(A) and ggg(A). Additionally, we note that the spatial patterns
exist on length scales that exceed the lattice length scale. In the
equations of motion, the long relative length scale of the patterns
means that the discrete Laplacian can be approximated by its con-
tinuum counterpart. Such an approximation is valid.
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The form of the currents is then

geE(D)WEeEg; — g1 (A)wepw; + hE
gie(D)wipg; — gr(A)wipy; + hi.

s
! [S33]

The fields ¢ and y are dimensionless. We rescale the sets of
couplings w so that

g(Aw =w+g'wA, [S34]
which defines a set of coupling constants g'. We assume that when
the values of g! are varied, the coupling constants w are kept fixed
through a rescaling of the original w coupling constants. In the
continuum limit, the dimensions of the coupling constants g!

are L2. To go to a dimensionless description, we rescale length
byx — y/gLgx where the new x is a dimensionless length. We also

define the ratios ;]—] — g', which puts the currents in the form
EE

sg =wee(1+ A)p —wg (1 + g/ A)w + hg

sp=wi(1+g1pA)p —wy (1 +g Ay + hy. [S35]

In Fourier space, the Laplacian operator A — —k?, so we expand
the coupling matrix A(Ay) = A(k?) as

A(K*) = A(0) 4—;%k2 = Ay +k*5A. [S36]
Explicitly, these matrices are
—ag + (1 =o)fpwee (1= @)fpwg; )
Ay = , S37
0 ( (U =wfpwre = (L= ) 537

where we have also rescaled wy;/\/y = wy and wgi/\/y = wg;
and defined o = a +f. The matrix 64 is

(1- ¢)f}5g}WE1)
(I=w)figiwn )

_ (1 - (l’)f EWEE
o = (—(1 )ik

Note that the matrix B is unaffected by these rescalings.

To obtain the conditions for mean-field pattern formation, we
must obtain the eigenvalues of A (k). Mean-field pattern forma-
tion occurs when the eigenvalues of 4(0) are negative, but for
some finite range of k # 0, the eigenvalues become nonnegative
(17). The eigenvalues are given by the equation

[S38]

Ay = % {TrA +4/(Trd)? - 4detA}.

[S39]
But A, > 4_, so we need only investigate A, to find the transition
to pattern formation.

It is clear from the eigenvalue formula that a necessary con-
dition for spatial pattern formation is detA <0, for then
Ay > 0. From Eq. S34, we can expand detA as

detA = detA, + AAK® + det 54k*, [S40]
Where AA = 6A]]A22 +A115A22 - 6A]2A21 —A126A2].

It follows that we can obtain the necessary condition for spatial
pattern formation, det4 < 0 over a finite range of wave numbers
k if and only if

AA <0, detéA > 0

4detAydetsd < (AA4)?.  [S41]
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These conditions are obtained from seeking zeros of the biqua-
dratic Eq. S40 in k.

Pattern Formation Beyond Mean Field. To calculate the conditions
under which patterns form beyond mean field, we follow ref. 6.
We assume that mean-field solutions are stable and constant. We
set @ = 0 and examine the power spectrum in the form

2 An(k)*(2aggy) +A1(k)* 2aryy)

Pp(k0) = - | det(A (k)2 ’

[S42]

where A (k,0) is strictly real.

To obtain the conditions for pattern formation, we note that
the denominator of this equation will grow as the eighth power
of k in the large k limit, so the power spectrum will be a decreas-
ing function of k for large k. Thus a sufficient condition for pat-
tern formation (corresponding to a nonzero peak in the power
spectrum) is that dPg /dk> > 0. To evaluate the conditions under
which this inequality is satisfied, we examine the derivative

/ /
4 _Te-3¢ [S43]
dxg 8
Dropping constant factors and taking f = A, (k)?B? + A, (k)*B3
and g = det[4 (k)] (to satisfy the sufficient condition for pattern
formation), we find the condition for fluctuation-driven pattern
formation in excitatory neurons to be

(49,645,B% + A9,64,,B3) det(4°) > (49,°B} + A7,°B}) AA.
[S44]

We also want the criteria for fluctuation-driven pattern formation
in the inhibitory neuron population. To obtain this criteria, we
note that the power spectrum for inhibitory fluctuations is

2 Ay (k) (2appo) + A1 (k)* (2ary)

Py (k0) =+ | det(A (k)

. [S45]

Through simple substitution of the explicit subscripts 22 — 21
and 12 — 11 we obtain the conditions for pattern formation in
the inhibitory neurons as

(AgléAZIB% +A(1)1§14113%) detAO > (AglzB% +A?12B%)AA
[S46]

This condition differs slightly from that for excitatory neurons.

For completeness, we next obtain the conditions for quasi-
cycles by setting k = 0 and retaining »?. Through identical calcu-
lations to those above with the independent variable k2 replaced
by @?, the condition for quasi-cycles is obtained

ﬂk detAO > ak(Tr2A0 -2 detAo) [S47]

with g, > 0 and o > 0 as defined in Eq. S31 (with & = 0).

Pattern Formation with Inhibition Forbidden in the Intermediate
Length Scale. The most important case anatomically is the case
where there are no inhibitory synapses at the intermediate length
scale. In this case, the parameters satisfy gL > g} and gl > gl.
Under these conditions, the left-hand side of Eq. S44 is order g/,
and so its magnitude is much less than the right-hand side, which
is of higher order. So, to achieve fluctuation-driven pattern for-
mation, to order g} the requirement is A4 < 0.
From the explicit form of the explicit determinant of 64,

detéA = (1 —)(1 = w)fif 81 81WEWiE — 8EpWeewn ],  [S48]
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the left-hand side of the last equation of the mean-field pattern
formation conditions Eq. S41is [O(g})]. AA is not generally small.
This condition implies that in the case of no intermediate inhi-
bitory connections, the requirement for mean-field pattern for-
mation is O(g}) < A4, Thus, in this case, the conditions for
fluctuation-driven and mean-field pattern formation are identical
to order g}, provided detsA4 > 0.

To derive the condition explicitly, terms in Eq. S44 of order g}
can be neglected, whence

M =gip(1 = y)fpwipA i, —gpp(1 = 9)f pwepAn < 0. [S49]
Rearranging yields
g{i wgeld) + (1 - l///)f}Wn} I O(ggl_]l) [S50]
gl wer(1 = y)fiwie EE

This equation describes the conditions under which patterns can
form, provided there are no intermediate length-scale inhibitory-
inhibitory connections.

Short Length-Scale Spatial Effects. In addition to spatial pattern
formation, the stability matrix A yields eigenvalues that increase
without bound as a function of k until the continuum approxima-
tion breaks down somewhere near the length scale of the lattice
spacing. This instability corresponds to short length-scale spatial
structure. This possibility arises because there are several ways
that the eigenvalue can become positive for nonzero k. The first
way is for TrA to become positive. In the standard formulation of
Turing instabilities, this is forbidden, but in the model currently
being investigated, this is a possibility. The key physical difference
is that, in the standard Turing models, diffusion of inhibitor into a
neighboring cell increases the local concentration of inhibitor.
This normal diffusive behavior does not take place in neural
inhibition, which reduces the amount of activity in neighboring
inhibitors, and which is opposite the effect of normal diffusion,
resulting in time-reversed diffusion dynamics as discussed in the
main text.
The formula for TrA(k) is

Trd = TrAy + [(1 - w)figwn — (1 = o)f pweelk®. [S51]
Thus, if
1 _ i
8171 (1 ¢)fE/WEE , [S52]
g (1—w)fiwn

A, increases without bound as a function of increasing k& (note
we have restored gL for clarity). An additional condition for
unbounded growth of 1, is can be obtained by noting that, if
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detéd < 0, [S53]
then the eigenvalue will increase as k? as well.

A plot of eigenvalues of A in both the mean-field pattern-
forming phase and the short length-scale spatially structured
phase is shown in Fig. S4.

Because of the long wavelength approximations contained in
the above calculations, characterizing the short length-scale
spatially structured phase requires simulation at the lattice scale.
A representative simulation in this phase is shown in Fig. S5.

Phase Diagram when Inhibition is Introduced at the Intermediate
Length Scale. As noted above, in the visual cortex (and in the
neocortex more generally) inhibition over the intermediate
length scale is forbidden. Anatomical studies cannot explain
why the neural architecture is configured in this way. However,
the current model can be modified to see how its qualitative be-
havior would differ if intermediate length-scale inhibition were
introduced. Whereas the model is a highly simplified caricature
of the real neocortex, the qualitative features that emerge when
intermediate inhibition is introduced are likely to illuminate the
real changes in function that would occur in the brain if such
couplings existed. In this section, we report the behavior of the
system as a function of the longest length scale of inhibitory and
excitatory connections.

When intermediate length-scale inhibition is introduced, the
neocortex is overwhelmed by spontaneous spatiotemporal dy-
namics. Analytically, this spontaneous activity can be seen in
Eq. S52, which shows that, if g} is sufficiently large, the system
spontaneously generates spatial structure. If intermediate length-
scale inhibition is forbidden, the model has rich phase behavior,
including short length scale structure generated by backward
diffusion, homogeneous steady states, and pattern formation.
In the visual cortex in particular, there must be a stable homo-
geneous phase so that sensory data can determine the excitation
patterns of the neurons rather than internally generated activity.

To study these behaviors systematically, we explored the above
conditions numerically. The result is that increasing the length
scale of inhibition increases substantially the likelihood that in-
trinsic fluctuations will trigger the formation of spatial structures.
Fig. S6 shows the phase diagram.

Summary. In this supplement, we have shown how intrinsic
fluctuations in networks of excitatory and inhibitory neurons
completely change their dynamics. In particular, we have shown
that, in case their mean-field dynamics is at a stable focus, then
the fluctuations about such a focus trigger persistent noisy oscilla-
tions or quasi-cycles, and/or the emergence of spatial activity pat-
terns or quasi-patterns in case the fixed point is also spatially
homogeneous.
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Fig. S1. Block diagram of a reduced neocortical microcircuit. Py, pyramidal neurons; St, spiny stellate neurons; unfilled triangles, excitatory synapses; filled
triangles, inhibitory synapses.
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Fig. S2. Block diagram of intramodular coupling.
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Fig. S5. Simulation of lattice neural dynamics in the short length-scale spatially structured phase. The results show that in the short length-scale spatially

structured phase, the spatial structure is sharp on the lattice scale and distinct from regular pattern formation.
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Fig. S6. Phase diagram for pattern formation. This figure shows the conditions for the emergence of spatial structure. Region | is short length-scale spatial
structure at the mean-field level, region Il is a mean-field pattern formation phase, region lll is a homogeneous steady state phase, region IV is the quasi-
pattern phase, and region V is a mean-field pattern-forming phase.
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